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ON THE CONVERGENCE OF 
THE WALSH TYPE WAVELET 
PAPKFT SFRTFSam «mBL* aHh. aJBaMMV mBm. mKimm aJL* JUnf

2.1 Introduction

Wavelet analysis was originally introduced in order to improve seismic signal process­

ing by switching from short time Fourier analysis to new algorithms better suited to 

detect and analyze abrupt changes in signals. It corresponds to a decomposition of 

phase space in which the tradeoff between time and frequency localization has been 

chosen to provide better and better time localization at high frequencies in return 

for poor frequency localization. This makes analysis more adapted to the study of 

transient phenomena and has proven a very successful approach to many problems 

in signal processing, numerical analysis and quantum mechanics. Wavelet packets is 

an important generalization of wavelet analysis, pioneered by R. Coifman, Y. Meyer,
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M. V, Wickerhauser [50] and other researchers. Wavelet packet functions comprise 

a rich family of building blocks functions. Wavelet packet functions are still local­

ized in time, but offer more flexibility than wavelets in representing different types of 

signals. In particular, wavelet packets are better at representing signals that exhibit 

oscillatory or periodic behaviour.

The Walsh type wavelet packets can be considered as the smooth generalizations 

of the Walsh functions and they have the same convergence properties for expansion 

of Lp functions, 1 < p < oo as the Walsh- Fourier series. The Walsh type wavelet 

packet expansions fails for ^-functions (refer [55]).

The aim of this chapter is to show the. uniform convergence for periodic Walsh 

type wavelet packet expansion for IP functions 1 < p < oo.

Recently, Morten Nielsen ([54], [55]) has proved the pointwise convergence a.e. of 

Walsh type wavelet packet series using the concept of Schauder basis and strong type 

(p,p) and the pointwise convergence a.e. of expansion of function from the Block 

space Bq, 1 < q < oo.Dealing with the convergence of the Walsh type wavelet packet 

expansions he proved the following theorem :

THEOREM 2.1.1 The Carleson operator for any Walsh type wavelet packet sys­
tem with wi £ C1(R) is of strong type (p,p) for 1 < p < oo. ■

In this chapter we are generalizing the above result by proving the uniform con­

vergence of periodized Walsh type wavelet packet series using the properties of Walsh 

functions.

Also, most of the work on wavelet packets has been done in one dimension or 

using separable wavelet packets in higher dimensions. But, separable wavelets and
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wavelet packet bases both have several drawbacks for the applications to field like 

image analysis.

In [56], Nielsen has constructed nonseparable wavelet packet bases for lP{Rd) 

with nice convergence properties. He also proved results on a special wavelet packets
N

construction that can be considered the multidimensional generalization of Walsh 

system on [0,1). He proved that this multidimensional generalization share the two 

most important convergence properties of the classical Walsh system : The new 

system is a schauder bases for U(Rd)} 1 < p < oo and the expansion of every U 

function in the system converges pointwise almost everywhere.

Further in this chapter, we are generalizing the following result proved by Nielsen 

by proving the uniform convergence of the periodic Walsh type wavelet packet series 

for IP^R2), 1 < p < oo.

THEOREM 2.1.2 Let L be the Carleson operator for a basic Walsh-type , 
wavelet packet system {W]f}„ associated with an almost isotrophic dilation matrix. 
Suppose Wo E C1(Rd). Then L is of strong type (p,p), 1 < p < oo. ■

2.2 Preliminaries

In this chapter, we require the following definitions for proving the theorems:

DEFINITION 2.2.1 (Multiresolution Analysis :)

A multiresolution analysis is a sequence of closed subspaces Vj,j E Z, of L2(R) sat­
isfying
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Vj CVj+1, J G Z,

j e z.
\JVj=L\R).

n*s=®.
izz

There exists a (p G VqsucJi that $(. — k)k€Zis an orthonormal basis for Vq.

Given a multiresolution analysis we can construct an associated wavelet.

DEFINITION 2.2.2 (Conjugate Quadrature Filters :)

Let hn G ll{Z) be a real valued sequences. and let qk — (—1 )fc/ii_fc for k € Z. Define 
the operators H, G : l2(Z) T(Z) by

nez
The filters H and G are called a pair of CQFs if

2HH* = 2GG* = I

HI = l, where 1 — (....1,1,1,....)

