Chapter 2

ON THE CONVERGENCE OF
THE WALSH TYPE WAVELET
PACKET SERIES

2.1 Introduction

Wavelet analysis was originally introduced in order to improve seismic signal process-
ing by switching from éhort time Fourier énalysis to new algorithms better suited to
detect and analyze abrupt changesv in sigﬁals. It corresponds to a decomposition of
phase space in which the tradeoff between time and frequency localization has been
chosen to provide better and better time localization at high frequencies in return
for poor frequency localization.” This makes analysis more adapted to the study of
transient phenomena and has proven a very successful approach to many problems
in signal processing, numerical analysis and quantum mechanics. Wavelet packets is

an important generalization of wavelet analysis, pioneered by R. Coifman, Y. Meyer,
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M. V. Wickerhauser [50] and other researchers. Wavelet packet functions comprise
a rich family of building blocks functions. Wavelet packet functions are still local-
ized in time, but offer more flexibility than wavelets in representing different types of
signals. In particular, wavelet packefs are better at representing signals that exhibit

oscillatory or periodic behaviour.

The Walsh type wavelet packets can be considered as the smooth generalizations
of the Walsh functions and they have the same convergence properties for expansion
of L? functions, 1 < p < oo as the Walsh- Fourier series. The Walsh type wavelet

packet expansions fails for L*-functions (fefer [55]).

The aim of this chapter is to show the uniform convergence for periodic Walsh

type wavelet packet expansion for L? functions 1 < p < 00.

Recently, Morten Nielsen ([54], [55]) has proved the pointwise convergence a,.e.:“o:f
Walsh type wavelet packet series 'using the concept of Schauder basis and strong typ’é
(p,p) and the pointwise convergence a.e. of expansion of function from the Block
space By, 1 <¢ < ooDealing with the convergence of the Walsh type wavelet packet

expansions he proved the following theorem :

THEOREM 2.1.1 The Carleson operator for any Walsh type wavelet packet sys-
tem with wy € C*(R) is of strong type (p,p) for 1 < p < oco. n

In this chapter we are generaii_zing the above result by proving the uniform con-
vergence of periodized Walsh type wavelet packet series using the properties of Walsh

functions.

Also, most of the work on wavelet packets has been done in one dimension or

using separable wavelet packets in higher dimensions. But, separable wavelets and
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wavelet packet bases both have several dra\i}backs for the applications to field like

.image analysis.

In [56], Nielsen has constructed nonseparable wavelet packet bases for LP(R?)
with nice convergence properties. He al\so proved results on a special wavelet packets
construction that can be considered the multidimex\lsionai generalization of ‘Walsh
system on [0,1). He proved that this multidimensional generalization share the £v;0
most important convergence properties of the classical Walsh system : The new

system is a schauder bases for LP(R%), 1 < p < oo and the expansion of every L?

function in the system converges pointwise almost everywhere.

Further in this chapter, we are genétalizing the following result proved by Nielsen_
by proving the uniform convergence of the periodic Walsh type wavelet packet series

for LP(R?), 1 < p < oo.

THEOREM 2.1.2 Let L be the Carleson operator for a basic Waléh—type .
wavelet packet system {W2}, associated with an almost isotrophic dilation matriz.
Suppose Wy € C*(R?). Then L is of strong type (p,p), 1 < p < 00. . .

2.2 Preliminaries
In this chapter, we require the followinig definitions for proving the theorems:

DEFINITION 2.2.1 (Multiresolution Analysis :)

A multiresolution analysis is a sequence of closed subspaces V;,j € Z, of L*(R). sat-
isfying - ‘

¥
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‘/jC%*FIa ]EZ

feV, e f(2.) € Vi, je Z,

Uvi = L&)
i€Z

Ny =0
JEZ

There ezists a ¢ € Vosuch that &(. — k), .,is an orthonormal basis for Vy.

Given a multiresolution analysis we can construct an associated wavelet.

