Design and Synthesis of Some Novel Anti-tubercular Agents

AN EXECUTIVE SUMMARY OF THE THESIS SUBMITTED TO THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

PHARMACY

BY

MONICA CHAUHAN

UNDER THE SUPERVISION OF

Dr. PRASHANT R MURUMKAR

Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara-390001

TABLE OF CONTENT OF THE EXECUTIVE SUMMARY

List of contents of the thesis	3-11
Introduction	12-13
The brief research methodology and the key findings	13-28
Conclusions and the recommendations/ suggestions	28-29
Bibliography and webliography	29-30

TABLE OF CONTENTS OF THE THESIS

Sr.]	No.	Title	Page No.
1.		Introduction	1
	1.1	Epidemiology	4
	1.2	Pathophysiology	5
	1.3	Mycobacterium	6
	1.4	Mycobacterial targets	7
	1.4.1	Decaprenylphosphoryl-β-D-ribose 2'-epimerase	7
	1.4.2	Enoyl acyl carrier protein reductase	7
	1.4.3	DNA gyrase	8
	1.4.4	ATP synthase	8
	1.4.5	Maltosyl transferase	8
	1.4.6	Fatty acid synthetase	9
	1.4.7	Beta-ketoacyl-ACP synthetase	9
	1.4.8	D-Alanine-D-alanine ligase	9
	1.4.9	Mycolic acid cyclopropane synthetase	9
	1.4.10	Mycobacterial membrane protein large 3	9
	1.4.11	Mur enzyme	10
	1.4.12	L, D-transpeptidase	10
	1.4.13	Alanine racemase	11
	1.4.14	Arabinosyl transferase	11
	1.4.15	DNA dependent RNA polymerase	11
	1.4.16	ATP phosphoribosyltransferase	11
	1.4.17	Fatty acid degradation protein D32	12
	1.4.18	Mycothiol ligase	12
	1.4.19	Methionine aminopeptidase	12
	1.4.20	Cytochrome bc1 complex	12
	1.4.21	Isocitrate lyase	13
	1.4.22	Peptide Deformylase	13
	1.5	Treatment regimen	13
	1.6	DprE1- the most druggable target	17
	1.6.1	Mechanism of action	18
	1.6.2	Co crystal structure of DprE	18
	1.6.3	Inhibitors	19
	1.6.4	Covalent v/s non-covalent	23
	1.6.5	Dpre1 inhibitors in clinical trials	23
	1.6.6	Development of resistance	24
	1.7	References	25
2.		Literature	
	2.1	Anti-tubercular agents	36
	2.1.1	Chalcones as anti-tubercular agents	36
	2.1.2	Five membered heterocycles as anti-TB agents	39
	2.1.3	Bicyclic compounds as anti-TB agents	40
	2.2	DprE1 inhibitors as Anti-TB agents	45
	2.2.1	Benzimidazole based DprE1 inhibitors	46
	2.2.2	Hydantoin based DprE1 inhibitors	46

