CHAPTER 2

HYDRODYNAMIC IUBRICATION OF POROUS BREARINGS

In the following sections .we study the hydro-
dynamic lubrication of a porous compogite slider, a porous
exponential slider and of a squeeze film trapped between

a curved plate and a flat plate,.
2.1 A COMPOSITE SIIDER BEARING

The slider bearing is the simplest and is
encountered most often. It is becanse the expression for
film thickness is simple and the boundary conditions are
less complicated. In such bearingg the film is non-diverging
and cqntinuous and so, the problem of negative pressure dees
not arise. Such bearings are designed to support axial
loads. They are applied in hydroelectric generatdrs, steam

and gas turbines and in other equipments.

The analysis of hydrodynamic lubrication of a
compdsite slidérlfbéarixig' is a classical one [ 38 |. The
hydromagnetic compogite slider bearing with inclined and
flat parts in the presence of a transverse magnetic field
was studied by Prakash C39]. Tater, Agrawal [ 40_]

invegtigated the above configuration taking into account
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the electrical conductivity of both the bearing and the
glider, He approximated the veleocity profile of the fluid
under the inclined part by the superposition of the velocity
profiles for rectangular channel flow and couetee flow.
Both the above investigators assumed  the stator and

slider to be impermeable.

In this section we consider the lubrication
of a non-magnetic porous composite slider bearing without
using the approximation of Agrawal [ 40 ]. We consider
the velocity profiles under the inclined part and the ‘

flat part sepaiately as was done by Hughes E4l].

N

2el.l Mathematical formulation

The configuration of the bearing which is
infinite in the g-direction is shown in Fig., 4. The slider
congists of a plate inclined to the stator with its
x-length A and another plate of length.A; parallel to
the stator, both being rigi'dly connected. It moves
parallel to itself with-a uniform veloelty U. The stator
has a porous facing of thickness H which is backed by
a so0lid wall. Pollowing the assumptiong of hydrodynamic

lubrication of 1.2, the governing equation for both the






regiong, under the inclined plamé as well as parallel

plate, is
d 3 dp dh
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for appropriate values of the film thickness h.

Introducing the dimensionless quantities
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into equation (1) and integrating it once with

regpect to x, we have
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where @ is the constant of integration to be

determined.
2.,1.2 Selutiong

The dimensionless pressure 51 under the
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inclined plate is obtained by solving equation (3) after

substituting



E = a-(a-1)% , (4)
where a = hz/h1 , and using the boundary condition
P, = O when X =0 (5)
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and Ll, 12 and Tl’ o are their values when
BL=a and h =1 respectively.
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the parallel plate is obtained by.solving equation (3)
after substituting B = 1 and using the boundary

condition



P =0 when X =1+ 4 , (8)
where
as _ (1+Q2) _ -

D, = 6 z (X -1-2a). (9)
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The congtants Q1 and Qz are to be determined. Owing
to the continuity of the pressures and the flow rates in

the x-direction across h = 1, we have
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The load capacity W is defined as

B A B A+A1
W= [ [ ppdxdz+ [ [ “p, dxdz,
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where Pys Py are the pressures under the inclined and

the parallel plates regpectively,

The dimensionless load capacity of the

bearing is
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The frictional drag 7F exerted by the moving slider

is defined as
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The dimensionlegs friction is
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The x-coordinate X of the centre of pressure is

given by
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and in dimensionless form it is obtained as
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where Q; appearing in equations (13) - (15) is given

2.1.3 Results end discussion

Setting El = 0, we obtain the results for an
inclined slider bearing in a form equivalent to that of

Prekash and Vij [ 37 ].

Taking & = 0, we have the case of a parallel
plate porous slider bearing ., It can be seen that in this

case the load cagpacity W becomes zero.

The dimensionless load capacity, centre of
pressure and friction are expressed in equation (13) -
(15) as functions of &, and Y . The numericel results

for the above characterigbics are shown in Tables 1 to 3.

It is seen from Table 1 that, for a given
value of a, load capacity ¥ decreases when the
permeability parame%er increases. For values of
¥ > 0.01, ‘the decrease in hoad is significant as
compared to that of a solid bearing. On the other hand,

the load increases with @1'

Table 2 shows that the centre of pressure
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moves towards the outlet face when §1~increases, while. it

moves towards the middle of the bearing when y increages.

-It is seen from Table 3 that while the frictioen

increases with El y 1t decreases when w  increases.

