
CHAPTER 2

HYDRODYNAMIC LUBRICATION OF POROUS BEARINGS

In the following sections -we study the hydro­

dynamic lubrication of a porous composite slider, a porous 

exponential slider and of a squeeze film trapped between 

a curved plate and a flat plate.

2.1 A COMPOSITE SUPER BEARISH*

The slider bearing is the simplest and -is 

encountered most often. It is because the expression for 

film thickness is simple and the boundary conditions are 

less complicated. In such bearings the film is non-diverging 

and continuous and so, the problem of negative pressure does 

not arise. Such bearings are' designed to support axial 

loads. Shey are applied in hydroelectric generators, steam 

and gas turbines and in other equipments.

The analysis of hydrodynamic lubrication of a 

composite slider bearing' is a classical one £38 2]. She 

hydromagnetic composite slider hearing with inclined and 

flat parts in the presence of a transverse magnetic field 

was studied by Prakash £39 2]. Pater, Agrawal £40 2] 

investigated the shove configuration taking into account 
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•Hie electrical conductivity of tooth, the hearing and the 

slider. He approximated the velocity profile of the fluid 

under the inclined part toy the superposition of the velocity 

profiles for rectangular channel flow and couetee flow. 

Both the above investigators assumed the stator and 

slider to toe impermeable.

In this section we consider the lubrication 

of a non-magnetic porous composite slider bearing without 

using the approximation of Agrawal £ 40 3 • We consider 

the velocity profiles under the inclined part and the 

flat part separately as was done by Hu^aes £4lU*

2.1.1 Mathematical formulation

The configuration of the bearing which is . 

infinite in the z-direction is shown in fig. 4. The slider 

consists of a plate' inclined to the stator with its 

x-length j, and another plate of length parallel to 

the stator, both being rigidly connected. It moves 

parallel to itself with"a uniform velocity U. The stator 

has a porous facing of thickness H which is backed toy 

a solid wall, following the assumptions of hydrod^Tnaaiixc 

lubrication of 1.2, the governing equation for both the





regions, under -toe inclined plate as well as parallel 

plate, is

i40t

E L (fc® + = 6 p* E

for appropriate values of the film thickness h. 

Introducing the dimensionless quantities

x E =
h

,2
jiUA a 12 f. S

,3hl

into equation (l) and integrating it once with 

respect to x, we have

3E =
dx

■lL±JL
-3 3 h+a

where Q is the constant of integration to "be 

determined.

2.1.2 Solutions

She dimensionless pressure p^ under 

inclined plate is obtained by solving equation (3) 

substituting

(1)

(2)

(3)

the

after
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h 3 a - (a - 1) x , (4)

where a = hp/h, , and using the boundary condition

= 0 when x = 0 (5)

as

Pn « 1 r*l
a-1

CJ {^-1*213(0!--%)) + -g-{w^+STT3(1-2^jl (6)
(X

where

L a In
F (h + a)2 ”[
L if -aE +a2 J , I = taa"1 ( SSj^a.)

and L^, Lg and 0^, fg are their values when 

E s a and h = 1 respectively.

(7)

Ihe dimension; less pressure pg under 

the parallel plate is obtained by . solving equation (3) 

after substituting E = 1 and using the boundary 

condition
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P when x ss 1 + ,

where

as (1+Qo)
l+a‘ (x - 1 - A1)

(8)

(9)

®he constants and Qg are to be determined. Owing
to the continuity of the pressures and the flow rates in 
the x-direction across E = 1, we have

1
a-1 [Mvv^s(vv}+ % .

iJL3
r1 + a'

(-Xj_)

and
Q-, — Qr

(10)

(11)

Huations (10) and (11) yield
(1+cc3) a l 3( Sg-^)} “ 6( a-l) <*2_\

Oi=Qg ~ *“ .(1+cc3) + ^(-i-^l +6(a-1)a %
(12)



The load capacity W is defined as

B A B A+A-
w = ff Pn ixhz + / / So

0 0 0 A

where p^, pg are the pressures under the inclined and 

the parallel plates respectively.

The dimensionless load capacity of the

hearing is

,2- **1
w = .-rrn

(a-iy
^2 in ( 3 3

" -2- "s3 J
a

(a — Q-,) -I
+ ■■ (Tg - a^) j

a

aQ.

+ r ih-H+win-v}
i +

1 + a1
(2 + A^ ) A^.