	2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 2.2.10 2.3	Thiophene based DprE1 inhibitors Quinazoline based DprE1 inhibitors Benzothiazinone based DprE1 inhibitors Imidazole based DprE1 inhibitors Triazole and pyrazolopyridones based DprE1 inhibitors Azaindole based DprE1 inhibitors Pyrrolothiadiazole based DprE1 inhibitors Chalcones based DprE1 inhibitors References	46 47 47 48 49 49 50 50 53
3.		Aim and objectives	59
	3.1	Design and development of novel anti-TB agents based on the existing DprE1 inhibitors	59
	3.2	Design and development of novel anti-TB agents based on hybrid approach	61
	3.3	References	64
4.		Results and discussion	66
	4.1	Development of pharmacophore model and 3D-QSAR model using a variety of reported scaffolds as DprE1 inhibitors	67
	4.1.1	Selection of dataset	67
	4.1.2	Pharmacophore model	67
	4.1.3	Analysis of 3D-QSAR model	69 70
	4.1.4 4.2	Validation of the pharmacophore model using external dataset Virtual screening for the identification of new moiety by using various filters like pharmacophore model, molecular modelling and	70 72
		Lipinski rule of five	
	4.2.1	First filter: Pharmacophore model	73
	4.2.2	Second filter: Molecular docking	73
	4.2.3	Third filter: Lipinski rule of five	73
	4.3	Hit optimization through molecular docking techniques	74
	4.4	Synthesis of designed compounds	76
	4.4.1	Synthesis of 3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione	76
		(Formula IIIa) based compounds	-
	4.4.1.1	Synthesis of 3-amino-4-phenyl- <i>1H</i> -pyrazol-5(<i>4H</i>)-one (106)	78
	4.4.1.2	Synthesis of 5-methyl-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (107)	78
	4.4.1.3	Synthesis of 1-bromo-5-methyl-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (108)	79
	4.4.1.4	Synthesis of 6-chloro-5-methyl-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (109)	79
	4.4.1.5	Synthesis of 5-(chloromethyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (110)	80
	4.4.1.6	Synthesis of 5-((substitutedbenzylamino)methyl)-3- phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (111-116)	80
	4.4.1.7	Synthesis of 5-((subtitutedphenylamino)methyl)-3- phenylpyrazolo[1,5- <i>a</i>] pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (117-120)	82
	4.4.1.8	Synthesis of 5-((subtituted)methyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (121-125)	84
	4.4.2	Synthesis of 3,3-dibenzyl-5-methylpyrazolo[1,5-a]pyrimidine- 2,7(1 <i>H</i> ,3 <i>H</i>)-dione based compounds	86