Thus, 1t can be seen that the porous composite
slider has more losd capacity than the corresponding

poerous inclined slider.,

TABLE 1
Values of dimensionless load capacity W for various

values of Y and 'El. a= 2,

1 v 0.0001 0.0010 0.0100 0.1000 1.0000
1

0.00 0.15¢9 0.158 0.151 0.109 0.032
0.05 0.190 0.189 0.181 0.128 0.037
0.10 0.219 0,218 0.208 0.147 0.041
0.15 0.2486 0.245 0.234 0.164 0.046

0.20 0.272 0270 0.258 0.182 0.051
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Valuesg of dimensionless centre of pressure for various

values of Y and 7111. a=2.

b4 0.0001 0.0010 0.0100 0.1000 1.0000

&

0.00 0.569 0.568 0.567 0.548 0.514
0.05 0.602 0.602 . 0,599 0.578 0.541
0.10 0.634 0.634 0.630 0.609 _  0.569
0.15 0.665 0.664 0,661 0.638 0-.596
0.20 0.693 0.692 0.689 0,665 0.622
TABLE 3

Values of dimensionless friction F for various values

of ¥ and ;ﬁl. a.= 2,

0.0001 0.0010 0.0100 0.1000 1.0000

0.00 0.773 0.772 0.769 0.7 47 0.70¢2
0,05 0837 0.837 0.832 0.807 O.761
0.10 0.899 0.898 0.894 0.864 0.813
0.15 0.958 0.958 0.953 0.921 0.865

0.20 l.016 1.015 1.010 0.977 0.917




Y AN EXPONENTIAL SLIDER BEARING

The idea behind the tilting pad thrust bearings
was to put a pivet on a flat gector shaped pad just
behind the mid point. The classical theory assumed the
pad stayed flat and so the analysis considered a wedge.

In practice the pad is found te bend elastically and
distorted by thermal,effects. This results in the shape of
the bearing far from a straigh@jgdge. Cameron [:42:]
congidered the exponential film to be nearest the true
shape. Moreover, considerable simplification was
introduced by .expressing the film thickness by an
exponential form and the performance of thrust bearings
depended mainly on -the maximum and minimim £ilm thicknesses
and much less on the actual shape between inlet and
outlet faces [ 38 ]. While the above investigations

were on sblid surfaceg, in this section we congider the

lubrication of a porous exponential slider,

2,2.,1 Mathematical formulation

The configuration congists of a sllder,
infinite along the z-direction and moving with a uniform

velocity U in the x-direction, and stator having a



porous facing of thickness H (Fig. 5). The fluid film

has a thickness h given by

X
- =1n a
h o= by e A

where
0¢x <4 and a=hy/h.

In dimensgionless form it is
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]
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Following the assumptiens of hydrodynamic
Iubrication of 1.2, the governing egquation for film

pregsure is

L 3, dp f _ y 48
= [(h—s-lEkH) dx]"e)"udx

which, in dimensionless form, may be written as
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Integrating equation (21) with the condition

2 . o0 when & = hy , (22)
ax

where 50 is the film thickness at the point of maximum

pregsure, we have
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which in view of (18) takes the form

- 6( h,-0)
& - 0 (24)
an f( B° + «%)In a
2.2.2 Solutiens
Solving equation (24) under the boundary
conditions
P (=1 =p(h=2)=0 (25)

the dimensionless pressure distribution is obtained

as
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and I;, L, and Ti, T, are their values when

H =aand B=1 regpectively.
Also
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The dimengionless load capacity is obtained as
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The dimengionless friction is given by
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The dimensienless centre of pressure is obtained as
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2+2.3 Regultsg and discussion

The numerical results for dimensionless
load capacity, centre of pressure and friction are shown

in Tables 4 %o 6.

The extent of the effect of porosity is deter-
mined by the additional paramter y = ki/nd = o®/12
which appears‘as a consequence of the introduction of

porous facing.



It is seen from Table 4 that, for values
of v > 0.01, load is decreased significantly as
compared to that of a solid bearing. For each \ there
is sn optimum value of a for which the load is

maximun,

Teble 5 shows that the centre of pressure
Is moved closer to the inlet face when a or VY

increases,

It is seen from table 6 that the dimension-
less friction F is decreased significantly for
values of y i 0.01l. The same thinghappens for larger

values of a.

A1l the tables 4 to 6 show that, for
v £ 0.001, a porous slider behaveé like an impermeable
one, So, for these values of Yy , the self-lubricating
nature of a porous bearing is maintained without

significantly affecting the other bearing characteristics.



TABLE 4

Values of dimensionless load

values of v and  a.

¥ for various

\V’ 0.000L 0.001 0.01 0.1

a

2 0.1414 0.,1410 0.1372 0.1124
3 0.1502 0.1498 0.1461 0.1201
4 0.1372 0.1369 0.1338 0.1113
TABLE 5

Values of dimensionless centre of pressure X/4

for various vealues of y and

Cie

\ v  0.0001 0.001 0.01 0.1

a)

o 0.79%7 0.7935 0.7916 0.7760

3 0.5204 0.5199 .  0.5154 0. 4755
0.2724 0.2118

4 0.2799 0.2791

*n
*.