The frictional drag 3? exerted hy the moving slider

is defined as
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F = / /
0 0

A+A-j^
? < ay 'y=h dxdz8

ffiie dimensionless friction is

F =
h-^F
jxu&B

1
a-1

3 3In ( SJS-) 
1 +a6

2l

2a

1X1 8, ^
a-1 D

1 + Q-j_
' 3
1 + a

+ 1 ]
The x-coordinate x of the centre of pressure is 

given by

and in dimensionless form it is obtained as

A 2 (a-1) E
3 
6(l-a) + 2(QL-43a)Ui ( )

a >a°

(a2-2aQ ) (a2Q -a3)
“ l I'1‘*I'g+2l/’3( 3^-3^) J + "------ —“

a a

^ (3 + 3% + I* ) jL

(14)

(15)
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•where q appearing in equations (13) - (15) is given

by (12).

2.1.3 Results and discussion

Setting = 0, we obtain the results for an 

inclined slider bearing in a form equivalent to that of 

Prakash and Yi j 37 U »

Taking A = 0, we have the case of a parallel 

plate porous slider bearing . it can be seen that in this 

case the load capacity ¥ becomes zero.

The dimensionless load capacity, centre of 

pressure and friction are expressed in equation (13) - 

(15) as functions of and y . The numerical results 

for the above characteristics are'shown in Tables 1 to 3.

It is seen from Table 1 that, for a given 

value of a, load capacity ¥ decreases when the 

permeability parameter increases. Por values of 

y > 0.01, 'the decrease in load is significant as

compared to that of a solid bearing. On the other hand, 

the load increases with X,.

Table 2 shows that the centre of pressure
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moves towards the outlet face when. JLj- increases, while, it 

moves towards the middle of the bearing when y increases.

-It is seen from Table 3 that while the friction 

increases with , it decreases when y increases.

Thus, it can be seen that the porous composite 

slider has more load capacity than the corresponding 

porous inclined slider.

TABLE 1

Values of dimensionless load capacity W for various

values of y and a = 2 ®

YT 0.0001 0.0010 0.0100 0 ©1G00 1.0000

0.00 0.159 0.158 0.151 0.109 0.032

0.05 0.190 0.189 0.181 0.128 0.037

0.10 0.219 0.218 0.208 0.147 0.041

0.15 0.246 0.245 0.234 0.164 0.046

0.20 0.272 0.270 0.258 0.182 0.051
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TABLE 2

"Values of dimensionless centre of pressure j for various
Ji.

values of y and 1^. a = 2.

Al\ 0.0001 0.0010 0.0100 0.1000 1.0000

0.00 0,569 0.568 0.567 0.548 0.514

0.05 0.602 0.602 - 0.599 0.578 0.541

0.10 0.634 0.634 0.630 0.609 0.569

0.15 0.665 0.664 0.661 0.638 0-.596

0.20 0.693 0.692 0.689 0.665’ 0.622

TABLE 3 -

Values of dimensionless friction F for various values

of y and . a. — 2«

V 0.0001 0.0 010 0.0100 0.1000 1.0000

0.00 0.773 0.772 0.7 69 0.747 0.709

0.05 OeS'Sl 0.837 0.832 0.807 0.761

0.10 0.899 0.898 0.894 0.864 0.813

0.15 0.958 0.958 0.953 0.921 0.865

0.20 1.016 1.015 1.010 0.977 0.917



2e2 M EXPONfflTIAL SLIDER BERING
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Ihe idea behind the tilting pad thrust hearings 

was to put a pivot on a flat sector shaped pad just 

behind the mid point. She classical theory assumed the 

pad stayed flat and so the analysis considered a wedge.

In practice the pad is found to bend elastically and 

distorted by thermal effects. Shis results in the shape of 
the bearing far from a straightedge. Cameron (Z42^j 

considered the exponential film to be nearest the true 

shape. Moreover, considerable simplification was 

introduced by .expressing the film thickness by an 

exponential form and the performance of thrust bearings 

depended mainly on the maximum and minimum film thicknesses 

and much less on the actual shape between inlet and 

outlet faces 3© Z3 • Ihile the above investigations 

were on solid surfaces, in this section we consider the 

lubrication of a porous exponential slider®

2S2.1 Mathematical formulation

©ae configuration consists of a slider, 

infinite along the z-direetion and moving with a uniform 

velocity U in the x-direction, and stator having a
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porous facing of thickness H (Fig* 5)- She fluid film 
has a thickness h given by

T' In ah = hg e * (16)

where
0 < x < A and a = hg/h^. (17)