4.4.2.1	Synthesis of methyl 2-benzyl-2-cyano-3-phenylpropanoate (128)	87
4.4.2.2	Synthesis of 3-amino-4,4-dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (129)	88
4.4.2.3	Synthesis of 3,3-dibenzyl-5-methylpyrazolo[1,5- <i>a</i>]pyrimidine-	88
	2,7(1 <i>H</i> ,3 <i>H</i>)-dione (130)	
4.4.2.4	Synthesis of 3,3-dibenzyl-1-bromo-5-methylpyrazolo[1,5-	89
	<i>a</i>]pyrimidine-2,7(1 <i>H</i> ,3 <i>H</i>)-dione (131)	
4.4.2.5	Synthesis of 3,3-dibenzyl-6-chloro-5-methylpyrazolo[1,5-	89
	a]pyrimidine-2,7(1 H ,3 H)-dione (132)	
4.4.2.6	Synthesis of 3,3-dibenzyl-5-(chloromethyl)pyrazolo[1,5-	89
4.4.2.7	-1.	90
4.4.3		92
4.4.3.1	-1.	93
		94
		-
4.4.3.4		94
		-
4.4.3.5	-1.	95
4.4.3.6		95
	-1.	97
4.5		
4 = 1	• •	97
4.4.2.3Synthesis of 3,3-dibenzyl-5-methylpyrazolo[1,5- a]pyrimidine- 2,7(1H,3H)-dione (130)88 2,7(1H,3H)-dione (130)4.4.2.4Synthesis of 3,3-dibenzyl-6-chloro-5-methylpyrazolo[1,5- a]pyrimidine-2,7(1H,3H)-dione (131)89 a]pyrimidine-2,7(1H,3H)-dione (132)4.4.2.6Synthesis of 3,3-dibenzyl-5-(chloromethyl)pyrazolo[1,5- a]pyrimidine-2,7(1H,3H)-dione (133)90 dibenzylpyrazolo[1,5- a]pyrimidine-2,7(1H,3H)-dione (133)4.4.2.7Synthesis of 5-((substitutedamino)methyl)-3,3- dibenzylpyrazolo[1,5-a]pyrimidine-2,7(1H,3H)-dione (134)90 dibenzylpyrazolo[1,5-a]pyrimidine-2,7(1H,3H)-dione (142)4.4.3Synthesis of 3-benzyl-7-hydroxy-5-methylpyrazolo[1,5- a]pyrimidin-2(1H)-one based compounds91 4.4.3.24.4.3.1Synthesis of 5-amino-4-benzyl-1,2-dihydropyrazol-3-one (143)94 4.4.3.34.4.3.2Synthesis of 3-benzyl-5-chloro-5-methylpyrazolo[1,5- a]pyrimidine-2,7(1H,4H)-dione (145)94 4.4.3.54.4.3.5Synthesis of 3-benzyl-5-(chloromethyl)pyrazolo[1,5- a]pyrimidine- 2,7(1H,4H)-dione (146)95 a]pyrimidine-2,7(1H,4H)-dione (147-151)4.5.1Biological screening of synthesized compounds as anti-TB agents by MABA assay98 Holocular docking, ADMET studies and simulation studies of the synthesis of 3-(3-oxo-1,3-diphenylproparaol-3(4H)-one (129) and 3-amino-4,4-bis(4-methylbenzyl)-1H-pyrazol-5(4H)-one (210)4.7.1.1Synthesis of 3-amino-4,4-bis(4-methylbenzyl)-1H-pyrazol-5(4H)-one (110 pyrazol-5(4H)-one derivatives (211-249)4.7.1.2.2Synthesis of 3-amino-4,4-bis(4-methylbenzyl)-1H-pyrazol-5(4H)-one (110 pyrazol-5(4H)-one derivatives (211-249)4.7.1.2.1Synthesis of 3-ami		
4.5.2	Cell viability assay	98
1.6	Molecular docking, ADMET studies and simulation studies of the	98
4.0		
4.6.1	Molecular docking study	99
4.6.2	Pharmacokinetics prediction	101
4.6.3		104
4.7	Synthesis of the designed compounds (211-249 and 250-261)	107
4.7.1		107
4.7.1.1		108
4.7.1.2	Synthesis of 3-amino-4,4-dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (129)	109
4.7.1.2.1		110
4.7.1.2.2		110
4.7.1.3		110
-		-
4.7.2		125
		-
4.8		129

4.9 4.9.1 4.9.2 4.10	Molecular docking, ADMET studies of the synthesized compounds Computational studies of compounds (211-249 and 250-261) ADMET predictions of the compounds (211-249 and 250-261) References	130 130 133 138
	Experimental	140
5.1	Computational studies	140
5.1.1	Hardware and software used in the computational work	140
5.1.1.1	Hardware	140
5.1.1.2	Softwares	140
5.1.2	Selection of dataset	140
5.1.3	Development of pharmacophore model using PHASE	141
5.1.4	Development of 3D-QSAR model	142
5.1.5	Virtual screening	143
5.1.6	Docking of the designed compounds using Autodock	143
5.1.6.1	Ligand preparation	143
5.1.6.2	Protein preparation	143
5.1.6.3	Grid generation	144
5.1.6.4	Protein-ligand interaction	144
5.1.7	ADMET predictions of the designed compounds	144
5.1.8	Molecular simulations	144
5.2	Chemical work	144
	Section I	145
5.2.1	3-Amino-4-phenyl-1H-pyrazol-5(4H)-one (106)	145
5.2.2	5-Methyl-3-phenylpyrazolo[1,5- <i>a</i>] pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (107)	145
5.2.3	1-Bromo-5-methyl-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (108)	146
5.2.4	6-Chloro-5-methyl-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (109)	147
5.2.5	5-(Chloromethyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)- dione (110)	147
5.2.6	5-((Benzylamino)methyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (111)	148
5.2.7	5-((4-Fuorobenzylamino)methyl)-3-phenylpyrazolo[1,5-	148
5.2.8	<i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (112) 5-((4-Chlorobenzylamino)methyl)-3-phenylpyrazolo[1,5-	149
5.2.9	<i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (113) 5-((4-Methylbenzylamino)methyl)-3-phenylpyrazolo[1,5-	149
J • 2 • 7	a]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (114)	177

5.