DEFINITION 2.2.2 (Conjugate Quadrature Filters :)

Let h,, € I}(Z) be a real valued sequences, and let gy, = (—1)*hi_ for k € Z. Define
the operators H,G : 1*(Z) — 1*(Z) by

(Ha>k: == Z anhfn~2k

neZ

(Ga)k = Z ApOn—2k

nezZ
The filters H and G are called a pair of CQFs if
2HH* =2GG" = 1
Hl = 1l,where 1=(..1,1,1,...)
H'G+GH = 1
HG*=GH™ = 0
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DEFINITION 2.2.3 ( Non-stationary wavelet packets :)

Let (¢,1) be the scaling function and wavelet associated with a multi-resolution anal-
ysis and let (Fé” )" p e N be a family of bounded operators on I2(Z) of the form

(FPa)i = anh® (n — 2k)

neZ

where, e=0,1

with P (n) = (=1)"AP (1 — n), a real valued sequence in 11(Z) such that each
(F? FP) is a pair of conjugate quadrature filters.
0 241

We define a family of non-stationary wavelet packets {wn}2, recursively by letting
wy = ¢, w1 =1y and then forn € N,

win(®) = V2)  Bi(g)wa(20—q)

. gEZ

Wani1(@) = VZY hE(q)wa(2z ~ q)
gEZ
where, 29 < n < 2P+,
The trigonometric polynomials given by
ey — 1N @) (L ke
my (§) = 2?% (k).e zv»: '

mP(E) = 33w
k

are called the symbols of the filters.
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DEFINITION 2.2.4 ( Walsh system :)

The Walsh system {W,}32 is defined recursively on [0,1) by letting Wy = xj0,1) and -

Waon(z) = W,(2z)+ W,(2z — 1)
Wont1(z) = Wp(2z) —W,(2z - 1)

The Walsh system is a family of wavelet packets obtained by letting ¢ = Xx{0,1)
and ¢ = Xj0,4) ~ X[3.1) and using the Haar filters in the definition of non-stationary
wavelet packets (refer [54]).

The Walsh system is closed under pointwise multiplication.

Define the binary operator @ : Ny x Ny — Ng. Let z,y € [0,1). Then = and y
have unique representations = ) °2( ;277" and y = 72 y;.2777" respectively.
Suppose we choose them to be finite. By = & y we denote the dyadic sum of z and y
defined as : ’

o0 -

T®y =) |z —yl27"
j=0 -

Then [ f(z)dz = [} f(z ®y)ds for all f € L' and y € [0,1). Moreover ,

Wn(m @ y) = Wn(x)wn(y)
2.2.1 Walsh wavelet packets

Wavelet packets were originally introduced in Coifman, Meyer and Wickerhauser [50]

to improve the frequency resolution of signals achieved by a wavelet analysis.

A wavelet decomposition or transform simply reexpresses a function in terms of
the wavelet bases {%;(t)}. This amounts to decomposing the function space L?

into a direct sum of orthogonal éubspaces W; and choosing the combination of the
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orthonormal bases for W’s as the orthonormal basis of L2. In the case of finite
data with information up to a resolution level J, a wavelet transform performs a

decomposition of the space V; in to a direct sum of orthogonal subspaces

Vi=Wra®Via=W,10W; 20 Vig= ... = @}-];3% & W

and the union of bases of these subspaces forins a basis for the wavelet decompo-
sition. This, of course, is by no rmeans the only way to decompose the space L? or

V.

- From multi-resolution analysis, we know that the given basis function {¢14(t)} of
Vi, {o(t—k)} and {¢(t—k)} constitute an orthonormal basis for Vo and W respectively
and V; = V; @ W, where, |

$(t) = V2 hip(2t — k)

and

B(t) = V2 gg(2t — k)
: k
where hy and g, denote the low pass filter and high pass filter respectively.Thus the
space V can be decomposed into a direct sum of the two orthogonal subspaces defined
by their basis functions given by fh’e'abOve two equations. This "splitting trick” or
splitting algorithm can be used to decompose W which leads Fto the so-called wavelet

packet analysis.

For example, if we analogously define

Wa(t) = V2> hutp(2t — k)
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Ws(t) = \/ﬁzgw(% — k)
P

then {Wy(t — k)} and {W3(¢t — k)} are orthonormal basis functions for the two sub-

“spaces whose direct sum is W;.

DEFINITION 2.2.5 (Wavelet Packets :)

Forn=0,1,2,3..... we define a sequence of functions as follows:
Wan(t) = V2> aWa(2t — k)
—

‘W%H(t) =2 gWa(2t — k)
: k

when n =0, Wy(t) = @(t), the scaling function
and  n=1, Wi(t) =(t), the mother wavelet.