TABLE 6

. Values of dimensionless frictien. F for

various values of ' and Ze

2 Y 0.0001 0.001 0.01 0.1

2 0.7985 0.7982 0.7950 047745
5 0.7468 0.7464 0.7424 0.7152

4 0.7148 0.7144 00,7104 0.6827
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2.3 SQUEEZE FIIM BETWEEN CURVED CIRCULAR PLATES

4

v A squeege film is a very thin fluid layer
between two surfaces which are parts of a machine, having
normal relative motion and thusg gpproaching egch other,
The relative normal motion of the surfaces causes the
fluid to flow towards less constrai@ed boundaries,
resulting in the development of high pressures which
in turn support the load and hence keep off the
approaching surfaces ffomﬂpotential contact. This fact
is used in frictional devices such as clutch plates

in automotive transmigsiensg etc.

wa [17 ] enalysed the squeeze film .
behaviour between two annu;ar digks when one of them
had a porous fécing. The load capacity and the
response time were decreased due to the introduetion
of the porous facing. Later, many investigators
18, 22, 10 ] considered similar problems for rectan-
gular, circular and varieus geometries. All the above

invegtigators assumed that the plates were flat.

Recently Murti E43] introduced a

new exponential function to describe the curved film
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‘between two circular plates. The exponential function
not only simplified the analysis but also helped in
) obtaining the response time of squeegze films by avoiding
complicated numerical integration. He claimed that hisg
results could be usefully exploited in predicting squeeze
film behaviour in machine elements like gears and

cylindrical rellers.

while the above analysis considered the
two circular plates to be impermeable, in this section

we assume that the upper plate is porous.

2.3.1 Mathemgtical foermulatien

The cenfiguration ccnsisfs of two plates,
each of radius ry. The upper plate is curved and has
a porous facing of thickness H which is backed by a
solid wall (Fig. 6). The lower plate is fixed gnd flat.

The film thickness, as in [ 43_], is taken as

2
e o ’ (31)

where = aj is the central film thickness and f is

the curvature of the upper plate.






In dimensionless form it is

n - B
—= e ’ (32)
%
where
r o 2
R = = and B = I, B (33)

1

The upper plate moves normal to itself
approaching the lower plate with uniform velocity &ob

The modified Reynolds equation governing the system is

1 4 3 4 .
= (rh a%) 312;1 an-

op
r dr .é.f)yih]’ (34)

k
F (
where P is the pressure in the porous Tegien satisfying

the equation

, 2
1 .3 op 3°p _
T or (Foa) 5 0, (35)

Te equations (34) and (35) are coupled.
Using Morgan-Cameron approximation, they are uncoupled

as in [[10] and we accordingly have
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2.%.2 Solutions

Substituting equation

(36) and then solving it

=12f1 eEO
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(36)

(31) into egquation

under the boundary conditions

?z@m&xen r=0 and p =0 when r =1, (37)
T
the dimensionless pressure is
“8 P 1 1412V il
- e
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P T i2yg 1 +l2ye”
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%0
The dimensionless load capacity is
- ag W 1 1 112y 2P 58
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The +time taken for reduction in ecentral film thickness

from ayq o ay, 18
4
BRI o1, 1 1 =
A'bz-—-—-ﬁ——é"(;'é’“;é“)w (40)
02 01

2:%.3 Results and discussion

By making YW - O in equations (38) -
(40), the equations agree with those obtained by Murti

[437] in the non-porous case.

The load capacity given by equation (39) is
computed by Simpson's one-third rule after dividing
the interval of integration into one hundred equal

parts and is presented in tabular form.

Pables 7 and 8 gshow that the load capacity
decreases when the permeability paramter W  increases
in both the cases of convex and concave pads, They confirm
the observations by Murti | 43  that the load
capacity sharply rises with the curvature parameter

F in the case of concave pads.
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Using the values of W given in Tables 7 and
8 in equation (40) the time reguired to attain a
specified central film thickness can be cglculated very

easily.

TABLE 7

Values of dimensionless load capacity ﬁ in the case

of convex ( B < 0) pads for various values of B &nd V-

AV 0.0001 0.0010 0.1000 1.0000
3

-0.4  0.3512 0.3493 0.2205 0.0525
-0.6  0.2486 0.2475 0.1707 0.0484
-0.8 . 0.1800 0,1794  0.1309 0.0434
-1.0  0.1334 0.1330 0.1006 0,0378

=540 0.0067 0.0066 0.0053 0.0026




TABLE 8

Values of dimensionless load capacity W in the
case of concave ( B > O ) pads for various values

of § and -

£ 2]
.o

v 0.0001 0,0010 0.1000 1.0000

B

0.4 1.728 1.684 0.453 0.080
0.6 2.690 2,577 0.494 0.061
0.8 243 3.949 0.526 0.06L
1.0 6.7 63 54999 04550 0.062

5.0 490.248 56,159 0.621 0.063