H*G + G*H = I
Zlfl* ___ TT
ii — Li ti 0
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DEFINITION 2.2.3 ( Non-stationary wavelet packets :)

Let (4>, ip) be the scaling function and wavelet associated with a multi-resolution anal­
ysis and let (FqP\ F^), p € N be a family of bounded operators on l2(Z) of the form

(F!a)k = J2anh^(n~2k)
nez

where, e = 0,1

with h!f}(n) = (—l)n/i^(l — n), a real valued sequence in ll(Z) such that each 
,(FqP\f[^) is a pair of conjugate quadrature filters.

We define a family of non-stationary wavelet packets {wn}jf=0 recursively by letting 
wq — fi, Wi = and then for n € N,

W2n(x) = V2Y^ha(q)wn(2x-q)

W2n+1 (z) = \/2^P/ii (q)wn(2x - q)
gez

where, 2p <n < 2P+1.

The trigonometric polynomials given by

k

m?’© = jSX’W-e"*

are called the symbols of the filters.
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DEFINITION 2.2.4 ( Walsh system :)

The Walsh system {Wn}£L0 is defined recursively on [0,1) by letting WQ = and

W2n(x) ^ Wn(2x) + Wn(2x-1)

W2n+1(x) = Wn{2x)-Wn{2x-l)

The Walsh system is a family of wavelet packets obtained by letting <p = X[o,i) 

and ip = X[o,|) ~ X[|,i) aud using the Haar filters in the definition of non-stationary 

wavelet packets (refer [54]).

The Walsh system is closed under pointwise multiplication.

Define the binary operator © : A'0 x N0 —>• Nq. Let x, y £ [0.1). Then x and y 

have unique representations x = YIJLq Xj.2^1^1 and y — YlJLo respectively.

Suppose we choose them to be finite. By x © y we denote the dyadic sum of x and y 

defined as :
CO •

x®y = Y^\xi
j=0

Then f(x)dx = f(x ® y)dx for all / G Ll and y £ [0,1). Moreover ,

Wn(x®y) = Wn(x).Wn(y)

2.2.1 Walsh wavelet packets

Wavelet packets were originally introduced in Coifman, Meyer and Wickerhauser [50] 

to improve the frequency resolution of signals achieved by a wavelet analysis.

A wavelet decomposition or transform simply reexpresses a function in terms of 

the wavelet bases {'tpj,k(t)}- This amounts to decomposing the function space L2 

into a direct sum of orthogonal subspaces Wj and choosing the combination of the
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orthonormal bases for W's as the orthonormal basis of L2. In the ease of finite 

data with information up to a resolution level J,. a wavelet transform performs a 

decomposition of the space Vj in to a direct sum of orthogonal subspaces

Vj — Wj-\ © Vj-1 — Wj-1 © Wj-2 © Vj-2 —......... — ©j=o W3- © Vo

and the union of bases of these subspaces forms a basis for the wavelet decompo­

sition. This, of course, is by no means the only way to decompose the space L2 or 

Vj.

From multi-resolution analysis, we know that the given basis function {(pi,k(t)} of 

Vi,{(p(t—k)} and {ip(t—k)} constitute an orthonormal basis for Vo and Wq respectively 

and Vi = Vo © Wo where,

4>(t) = ~ k)
k

and

il>(t) = y/2'^2gk<l>(2t-k)
k

where hk and denote the low pass filter and high pass filter respectively.Thus the 

space V can be decomposed into a direct sum of the two orthogonal subspaces defined 

by their basis functions given by. the above two equations. This ” splitting trick” or 

splitting algorithm can be used to decompose W which leads to the so-called wavelet 

packet analysis.

For example, if we analogously define

W2(f) =
k
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W3(t) = y/2^Tgkip(2t - k)

k
then {Wi{t — k)} and {W${t — k)} are orthonormal basis functions for the two sub­

spaces whose direct sum is W\.

DEFINITION 2.2.5 (Wavelet Packets :)

For n = 0,1,2,3..... we define a sequence of functions as follows:

W2n(t) = V2j2hkWn(2t-k)

k
HWi(t) = - k)

k

when n — 0, W0(t) = <f>(t), the scaling function 

and n = 1, W%(t) = ijj(t), the mother wavelet.

Various combinations of functions and their translations and dilations can give rise 

to various bases for the function space. So we have a whole collection of orthonormal 

bases generated from {Wn(t)}. We call this collection ” a library of wavelet packet 

bases” and the function of the form Wnjtk = 2%Wn(2H — k) is called a wavelet packet.

