INTRODUCTION

we review some of the fundamental ideas required by least
squares. llo attempt is made to completely cover the topic. since

many excellent treatments are already available L[6;29a;45],

I. The general problem.

We begin by assuming that we have a function

Yy = f(x.'1Xz.5¢-alxm;"(\n&l-"”e‘i) )s s e ()IE)’

we are also given a set of n observations (Y;*X;L‘XL;*"-Xwa)’
where i= I,2.....n and n)p. The variable y is called the dependent
variable,while the x's are the indepeﬁdent variables., Problem is to
to determine estimates of the p parameterst(K(k:I,z,..“p). 0f the
many possible estimates of the Ly , we decide to choose the set of
numbers that will minimize the sum of squares of the deviations of

the observed v from the function. Thus, we wish to minimize
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where w, are the weights associated with each of the Ty Let us

assume that each v has come from sone distribution with mean

E(yi) = f(x“b S eseesX ;«(‘,—(l,oc-‘l‘(b ) (3}
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and variance proportional to a given function of (XI""’xm)’i'e"
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Here we have added a new parameter, & , which {unless otherwise
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specified) must be estimated. Setting
2 7 /0 ( (5)
= L . = v »
W, I/ 2% (xpys ’Xml) / yl) 5
and assuming the y, are each from a normal (gaussian) distribution
with mean and variance given by (3) and (4), we are able to get an

2
unbiaszsd estimate of ¢ with
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where ak's are the estimates of KKS .

When the function hZ(xlq...,xm) is constant for all values
of the X, we say that we have egqually weighted data. We may assume
these welghts are constant and equal to I, From a purely standpoint,
we can minimize the sum of squares :Q in (2) with respect to the «xby
differentiating @ with respect to Ay setting the derivatives equal
to zero. and solving the resulting set of p simultaneous eguations.

these equations can be written

2Q v (9% , .
)"(K = —25 Bo(g i[yi-f(x1i1...qui,a(‘a...v a(b)] =0 (7

for k=I 2....,p and where (% ) denotes the value of the kth
iy

partial derivative for the ith data point. Transposing and setting

T =f(X_ .16e09X 341 .0014p)s Wwe obtain the more usual form
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These are called the "normal equations' c¢f the problem, The form

YL
; yi (3%"('3 ) i ¢

(8) is, in general, a system of p nonlinear equations; and there
is no guarantee that a solution to the system exists or that, if
a solution does existy; it is unique.

2.The linear problem.

There is a large class of functions for which sélutions
do exist. An important subset of these functions is that in which
tha parapeters K appear as linear coefficients of the independent
variablg;i.fhe estimation of the parameters can be done by the

well known linear wmultiple regression. Here, the general model

can be written
I(XI”"’xm;K"""‘P ) = A‘gl(xl,...,xm) + 4zg2(xI,.,.axm)

tooet Abgp(XI""’xm) (9)

where g, are any well behaved functions of the independent

variables Hald [9a]. Special cases for example:

[t}

f(xIa...,xm;o\”“-,&b ) At AXoFeeot ﬂ’xP ) (10)

.2
and f(xI ceerX 3k L 4p ) = Ko+ Ay x o+ LX +...+<%;q (r1)

are very important and they are dealt nicely in many standard

text boocks in regression analysis.
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Gven when the paraneters do not naturally appear linearly.
it is often possible to make a transformation of either the dependent
or independént variables so that the parameters (or simple trans-
formation of them) satisfy the form (8). For example, we can trans-

form the function Y=c. exp(c.x) by taking natural logarithms of

I 2

both sides to obtain InY = Inc. + c.x., Setting y=1ln 1, a{,: in ¢

I 2 T

and ‘§L= 02, we have a function of the general linear form.

3.The non-linear probleni.

when a function is such that 'linearization' of the
paramneters is not feasible,; it is clear that another approach is
needed. One such method is due to Gauss and it is known as Gauss
method. The Gauss method [4Ia] consists essentially of linearizing
the desired function with respect to each of the parameters by
means of a truncated Taylor's series, Using initial estimates of the
parameters to evaluate the coefficients of the expansion; new estimates
are obtained. The process is repeated until some convergence criterion
is satisfied, The method will be shown to amount to repeated application

ofthe form given by equation (IO). .

Suppose; nowy; that our function is of the form in equation
(I) and that we wish to minimize 3 in (2). Suppose further that we
have initial estimates of the parameters, and let us denote the

estimate of the kth parameter by a . Thuss our set of estimates

k;O

can be thought of as a point (aI;o' az,o "'°’ap,o> in the p-dim-
{



ensional parameter space. Lf we expand Equation (I) in a Taylor's

series about this point, we obtaine for each i (i=I,2s...an)
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a .
where ( 5'%“ \i,o ) means that the partial derivative of (I) with resp-

ect to «, is evaluated at (a 8., s2.003a_ ) for the ith data

I,o’ 250 Pao

voint, and the A yi,o are the differences between ¥y and the value

of the function for the ith set of independent variables and the
estimates of the «y. ve have now reduced the problem to one to which
linear methods can be applied. The ‘Ayi,o are the dependent variables.