Various combinations of functions and their translations and dilations can give rise
to various bases for the function épace. So we have a whole collection of orthonormal
bases generated from {Wn(t)}. We-call this collection ” a library of wavelet packet

bases” and the function of the form Wn’j,k = 2%Wn(27' t—k) is called a wavelet packet.

DEFINITION 2.2.6 (Haar Filter:)

‘The Haar low pass quadrature mirror filter {h{9} is given by ho(0) = ho(1) =
%,ho(k‘) = ( otherwise and the associated high pass filter {hi(k)}r is given by
ha(k) = (—1)*ho(1 — k).

DEFINITION 2.2.7 (Walsh Type Wavelet Packets :)

Let {wn }n>okez be a family of nbn~si‘ationary wavelet packets constructed by using
o family {nP (n)};2y of finite filters for which there is a constant k € N such that
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h¥) (n) is the Haar filter for every p > k. If wy € CY(R) is compactly supported then
we call {wy}n>o0 a family of Walsh type wavelet packet series.

DEFINITION 2.2.8 (Periodic Walsh Type Wavelet Packets :)

Let {wn}32, be a family of Walsh type wavelet packets. For n € Ny, we define the
corresponding periodic Walsh type wavelet packets Wy, by ,

Tal@) = 3 walz — )

kezZ

It follows from the Fubini’s theorem that {w,}2, is an orthonormal basis for

L%(0,1) (refer [54]).

Let A be a d x d-matrix such. that A Zd X Zd If all eigenvalues of A have

absolute value strictly greater than 1 then we call A auchlat'lon matrix.
| s
e.g The 2 x 2 matrices |

i
B
by
1y

1 —~1 0 2
and

1 1 10|

are examples of dilations matrices with determinant £2. The first matrix is known

as quincunx dilation matrix.

DEFINITION 2.2.9 ( Multi-fesolution Analygis for L2(RY) :)
Multi-resolution analyszs associated with a dilation matm: A is o sequence of closed
subspaces (V;)jez of L*(R?) satisfying

¢ V;CVin V i€z

e UiczV; =IL*RY) and NjezV;=0

s feVie= flAx)eVin V jeZ

o there erists a function ¢ € V, called a scaling function such that the system
{#(. — ) }yeze is an qrthonormal basis for Vg.
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DEFINITION 2.2.10 (Basic Non-Stationary Wavelet Packets(refer [56]):)

Let {(m(p ) m(” ))}p_lbe a sequence of orthogonal qua.dmture filters associated with
(A1), T e Zd We define the basic non-stationary wavelet packets {w,}32, by
wo = ¢, w; = ¥ and for 28 < n < 281 with binary expansion n = Zf:% g; 27, we
let ' '

k+1

wa(€) = {Hm(’““”” D-s)] 3@’““55
1~1 .
where - D= (A%

Generalized Haar Functions (refer [56]) :

Let A be a d x d dilation matrix with |detA| = 2. We are interested in the case where
there is an associated multi-resolution analysis generated by a scaling function given

by the characteristic function of a set Q@ C R called a tile.

As mentloned by Lagarias and Wang ([42],[43]) for general A and d > 3 there
is no guarantee that such a set Q emsts So we have to restrict our construction to .
dilation matrices A which admit such a tlle. The situation is better forl1 <d<3:
since it can be proved that a tile always exists ( refer [[42],[43]]). Here we will assume |

that A is such that an associated tile Q exxsts

The set Q has many such properties under the action of A. One such property
is AQ = QU (Q +T'g) for some I'g € Z¢ and we always have |Q| = 1 (refer [56]).
Hence, : '

Q= A~ 1QUA‘ (Q+Ty)

i

and XQ(f) 'mo(D&)xQ(Dﬁ) where mo(f) 1+1e““(FQE) Also note that |A~ 1QI

So A1 splits @ into two subtiles of equal measure.
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Let
Do={2:Q=A4"9Q+7),7€2%j>0 and QCQ}

denote the collection of @ dyadic sets..