DEFINITION 2.2.6 (Haar Filter:)

The Haar low pass quadrature mirror filter {h^}k is given by ho(0) = /iq(1) = 
■^,ho(k) = 0 otherwise and the associated high pass filter {hi(k)}k is given by 
h\{k) = (—l)fch0(l — k).

DEFINITION 2.2.7 -(Walsh Type Wavelet Packets :)

Let {wn}n>ojk£z be a family of non-sfationary wavelet packets constructed by using 
a family {/4^(n)}^Li of finite filters for which there is a constant k £ N such that
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4P) (n) is the Haar filter for every p > k. Ifw\ € C1(R) is compactly supported then 
we call {tt)n}n>0 a family of Walsh type wavelet packet series.

DEFINITION 2.2.8 (Periodic Walsh Type Wavelet Packets :)

Let {tyn}£L0 be a family of Walsh type wavelet packets. For n G N0) we define the 
corresponding periodic Walsh type wavelet packets uTn by

Wn(x) = yVnQc ~~ k)
kez

It follows from the Fubini’s theorem that {tun}£l0 is an orthonormal basis for 

L2(0,1) (refer [54]).

Let A be a d x d-matrix such that A : Zd x ZdJ If all eigenvalues of A have 

absolute value strictly greater than 1 then we call A a'dilation matrix.
, j • ;

e.g The 2x2 matrices j: ;

1 -1 0 2
and

1 1 1 0

are examples of dilations matrices with determinant ±2. The first matrix is known 

as quincunx dilation matrix.

DEFINITION 2.2.9 ( Multi-resolution Analysis for L2(Rd) :)
' ’ | t

Multi-resolution analysis associated With a dilation matrix A is a sequence of closed 
subspaces (Vf)^z of L2(Rd) satisfying

•VjC Vj+1 V jez . r

• CjezVj = L2(Rd) and nj^z Vj = 0

• / e V5 <=> f(Ax) g vj+1 V fez
• there exists a function <fi G Vq called a scaling function such that the system

— 7 )}7ezd an Qfthonormal basis for V0.
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DEFINITION 2.2.10 (Basic Non-Stationary Wavelet Packets(refer [56]):)
Let {(m^, a sequence of orthogonal quadrature filters associated with

(A, r), T € Zd. We define the basic non-stationary wavelet packets {wn}fL0 by 
w0 = <f>, wi — ip and for 2k < n < 2k+1 with binary expansion n = we
let

$(Dk+10

where D — (A*)-1

Generalized Haar Functions (refer [56]) :

Let A be a d x d dilation matrix with \detA\ — 2. We are interested in the case where 

there is an associated multi-resolution analysis generated by a scaling function given 

by the characteristic function of a set Q C Rd called a tile.

As mentioned by Lagarias and Wang ([42],[43]) for general A and d > 3 there 

is no guarantee that such a set Q exists. So we have to restrict our construction to 

dilation matrices A which admit such a tile. The situation is better for 1 < d < 3 

since it can be proved that a tile always exists ( refer [[42],[43]]). Here we will assume 

that A is such that an associated tile Q exists.

The set Q has many such properties under the action of A. One such property 

is AQ = Q U (Q + J?q) for some Tq e Zd and we always have |Q| = 1 (refer [56]). 

Hence, : ;

Q = A~1Q\JA~1 (Q + Tq) , ;
_ i

and Xq(0 = mo(Df)xQ(DfJ where m0(0 = Also note that |A_1Q| =

So A-1 splits Q into two subtiles of equal measure.

= n<-’'+;°(A-o
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Let

d0 = {n-.n = A-j(Q+'r),1ezd,j>o'and flcQ}

denote the collection of Q dyadic sets.

DEFINITION 2.2.11 (Generalization of Haar function of [0,1] :)

With Q and Tq as above, we define the generalized Haar function by

H{%) = Xa-iq(x) - Xa-Hq+tq)(x)

The Haar system on Q is given by

{Xq} U (2-k): j>0,keZd and supp(H(Ajx - k)) c Q}

Generalized Walsh Functions (refer [56]) :

The Walsh system on [0,1) is the system of basic wavelet packets associated with 

Haar multi-resolution analysis.

As mentioned in [56] generalized Walsh function can be defined through

1. Haar low pass and high pass filters starting from the Haar scaling function and 

wavelet.