§
the (52\( \‘.‘)o ) are the independent variablesy and the A a are

k. T

the parameters to be estimeted. The normal equations (8) becoue
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The system (I3) is a set of p linear equations in p unknown. If we

get a solution to the system (I3), we have obtained a set of values

by

A =2 with which to modify each of the &, . We do this
kI L+ O

applying’
e, T = Feeo 3 £>ak,z . (I4)

The "inmproved! estimates of the a, are then placed into eguations

k
(12) and (Ib), and the process is repeated until, after g iterations,
the Al.ak q are all deeuned "sufficiently small’., then this occurs,

we say that the process has converged and we take a, a to be the
_Lj

least squares estimate of « .

L,Stetenent of the vprobleu.

Barlier Stevens W.L. [37] has described a least-squares
(Gaﬁss method) technigue for estimating the varameter ¥ in the
curve E(y) =« +[bj’x e It is expected that in wmany problems results
may be improved by adding a linear term to E(y) = £+ pjﬂ:( Shah
B.K. and Khatri C.G. [33]) . Thus, in this thesis the problem of
estirﬁating non-linear parameter in -~ E(y) =e<+gx+pfx is
considered. It is shown in chapter I,8heh B.X. and Patel I.R.
L34]that only one initial estimate of the parameter $ is necessary
to obtained the least-squares solution using the Gauss method.
However, this method reguires a preliminary estimate of the non-

linear paraseter § and exactly how accurate must be the initial
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estimate of the parameter ? Sometimes in general we have obtained
convergence with estimates off by as much as a factor of 105; we
have failed to obtain convergence when the estimates were within
20 % of what finally ﬁroved to be the correct values. At this time.
it seems impossible to provide an all purpose answer to the general
problen. Certainiy it is obvious that some kind of estimates are
needed to start the procedure. This decribed in éubsequent chapters
(chapters 2 and %) in this thesis., Hartley LIO,II] has described
another method to find the estiwmates of the non-linear curves.
This method is known- as internal least squares. This is a very
good method for obtaining initial estimates but is very\complicated
and not-suitable on a desk calculators. Tootill {37,38,39], Richard
L30], Cornell R.G.L3,4], Croxeton F.E.and Cowden D.Jtiéf Js Linhart
LI8] and various other authors have described computational
procedures fér the linear combination of exponential family of curves.
In chapter 24 we have considered a very simple
estimator Shah B.K. [3I],based on'ratio of two linear functions of
y's. mfficiencies and bilases in the estimators under the constant
variance wodel are also given in Tables 2.I and 2.2 respectively.
When equation B(y) = o 4 3%+ Pfx represents a biological growth,
x is measure of time, and then it may be appropriate to incorporate
this curve into increasing variégce model that changes with time.

In this situation theory of Brownian movement as discussed by

S.Chandrasekar t2] is considered in detailed in this chapter.
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In chapter 3,\we have considered the estimate of §¥ under

two alternative methods,(Shah B.K. and Khatri C.G. [32]): (i)
Patterson's L26] method of estimating § byuﬁonsidering a ratio
of two gquadtratic functions of y's and gii) modified Hartley's
method suggested by Khatri C.G. and Shah B.K. LI6]. These are
known as Quadratic estimators. Various theoritical results are
established in this chapter in more detail. In Quadratic estima-
tors the efficiencies are increased.. Out of the two method;
nodified Hartley's method is more efficient with zero bias than
Patterson's Quadratic estimators, But the formula for sstimating

€, a ratio of quadratic functions of y's, is not suitable
for practical purposes:.i.e s to say that it is not easy to
calculate the estimator on a desk calculator.One can apply
modified Hariley's estimator as an initial starting value in the
Gauss wethod of iteration on a modern high speed computer, Shah

B.K. L3Ia] .

In chapter &, we have described how to ocbtain a
guick estimate of § by solving a guadratic equation, which can be ’
obtained by using the values of Ux and Vx » given in Table L.I,

in r. We can see that the efficienciesare increased than those

of the quadratic estimators(%haﬁ B.K. and Khatri C.G. [333,

We have gereralised the method of chapter 4 in

chapter 5. Here the estimate of the nonlinear parawmeter is

H
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obtained by solving a cubic equation, which can be obtained by
using the tabulated values of Ux’ VX and Zx given in Table 5.I.
6ﬁah B.K. and Khatri C.G. {}3&3, in r. This method is found to be
more efficient than all the previous existing method for large
number of equally spaced observations. The efficiency by this
method is very large nearly about 99,.0% for all values of

for n=Ik. In this chapter procedure is described.to obtain the
values of wa Vx and Zx for large n. Tables of UX, Vx and Zx

can be prepared for large nyI4 using modern high speed computers.
It is to be noted that the efficiences in the neighbourhood of
j’: 0.2, 0.5 and 0.8 are ma#imum and nearly 400.0 percent for

all values of n.

In the last chapter, we have illustrated how a
linear coubination of exponential family of curves and even
more complicated extensions of the exponential fawily of curves.,
can be solved using some modification in Harltey's [I0] method.
Recently Lipton 8. and Mcgilchrist (2I 2Ia] have studied the
linear combination of exponential family of curves using
Hartley's . internal least sguares method without giving reference

to the earlier work made by Khatri C.G. and Shah B.K. [16].