5.2.10	5-((3,4-Dichlorobenzylamino)methyl)-3-phenylpyrazolo[1,5-	150
5.2.11	<i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (115) 5-((4-Methoxybenzylamino)methyl)-3-phenylpyrazolo[1,5-	151
3.2.11	<i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (116)	131
5.2.12	5-((Phenylamino)methyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (117)	151
5.2.13	5-((4-Fluorophenylamino)methyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (118)	152
5.2.14	5-((2-Chlorophenylamino)methyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (119)	152
5.2.15	5-((4-Methoxyphenylamino)methyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (120)	153
5.2.16	3-Phenyl-5-((pyridin-4-ylamino)methyl)pyrazolo[1,5- a]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (121)	153
5.2.17	3-Phenyl-5-((pyrrolidin-1-yl)methyl)pyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (122)	154
5.2.18	3-Phenyl-5-((piperazin-1-yl)methyl)pyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (123)	155
5.2.19	5-(Morpholinomethyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (124)	156
5.2.20	5-((4-Methylpiperazin-1-yl)methyl)-3-phenylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (125)	156
5.2.21	Methyl 2-benzyl-2-cyano-3-phenylpropanoate (128)	157
5.2.22	4,4-Dibenzyl-5-iminopyrazolidin-3-one (129)	157
5.2.23	3,3-Dibenzyl-5-methylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,3 <i>H</i>)- dione (130)	158
5.2.24	3,3-Dibenzyl-1-bromo-5-methylpyrazolo[1,5- a]pyrimidine-2,7(1 H ,3 H)-dione (131)	158
5.2.25	3,3-Dibenzyl-6-chloro-5-methylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,3 <i>H</i>)-dione (132)	159
5.2.26	3,3-Dibenzyl-5-(chloromethyl)pyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,3 <i>H</i>)-dione (133)	159
5.2.27	3,3-Dibenzyl-5-((benzylamino)methyl)pyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,3 <i>H</i>)-dione (134)	160
5.2.28	5-((4-Fluorobenzylamino)methyl)-3,3-dibenzylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,3 <i>H</i>)-dione (135)	160
5.2.29	5-((3-Chlorobenzylamino)methyl)-3,3-dibenzylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,3 <i>H</i>)-dione (136)	161
5.2.30	3,3-Dibenzyl-5-((pyridin-2-ylamino)methyl)pyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,3 <i>H</i>)-dione (137)	161
5.2.31	3,3-Dibenzyl-5-((4-methylbenzylamino)methyl)-pyrazolo[1,5- a]pyrimidine-2,7(1 <i>H</i> , 3 <i>H</i>)-dione (138)	161
5.2.32	5-((2,4-Dichlorobenzylamino)methyl)-3,3-dibenzylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,3 <i>H</i>)-dione (139)	162
5.2.33	5-((4-Methoxybenzylamino)methyl)-3,3-dibenzylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,3 <i>H</i>)-dione (140)	162
5.2.34	3,3-Dibenzyl-5-(morpholinomethyl)pyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,3 <i>H</i>)-dione (141)	162