2. By letting wQ(x) = xq(z) and w2n+e(x) = wn(Ax) + {-~lfwn{Ax - Tq)

e = 0,1.

3. As the product system on the probability space (Q, dx) defined by using gener­

alized Rademaeher functions.
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' In the present chapter we concentrate on (3). The generalized Rademacher func­

tions are obtained by letting

Tq(x) = J2 H(x ~k) e L°°{&d) 
kezd

where H is the Haar function and we define rn(x) = r0(A”x). Then for n E N0 with 

binary expansion n = Y^jLo we have,

W»(«) = Xo(®) II

which can be proved easily by induction.

DEFINITION 2.2.12 ( Periodic Generalized Walsh type Wavelet pack­
ets :)

For the wavelet packet

wnj,k(x) = Xe(&).2* wn(Aj(x -i)-k)

7 ezd

where II is any tile of Rd such as Q itself of the fundamental domain [0, l)d.

LEMMA 2.2.13 (refer [56] :)

The basic wavelet packets

{wn(x — k) : 0 < n < 2J, k & Zd}

form basis for Vj. Furthermore, {wn(x — k) : n € No, k e Zd} form an orthonormal 
basis for L2(Rd).

DEFINITION 2.2.14 ( Modulus of continuity refer([25]) :)

The total modulus of continuity of a function f G IP in IF-norm, 1 < p < oo is 
defined by
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While the partial modulus of continuity are defined by

wi,*(/, <5i)P = wi(f : 6i,0) 

wi,y{f’^)p -wi(/ : 0,<y2)

Banach Steinhaus Theorem :

For Si, 82 > 0 and f £ IP

linirf, .(Vj *oU/'i (./' 3 82 )j? 0

DEFINITION 2.2.15 ( Generalized Minkowski’s Inequality :) 

(i) For f € IP{[a, b] x [c, <fj) for some 1 < p < oo,

cb fd
/

b pd P P pd f p
J f(x,y)dy '< j |Jp I p rd ( rb 'lldx\ ’< / \ l If(x,y)fdx\ dy

We will also use the multivariate version i.e. when the single integrals Ja and fc are 
replaced by the double ones and J*^1 ff2 respectively.

(ii) Let 1 < p < 00. If an, fa 6 K(i 1,2,3.... ), then

1

DEFINITION 2.2.16 ( Dirichlet Kernel :)

We define the Dirichlet Kernel for f G L2(R2) corresponding to generalized Walsh 
type wavelet packets as * •
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2.3 On the Uniform Convergence of Periodized Walsh 
type Wavelet Packet Series

THEOREM 2.3.1 Let f € Lp[0,1) for 1 < p < oo be a function of period 1. 
Then,

lito Skf{x) = f(x)
k—mx>

uniformly in x, where Skf(x) is the kth partial sum of periodic Walsh type wavelet 
packet series.

Proof: Morten Nielsen [54] has proved that wn(x) is forming an orthonomal basis

for L2[0,1).Hence every Lebesgue integrable function f(x) of period 1 can be written 

as

/(*) = E^=0 CnWn(x)'

where, Cn = (f.wf) = f(y)wn(y)dy

We shall find a simple expression for the partial sum for the periodic Walsh type 

wavelet packet series.

k~l
Skf{x) = ]Pcvu;n(a;)

n=0

fc-1

mn=0

f{y)wn(y)dy'j wn(x)
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{/ ^x®y)YlWn^dv{

{Jo ^x®v^Kk^dy

fc-l

where Kk(y) = wn{y) is the Dirichlet kernel.
n=0

Due to the orthonormality of periodic Walsh type wavelet packet we have

pi pi k ^ ^----s_--/ Kk(y)dy = / Y]wn(y)dy
Jo „=0

= X / Wnwo(y)dy«5=n Jon=0 ' 
1

Hence,

fc-l „!Skf(x)-f(x) = X^ f{x®y)wn(y)dy- f(x).

n=0 

fc-l vl"■ ^^J /-l _—

X / f(x®y)wn{y)dy~Yl / f(x)wn(y)dyn=0 /° n=0 •'°

/’I fc_1/ Lf(® © y) - /(«)] X) ^n(y)%
“'° n=0

/ [/(^ © y) - fix)] Kk(y)dy 
Jo

(2.3.1)

(2.3.2)