In dimensionless form it is

- x In a
h = a e (18)

where
h and x (19)

following the assumptions of hydrodynamic 
lubrication of 1.2, the governing equation for film 

pressure is

e [(h3+12kH) i] -6 j* 11 i (20)
which, in dimensionless form, may; be written as

d_
dx

+ a3) dh
dx (21)
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Integrating equation (21) with the condition

^5 = 0 when E = h„ , (22)
dx

where h^ is the film thickness at the point of maximum 
pressure, we have

dx 6 (h ,^0
E 3+a

(23)

which in view of (18) takes the form

dl
6( hQ- E )
E( h3 + a3)In a

(24)

2*2*2 Solutions
Solving equation (24) under the boundary

conditions

p ( h = 1) = p ( h =* a ) = 0, (25)

the dimensionless pressure distribution is obtained 

as



hl p 
^UA- cc2 In a

. In |

s . -,
» , A\\ > * •$&\-tV . £>

Lg + 2f3 (%-^g)%
In 1 a3(l + a5) 

a3 + a3 }

fa (1+q j
E3+ a5

• - - Ig + 2lf3 (I - Ig)]-

*51!

f (26)

vsfaere

In
■ (h + a)£

i2 - S- + a
I = tan*"1 ( 2il a

af3

and Lp 1^ and T-p 5}g are tfaelr -values wfaesn 

fa = a and 1=1 respectively*

Also

11q a ^-^sfsd^ig) ] / m ]' (E7)

ffae dimensionless load capacity is obtained as

6
uDA2B

1 (Mn)ln li/ -----^-------* dh
(in a)2 a E (E3 + a3)

(28)
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The dimensionless friction is given by

I* ='
hl ¥ 
IJAB^uu 4a In a

|> (1

a

lIl~Ii2+2^5^l‘~g2^

$ ^(l+g5) X.
Ia^ + ■*

2 ^-VSfSdg-y}

In

(29)

The dimensionless centre of pressure is obtained as

x
A

1 (E-£L) (In h)2

S -------^----- 5— dh + 1.(In a) ° a E (h® + a°)
(30)

2*2.3 Results ana discussion

The numerical results for dimensionless 

load capacity, centre of pressure and friction are shown 

in Tables 4 to 6.

The extent of the effect of porosity is deter-
«z «■*<■->

mined by the additional paramter y = KH/h-£ = a°/12 
which appears as a consequence of the introduction of 

porous facing.



It is seen, from fable 4 that, for values 

of y >_ 0.01, load is decreased significantly as 

compared to that of a solid hearing, lor each y there 
is an optimum value of a for which the load is 

maximum.

fable 5 shows that the centre of pressure 

is moved closer to the inlet face when a or y 
increases.

It is seen from table 6 that the dimension­

less friction f is decreased significantly for 

values of y > 0.01. fhe same thinghappens for larger

values of a.

£L1 the tables 4 to 6 show that, for 

y < 0.001, a porous slider behaves like an impermeable 

one. So, for these values of y , the self-lubricating 
nature of a porous bearing is maintained without 

significantly affecting the other bearing characteristics.
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Values of dimensionless load w for various 

values of y and a.

\ Y 0.0001 0.001 0.01 0.1
a\
2 0.1414 0.1410 0.1372 0.1124

3 0.1502 0.1498 0.1461 0.1201

4 0.1372 0.1369 0.1338 0.1113

SABLE 5

Values of dimensionless centre of pressure x/A 

for various values of y and a.

V
0.0001 0.001 0.01 0.1

2 0.7937 0.7935 0.7916 0.7760

3 0.5204 0.5199 . 0.5154 0.4755

4 0.2799 0.2791 0.27 2 4 0 .2118
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SABLE 6

Yalues of dimensionless friction. ! for 

various values of y and a.

V 0.0001 OiOOl 0.01 0.1

2 0.7985 0.7982 0.7950 0.7745

3 0.7468 0.7464 0.7424 0.7152

4 • 0.7148 0.7144 0*7104 0.6827
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2.3 SQUEEZE Pint BETWEEN OURTED CIRCULAR PLATES

\ A squeeze film is a very thin fluid layer 

"between two surfaces which are parts of a machine, having 

normal relative motion and thus approaching each other. 

The relative normal motion of the surfaces causes the 

fluid to flow towards less constrained "boundaries, 

resulting in the development of high pressures which 

in turn support the load and hence keep off the 

approaching surfaces from potential contact. This fact 

is used in frictional devices such as clutch plates 

in automotive transmissions etc.