5.2.35	Methyl-2-cyano-3-phenylpropanoate (142)	163
5.2.36	5-Amino-4-benzyl-1,2-dihydropyrazol-3-one (143)	164
5.2.37	3-Benzyl-5-methylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione	164
5.2.38	(144) 3-Benzyl-6-chloro-5-methylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (145)	165
5.2.39	3-Benzyl-5-(chloromethyl)pyrazolo[1,5-a]pyrimidine-2,7(1H,4H)-	164
5.2.40	dione (146) 5-((Benzylamino)methyl)-3-benzylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (147)	165
5.2.41	5-((4-Flourobenzylamino)methyl)-3-benzylpyrazolo[1,5-	165
5.2.42	<i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (148) 5-((4-Chlorobenzylamino)methyl)-3-benzylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (149)	166
5.2.43	5-((3,4-Dichlorobenzylamino)methyl)-3-benzylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (150)	167
5.2.44	5-(Pyridin-4-ylamino)methyl)-3-benzylpyrazolo[1,5- <i>a</i>]pyrimidine- 2,7(1 <i>H</i> ,4 <i>H</i>)-dione (151)	167
5.2.45	5-((4-Methylbenzylamino)methyl)-3-benzylpyrazolo[1,5- <i>a</i>]pyrimidine-2,7(1 <i>H</i> ,4 <i>H</i>)-dione (152)	168
	Section II	
5.2.46	(E)-1,3-Diphenylprop-2-en-1-one (174)	168
5.2.47	(<i>E</i>)-3-(4- Chlorophenyl)-1-phenylprop-2-en-1-one (175)	168
5.2.48	(E)-1-Phenyl-3- <i>p</i> -tolylprop-2-en-1-one (176)	169
5.2.49	(<i>E</i>)-3-(4- Fluorophenyl)-1-phenylprop-2-en-1-one (177)	169
5.2.50	(<i>E</i>)-3-(4- Bromophenyl)-1-phenylprop-2-en-1-one (178)	169
5.2.51	(<i>E</i>)-3-(4- Nitrophenyl)-1-phenylprop-2-en-1-one (179)	169
5.2.52	(<i>E</i>)-3-(4-Methoxyphenyl)-1-phenylprop-2-en-1-one (180)	169
5.2.53	(<i>E</i>)-3-(3- Chlorophenyl)-1-phenylprop-2-en-1-one (181)	170
5.2.54	(<i>E</i>)-3-(3- Fluorophenyl)-1-phenylprop-2-en-1-one (182)	170
5.2.55	(<i>E</i>)-3-(3- Bromophenyl)-1-phenylprop-2-en-1-one (183)	170
5.2.56	(<i>E</i>)-3-(3- Nitrophenyl)-1-phenylprop-2-en-1-one (184)	170
5.2.57	(<i>E</i>)-3-(3-Methoxyphenyl)-1-phenylprop-2-en-1-one (185)	171
5.2.58	(<i>E</i>)-3-(2- Nitrophenyl)-1-phenylprop-2-en-1-one (186)	171
5.2.59	(<i>E</i>)-1-(2-Bromophenyl)-3-phenylprop-2-en-1-one (187)	171
5.2.60	(<i>E</i>)-3-(3-Chlorophenyl)-1-(4- chlorophenyl)prop-2-en-1 one (188)	171
5.2.61	(<i>E</i>)-3-(3-Chlorophenyl)-1- <i>p</i> -tolylprop-2-en-1-one (189)	172
5.2.62	(<i>E</i>)-1-(4-Chlorophenyl)-3-(3-nitrophenyl)prop-2-en-1-one (190)	172