DEFINITION 2.2.11 (Generalization of Haar function of [0,1] :)

With @ and T'g as above, we define the generalized Haar function by

H(z) = xa-10(%) — Xa-1(@+ro) (@)

The Haar system on @ is given by

{xo} U {Z%H(Aj:v —-k): j2 0,ke€Z% and supp(H(A’z — k)) C Q}

Generalized Walsh Functions (refer [56]) :

The Walsh system on [0,1) is the system of basic wavelet packets associated with

Haar multi-resolution analysis.
As mentioned in [56] generalized Walsh function can be defined through
1. Haar low pass and high pass filters starting from the Haar scaling function and
wavelet.

2. By letting wo(z) = xq(z) and  wonye(z) = wn(Az) + (—1)w,(Az — T'g)
e=10,1.

3. As the product system on the probability space (@, dz) defined by using gener-

alized Rademacher functions.



Chapter 2 . ‘ 29

' In the present chapter we concentrate on (3). The generalized Rademacher func-

tions are obtained by letting

ro(z)= > H(z—k) €L™(R%

kezd
‘where H is the Haar function and we define ry, (z) = ro(A"z). Then for n € Ny with

binary expansion n = Z;’;O €;27 we have,

Wo(z) = m(w)fjo ((x))

which can be proved easily by induction.

DEFINITION 2.2.12 ( Periodic Generalized Walsh type Wavelet pack-
ets :) '

For the wavelet packet

W (2) = x2(2)-28 Y wa(Ai(z ~7) — k)

yeZz4

where ¥ is any tile of R® such as @Q itself of the fundamental domain [0,1).
LEMMA 2.2.13 (refer [56]‘:) |
The basic wavelet packets A
{wn(m%k):ogn%%’, keZd}

form basis for V;. Furthermore, {wn(z - k):n € Ny, k € Z%} form an orthonormal
basis for L*(R%).

DEFINITION 2.2.14 ( Modulus of continuity refer([25]) :)

The total modulus of continuity of a function f € LP in LP-norm, 1 < p < 00 18
defined by ‘

wi(f;01,62)p == sup{||fz @ u,y®v) — flz,9)|lp : 0<u <6 & 0L v< b}
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While the partial modulus of continuity are defined by
wl,x(fa 51);7 =wi(f : 61,0)
wiy (S, 52)p = wi(f : 0,02)

Banach Steinhaus Theorem :

For §;,6, >0 and f e LP

]im51,52~)0w1 (f; 61) 52)? = 0

DEFINITION 2.2.15 ( Generalized Minkowski’s Inequality :)

(i) For f € LP([a,b] X [c,d]) for some 1 < p < o0,

{/ab /cdf(m,y)dypdx}%‘g /cd{/abif(x,y)[pdx}%dy

We will also use the multivariate 'Uersion i.e. when the single integrals fab and fc ¢ are
replaced by the double ones [, b f ‘and fc'fl i) Cig respectively.

(i) Let 1 < p < oo. Ifai,ﬂieK(z‘i—-l,Z,IS ..... ), then

(Z\aﬁﬁil”)p < (Zlail”)p + (Z Iﬂi'p)p

DEFINITION 2.2.16 ( Dirichlet Kernel :)

We define the Dirichlet Kernel for fe L2(R2) corresponding to genemlzzed Walsh
type wavelet packets as
58 y) Z w'n-(x’
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2.3 On the Uniform Convergence of Periodized Walsh
type Wavelet Packet Series |

THEOREM 2.3.1 Let f € LP[0,1) for 1 < p < oo be a function of period 1.
Then,
: Jim S.f(z) = f(z)

uniformly in =, where Sy f(z) is the k** partial sum of periodic Walsh type wavelet
. packet series.

P el

Proof: Morten Nielsen [54] has proved that wy(x) is forming an orthonomal basis
for L2[0, 1).Hence every Lebesgue integrable function f(z) of period 1 can be written

as

P

fle) = Yolgcawa(z)
where, ¢, = f,wn fo N )dy

We shall find a simple expression for the partial sum for the periodic Walsh type

wavelet packet series.