Now for each natural number k = 2m + kf, 0 < kf < 2™ (refer[57]),
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Kk{y) = 

k2 m+k'(y) —

where,

2m+fc'-l _____

23 wn(y) =n=2m

Hence,

Kom+k' (y) =

Now,

Skf(x) ~ f(x)

k-i _____
YWn^

n=0

2m+fc'-l

n=0

2m~l

23 Wn(y) + 23 Wn^n=0 «=2m

w2m(y) + w2™+i (y) + w2m+2(y) +..... + w2™+k'-i(y)

w2m{y).wQ{y) + w2m(y).wx(y) + w2m(y).w2(y) +....+ w2m(y).wk>_1(y)

W2^{y) Wo(y) + Wi(y) + w2(y) +.... + uv_i(y)

w2m(y)
'fc'-i _____/

n=0

a^-i____  _____ tf-i _______

23Wn(v)+wzm(y) 23 Wn^n=0 n=0

i^2™(y) +t«2™(2/)i<'fc'(y)

/ h f(x^{K2m(y}+W2m(y}Kk,(y}}dy
dx

tH
ia
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< 0(1) dx

+

f [ [f{x®y)-f(x)]Kv»{y)dy .Jo Jo

J J lf(x®y)~ f{x))w2™{y)Kk>{y)dy dx j

0(1) [A + B]

where,

A =
/ / [f{x®y)-f{x)]Kvn(y)dy

Jo Jo
dx

(Using generalized Minkowski’s inequality)

i:\i:A < f(x ® y) - f{x) K,2 m{y) dx dy

By the property of periodic Walsh wavelet packets

K2m(y) 

Prom (2.3.4)

2m y G [0,2~m)

0 ye[2~m,l]

A < f
f

< wi(f> 2~m),2

/(* © v) - /(*)

Six © y) - fix) 

l

K2m(y)dy 

.2 mdy

•“* 0 as m —> oo

(2.3.3)

(2.3.4)

follows from Banach Steinhaus Theorem.
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Now,

B
[ [ [f(x®v)~ f{x)\w2m(y)Kk>(y)dy

Jo Jo

Using generalized Minkowski’s inequality

dx

< f\S
L

O UO 

X

/(* ®v)~ /(») w2m(y) Kk'{y) dx dy

/(* ® v) ~ /(*) m(y) Kk-{y)\dy (2.3.5)

By the definition and property of periodic Walsh wavelet packets, we have

w2m(y) < 1 and K^iy) = k' for k' E [0,2"

Hence from (2.3.5)

B <

+

i:
i:

f(x ®y)~ fix)

fix ®y)~ f{x)

.k'dx + /
2

/ 1 w 2m
fix ®y)~ fix) .k'dx

.k'dx + + fJZ£=i
fix © y) - fix) .k'dx

k'.wif, 2~m) + k'.wif, 2~m) +.......+ k'.wif, 2~m)

0 as m oo (2.3.6)

Thus using (2.3.3) and (2.3.6) we have

Skfix) - fix) 0 as m —> oo

which proves that periodic Walsh type wavelet packets are uniformly convergent. ■



Chapter 2 36

2.4 On the Uniform Convergence of Generalized 
Walsh type Wavelet Packet Series

THEOREM 2.4.1 Let f € LP[0, l)2 for 1 < p < oo be a function of period 1. 
Then,

lim Skf(x,y) = f(x,y)
k-~>oc

uniformly in x, where Skf{x, y) is the kth partial sum of periodic generalized Walsh 
type wavelet packet series.

Proof: Morten Nielsen [56] has proved that wn(x, y) is forming an orthonormal basis 

for L?[0, l]2. Hence Lebesgue integrable function with period 1 can be written as :

with, Cn = (/, wf) - fo fo f(r, s)wn(r, s)drds

Now, we shall find a simple expression for the partial sum for the periodic gener­

alized Walsh type wavelet packet series.

We have,

fc-i

Skf{x,y) = 'YicnWn{x,y) (2.4.1)
n=0

k-1
fix, s)wn(r, s)drds > wn(x, y)

n= 0 0 JO

f(x © r, y © s)wn(r, s)drds|

Using the orthonormality of Walsh type wavelet packet series, we have
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i /'i

Kk{r, s)drds
i r\ fc-i

o Jo
wn(r, s)drds

/O Jo n=0

e/7
JO

(r, s) Wg(r, s)drds
n—0

l (2.4.2)

Thus using (2.4.1) and (2.4.2), we have

Skf(x-y) - f(x, y)
fc-i /• i i
E / / [/(a'©r,y®s)]u;n(r,s)dr(is-/(x',y).l
n=0J0 JO

fl fl f

E// / (x ® r, y ® s) w„(r, s)drds

i /•! r

o Jo
/ (x © r, y © s) - / (.x, y)

w„(r, s)drds 

Kk(r, s)drds (2.4.3)

Now, for each natural number k = 2rn + A:', 0 < k' < 2m according to C.W. 