!fu P.7I1 analysed the squeeze film 

"behaviour between two annular disks when one of them 

had a porous facing. The load capacity and the 

response time were decreased due to the introduction 

of the porous facing. Later, many investigators 

£ 18, 22, 10 3 considered similar problems for rectan­

gular, circular and various geometries. All the above 

investigators assumed that the plates were flat.

Recently Murti £431] introduced a 

new exponential function to describe the curved film
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"between two circular plates. The exponential function 

not only simplified the analysis but also helped in 

obtaining the response time of squeeze films by avoiding 

complicated numerical integration. He claimed that his 

results could be usefully exploited in predicting squeeze 

film behaviour in machine elements like gears and 

cylindrical rollers.

While the above analysis considered the 

two circular plates to be impermeable, in this section 

we assume that the upper plate is porous.

2.3.1 Mathematical formulation

Sie configuration consists of two plates, 

each of radius r-^. The upper plate is curved and has 

a porous facing of thickness H which is backed by a ' 

solid wall (Jig. 6). The lower plate is fixed and flat.
r

The film thickness, as in £4-31], is taken as

-3r2
h = aQ e , (31)

where aQ is the central film thickness and' p is 

the curvature of the upper plate.
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h_
a0

in dimensionless form it is

- (3R2

e >

where

R r
n,

and p

(32)

(33)

The upper plate moves normal to itself 

approaching the lower plate with uniform velocity a0* 

The modified Reynolds equation governing the system is

1 JL (Xh3 = ign [L -^( P) *1, (34)
r dr K dr ' ^ r *“ 0 jx K 9y ‘'y=hJ’ v J

where P is the pressure in the porous region satisfying 

the equation

1
r

0P
9r

a2p

+ w o (35)

The equations (34) and (35) are coupled. 

Using Morgan-Oameron approximation, they are uncoupled 

as in CloH and we accordingly have
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1 d_ 
r dr

O (h3 + 12kH) |f 3 = 12 fx a,
0

(36)

2.3*2 Solutions

Substituting equation (31) into equation 

(36) and then solving it under the boundary conditions

= 0 #ien r = 0 and p = 0 when r = n (37) 
dr x

the dimensionless pressure is

4 p i

r- ri «o
12 y$

3pR2
, 1+12 V'' e x311 (; '7o} 

1 +12 Y ew
(38)

where

a0

The dimensionless load capacity is

1 1
¥

a0 W
I

R In dR (39)

2%-jXvl\aQ\ 12y$ 0 1+12 J^e3pB
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She time taken for reduction in central film thickness

from d01 to a Q2 is

At
2% / 

vr 2 ^
1
2

a02
- -7T- ) W

a01
(40)

2s3s>3 Results and discussion

By making y -* 0 in equations (38) -

(40), the equations agree with those obtained by Murti 

Q43U in the non-porous case.

The load capacity given by equation (39) is 

computed by Simpson*s one-third rule after dividing 

the interval of integration into one hundred equal 

parts and is presented in tabular form.

Cables 7 and 8 show that the load capacity 

decreases when the permeability paramter y increases 

in both the cases of convex and concave pads9 They confirm 

the observations by Marti j_43] that the load 

capacity sharply rises with the curvature parameter 

fi in the case of concave pads.
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Using the -values of W given in Tables 7 and 

8 in equation (40) the time required .to attain a 

specified central film thicfeness can be calculated very 

easily.

TABLE 7

Yalues of dimensionless load capacity W in the case 

of convex ( {3 < 0) pads for various values of p and y/ •

p\
0.0001 0.0010 0.1000 1.0000

-0.4 0.3512 0.3493 0.2205 0.0525

-0.*6 0.2486 0.2475 0.1707 0.0484

-0.8 • 0.1800 0.1794 ' 0.1309 0.0434

-1.0 0.1334 0.1330 0.1006 0.0378

-5.0 0.0067 0.0066 0.0053 0.002 6
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SABLE 8

Values of dimensionless load capacity W in the 

case of concave ( p > 0 ) pads for various values 

of f and y •

*\ 0.0001 Os0010 0.1000 I.0000

0.4 1.728 1.684 0.453 0.060

Os 6 2.690 2.577 0.494 0.061

0.8 4*243 3o949 0.52 6 0.061

1.0 6.763 5.999 0.550 0.062

5.0 490.248 56.159 0.621 0.063