??‘
,..‘
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1 k-1
{/0 flzoy) Z'wn(y)dy}

n=0

i

- {[ seevrio)

. k-1 P g
where  Kily) = Z wp(y)  is the Dirichlet kernel.

n=0

Due to the orthonormality of pefiodic Walsh type wavelet packet we have

1 k-1

| /0 Kuy)dy = /0 S way)dy

=0

k=l opl e |
-y / wn(y) wo(y)dy

n=0

= 1 (2.3.1)

Hence,

i

‘ k—~1 1 e
5@ - 1) = Y [ fleonuiiy- @)1

n=0
k-1 a1 e k-1 1 o
= ; /0 f(m@y)wn(y)dy—:é; /0 fl@)wa(y)dy

= [ Veon - @)Y wlid

n=0

1 »i '
- fo oy - 1@ Ky (2.3.2)

Now for each natural number &k = 2™ + k', 0 <k’ < 2™ (refer[57]),
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Ki(y)

Komiw(y) =

where,

a1

Z wa(y)

. pE=2m

Hence,

Kom 41 (y)

Now,

S f(z) — f(z)

P

k=1
Z wn(Y)

n==0

2M k! 1

i

> way)

n==0

2m—1 P S

Y wny) + > wa(y)

n=0 ne=2™

P I

Wom (y) + w2m+1(y) + w2m+2(y) + ....... + w2m+kl_1 (y)

P

B P e g et W T i

33

T —

Wam (y) 'wo(y) + wam () wi(y) + wom (¥) w2 (y) + ... + wam (y).wr—1(y)

P s T e S

wan(y) |woy) +wa(y) +waly) +
k-1
'U)gm {z wn ]

n=0

2m-1

Z N + 'wzm Z 'wn
n==0 n==0
Kom(y) + wm(5) Ko ()
1 1 ——— ’
=[] veen - s {Fum) + emtoxew)} o

4 3
d;c]

[



Chapter 2 34 -

on{[[ af o]
y dzﬁ

.fum@m (@) o (@) K (4)dy
— O(1)[A+B]

A

rl
[0 [z ®y) — fz)] Kam (y

where,

1 P 13
A = {/ da:]
o |Jo

(Using generaliied Minkowski’s inequality)

s [

By the property of periodic Walsh wavelet packets

[ Veow) - 1) Kl

Py

. K2m(y)

fzoy) ~ f(z) 34;@ (2:3.3)

0 yel™1]

From (2.3.4)

A

IA

fe@y) - f(@)

1
J
g-m
-
1

< '{Ul(f, 2~m)2m§;n—

.sz(y)dy
4

flz@y) - f(z)

2™ dy
p

- 0 as m—o0 (2.34)

follows from Banach Steinhaus Theorem.
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Now,
1 p1 o P 13
8 = |[|[ veon- oo K] o
Using generalized Minkowski’s inequality

1 1 Pl o~ [P} . r %

< [ [reon- 1@ fom| | Kot az] " av
1 ——~—

= /0 flz@y) - f(z) wzm(y)‘ Ky(y){dy (2.3.5)

4

By the definition and property of periodic Walsh wavelet packets, we have
{m)‘ <1 and Kp(y)=Fk for K e0,27™

Hence from (2.3.5)

B < fow flzoy) - f(z) pk’dw+/j flzoy) - f(z) p.k’dx
+ /_: fzoy) — f(z) pk’dm—i— ............. + / ; ’ flz®y) - f(z) p.k:’da:
= Kaw(f,27™)+K.w(f,27™) + ....... + K w(f,27™)
— 0 a5 m—o00 | (2.3.6)

Thus using (2.3.3) and (2.3.6) we have

— 0 as m — 00
r

Suf(z) - f(z)

which proves that periodic Walsh type wavelet packets are uniformly convergent. =
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2.4 On the Uniform Convergence of Generalized
Walsh type Wavelet Packet Series

THEOREM 2.4.1 Let f € LP[0,1)? for 1 < p < oo be a function of period 1.
Then,

kl}-»n(}o Sef(z,y) = f(z,y)

uniformly in x, where Sy f(z,y) is the k™ partial sum of periodic generalized Walsh
type wavelet packet series.

i

Proof: Morten Nielsen [56] has proved that wy,(z, y) is forming an orthonormal basis

for L2[0,1]%. Hence Lebesgue integrable function with period 1 can be written as :

e i

f@y) = Xlecawn(z,y)

with,  cn = {(f,@n) = [ [} F(r,s)tn(r, 5)drds

Now, we shall find a simple expression for the partial sum for the periodic gener-

alized Walsh type wavelet packet series.