Onneweer [57]
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2m+k'-l

K2m+k<(r,s) = 53 wn(r,s)
n—0

2m-l 2m+fc/-l

= V! WnCr.s) + V wn(vt s) (2.4.4)
i«i ■» immmmtm

n=0 n=2m

where,

2m+fc'-l
53 tUnO", s) = w2™(r,s) +wz™+i(r, s) +.......+ w2m+fe/_i(r, s)

n=2m

= w2™ {r, s)w0 (r, s) + w2m. (r, s)wi (r, s) + w2™ (r, s)w2 (r, s)

+ + w2m(r, s)wk>-i(r,s)

= w2m(r,a) w0(r,s) + wi(r,s) + w2(r,s) +.....+ Wfe'-i(r,s)

w2m(r,s)
v-i __ •

53 ttfn(r, s),n=0

(2.4.5)

Thus using (2.4.4) and (2.4.5),

2m- 7 ^______ k'~l

K2m+k,(r, s) = 53 w»(r>s) + w2”(r, s) 53 ^«(r>s)
n=0 n=0

(2.4.6)

Hence,

2m—1

K2m+k, (r, s) = 53 ^(r> s) + u;2m(r>s) 53 w«(r>s)n=0 n=0

= K2m (r, s) + (r, s)#*./ (r, s)
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and using (2.4.3)

Skf(x, y) - f(x, y) / / f f /(®©r»y® «)-/(*.»)
J 0 Jo Jo Jo .

{K2m(r, s) + W2m(r, s)Kk>(r, s) \drds>«)}< dxdy

f (x © r, y 0 s) - /(as, y)

1 • /■!
+

1 firII f (x © r, y © s) - /(®, y)

w2m(r, s)Kk>(r, s)drds| dxriy 

0(1).(A + J5]

1

where,

A = Iff f f\f(x®r,y®s) 

.do do do do
K2m(T,s)drds dxdy

Using Generalized Minkowski’s inequality

< fflff f(x®r,y®s) KpIX2m(r,s) dxdy drds

Since,

K2m(r,s) = <
2OT (r, s) € [0,2“m)2 

0 (r, s) £ [2~m, l]2

(2.4.7)
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Hence, from (2.4.7) we have,

n
in

A < f(x®r,y®s)-~f(x,y)
fo Jo

f*2-m />2"

dxdy

< wi (/, 2_m,2_m) .2

f{x®r,y@s)~ f(x, y) 

1 1

.2mdxdy

2~m 2—m

0 as m —» oo

which follows from Banach Steinhaus theorem. 

Now,

B n
[ [ [f{x®r,y®s)w2m(r,s)Kk>(r,s).drds 

Jo Jo
dxdy

Using Generalized Minkowski’s inequality

B fflff f (x © r, y ® s) - /(x, y) w2m(r, s)

Kv(r,s) dxdy drds

ff /(i©r,j/®«)- f(x,y) w2™ (r,s) | Kk> (r, s) | drds

Since, w2m(r, s) < 1 and

Kk,(r,s) = k' k' € [0,2_m)2

(2.4.8)

(2.4.9)

< otherwise
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We have from (2.4.9)

m _n~-m

B <

+

+

+

/ /

fik r-$K

/*/

** ‘vift « 5*

3 _ 32m

2W ^ 2m

/(ar©r,y ©s) - /(®,y)

/ (x © r, y © s) - f(x, y) 

f(x®r,y®s)~ f(x, y)

.k’drds

.k'drds

.k'drds

+ r rI 2m-l f 2rtV -■BBT" •/ —x_ / 2^-1 
m^nrm J

f(x®r,y@s)-f(x,y) .k'drds

k'Wl(f, 2~m, 2~m) + k'wiif, 2~m, 2~m) +.....+ k'Wl(f, 2~m, 2~m)

0 as m —* oo

Using (2.4.8) and (2.4.10) we have,

(2.4.10)

Skf{x,y) - f(x,y) 0 as m —> oo

which proves the result.