We have,

T it

k-1 .
Skf(xsy) = chwn(may) (241)

n=0

k-1

= Z {/01 /01 f(r,%)wm)drds} w:(;y)

n=0

= S{/ﬂlfalf(fl?@r,y@s)w:(\r—,/s)drds}

=0

Using the orthonormality of Walsh type wavelet packet series, we have
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1 pt 1ot k-t
Ki(r,s)drds = / / wy(r, 8)drds
f st = [ [0S

k=lopl o1

= Z/ / wn(r, 8) wo(r, s)drds
n=0"0 0

= 1 (2.4.2)

Thus using (2.4.1) and (2.4.2), we have

k-1 1 1 e
S flx, y) — ) == flrar, W7, 8)drds — L y).d
of(@y) — fla,y) ;/O/Ommy@snw S)drds — f(z,y)

i
nT3S

= :};/@1/01 [f(ﬂ?@r,y@s:)]w (r, s)drds

1 k-1

- flz,y) /:/0 ;wm)drds

T s

- Z// @@ry©s) = f () |l

n==()

- /01 /01 [f (z@ryds)—f (m,y)jiKk(r, s)drds (2.4.3)

Now, for each natural number k = 2™ + k', 0 < k¥ < 2™ according to C.W.

Onneweer [57]

k-1

e

Ki(r,s) = Z wp(r, s)

n==0
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DAL L

e

Komypi(r,s) = Z wy(r, 8)

n=0

o1 am4kl

P

= D wa(rs)+ > wa(rs) (2.4.4)
n=0 n==2m
where,
2m+k’_1 P N P P
Z Wn(r,8) = wam(r,s) + womy1 (7, 8) + ... + Wom g1 (T, 8)
n=2m

= wym(r, 8)wp(r, 8) + wom (7, $)wy (7, 8) + wom(r, s)ws(r, 3)

P U e

+ + wom (1, S)wp—1(r, 8)

P T i o o o,

= wym(r,s) [‘wo(r, 8) +wi(r, 8) + wy(r, 8) + e +wpr_1 s)]

e K-l P
= wym(r, $) {Z Wn(r, s)} (2.4.5)

n=0
Thus using (2.4.4) and (2.4.5),

2m—1 P P k-1

Kom (1, 8) = Z Wa(r, 8) + wom(r, 8) Z Wy (T, 8) (2.4.6)
n=0 nz=0
Hence,
2m_1 e R k’“"l T i
Komyp(r,s) = Z wr(r, s) + wam(r, s) an(r, s)
n=0 n=0

= Kgm ('f', 3) + w;r:G‘TS)KkI('f', S)
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and using (2.4.3)

Skf($> y) -

- 11

{sz('r 8) +w2m(7', 8) Ky (7, s)}drds

- o [{[ ]

Kom(r, s)drds

AL

Waom (r 8) Ky (r, s)drds

[f(xeaweas)—f(x 9|

o

dxd,y]

[ (z@ryds) — (m,y)}

da:dy}

[f(m@r,y@s (m,y)}

o

— O(1).[A+ B]

where,

1
A=
0

Using Generalized Minkowski’s inequality

INATY!

SRE
da;dy]

{f (517 bry® S) :I Kgm(,,s)drds

AN

x@ry®$

2m(r 9 dxdy} drds (2.4.7)

Since,

Kon(r.s) = { 2m (r,s) € [0,27™)2
0 (ns)ele™ 1P
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Hence, from (2.4.7) we have,
1ot
Il
9=
o

1
< Un (f, 2“‘”‘,2”’") Z“m‘é:;;‘i:—?;

A

IA

f@@ry®s)— flz,y)| dedy
F 4

2-—m

f (iIJ eryod 3) - f(xay) '2mdmdy

P

—0 as m—o0 (2.4.8)

which follows from Banach Steinhaus theorem.

Now,
TRE
d:cdy]

- [

Using Generalized Minkowski’s inequality
1 plp pl pl
LELS

» P
d:z:dyjl drds -

11 o
/ / [fz®r,y® s)wmm(r,s)Ky(r,s).drds
0 Jo '

p

P e

wam (T, 5)

sy}
I

2
fleery®s) - flzy)

Kk/ (T‘, S)

- [

Since, Lwﬁs)! <1 and

f@ony®s) = f(y)| [wemlrs)||Klrs)drds  (249)
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We have from (2.4.9)
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Using (2.4.8) and (2.4.10) we have,

Scf(e) = fz)| —0 @ m oo

which proves the result.