5.2.63	(<i>E</i>)-1-(4-Chlorophenyl)-3-(3-methoxyphenyl)prop-2-en-1-one (191)	173
5.2.64	(<i>E</i>)-1-(4-Bromophenyl)-3-phenylprop-2-en-1-one (192)	173
5.2.65	(<i>E</i>)-3-(4-Bromophenyl)-1-p-tolylprop-2-en-1-one (193)	173
5.2.66	(<i>E</i>)-3-(4-Bromophenyl)-1-(4-chlorophenyl)prop-2-en-1 one (194)	173
5.2.67	(E)-1-(4-Chlorophenyl)-3-phenylprop-2-en-1-one (195)	174
5.2.68	(<i>E</i>)-3-(4-Chlorophenyl)-1-p-tolylprop-2-en-1-one (196)	174
5.2.69	(<i>E</i>)-1,3- <i>bis</i> (4-chlorophenyl)prop-2-en-1-one (197)	174
5.2.70	(<i>E</i>)-1-(4-Chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (198)	174
5.2.71	(<i>E</i>)-1-(4-Nitrophenyl)-3-phenylprop-2-en-1-one (199)	175
5.2.72	(E)-1-(4-Chlorophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (200)	175
5.2.73	(<i>E</i>)-1,3-Di <i>p</i> -tolylprop-2-en-1-one (201)	175
5.2.74	(<i>E</i>)-3-Phenyl-1- <i>p</i> -tolylprop-2-en-1-one (202)	175
5.2.75	(<i>E</i>)-3-(4-Fluorophenyl)-1- <i>p</i> -tolylprop-2-en-1-one (203)	176
5.2.76	(<i>E</i>)-3-(4-Chlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (204)	176
5.2.77	(<i>E</i>)-1-(3-Chlorophenyl)-3-phenylprop-2-en-1-one (205)	176
5.2.78	(<i>E</i>)-1-(4-Fluorophenyl)-3- <i>p</i> -tolylprop-2-en-1-one (206)	177
5.2.79	(<i>E</i>)-3-(3-Fluorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (207)	177
5.2.80	Methyl-2,2-bis(4-methylbenzyl)-2-cyano-ethanoate (209)	177
5.2.81	3-Amino-4,4-bis(4-methylbenzyl)-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (210)	178
5.2.82	3-(3-Oxo-1,3-diphenylpropylamino)-4,4-dibenzyl-1 <i>H</i> -pyrazol-	178
5.2.83	5(4 <i>H</i>)-one (211) 3-(1-(4-Chlorophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl- 1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (212)	179
5.2.84	3-(3-Oxo-3-phenyl-1-p-tolylpropylamino)-4,4-dibenzyl-1H-	179
5.2.85	pyrazol-5(4 <i>H</i>)-one (213) 3-(1-(4-Fluorophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl-	180
	1 <i>H</i> -pyrazol 5(4 <i>H</i>)-one (214)	
5.2.86	3-(1-(4-Bromophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl- 1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (215)	181
5.2.87	3-(1-(4-Nitrophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl-	181
5.2.88	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (216) 3-(1-(4-Methoxyphenyl)-3-oxo-3-phenylpropylamino)-4,4-	182
	dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (217)	
5.2.89	3-(1-(3-Chlorophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl- 1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (218)	182
5.2.90	3-(1-(3-Fluorophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl-	183
5.2.91	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (219) 3-(1-(3-Bromophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl- 1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (220)	183

5.2.92	3-(1-(3-Nitrophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl-	184
5.2.93	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (221) 3-(1-(3-Methoxyphenyl)-3-oxo-3-phenylpropylamino)-4,4-	184
J. 2 ./J	dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (222)	104
5.2.94	3-(1-(2-Nitrophenyl)-3-oxo-3-phenylpropylamino)-4,4-dibenzyl-	185
5.2.95	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (223) 3-(3-(2-Bromophenyl)-3-oxo-1-phenylpropylamino)-4,4-dibenzyl-	185
5.2.75	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (224)	
5.2.96	3-(1-(3-Chlorophenyl)-3-(4-chlorophenyl)-3-oxopropylamino)-4,4- dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (225)	186
5.2.97	3-(1-(3-Chlorophenyl)-3-oxo-3- <i>p</i> -tolylpropylamino)-4,4-dibenzyl-	186
	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (226)	
5.2.98	3-(3-(4-Chlorophenyl)-1-(3-nitrophenyl)-3-oxopropylamino)-4,4-	187
	dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (227)	
5.2.99	3-(3-(4-Chlorophenyl)-1-(3-methoxyphenyl)-3-oxopropylamino)-	187
5.2.100	4,4-dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (228) 3-(3-(4-Bromophenyl)-3-oxo-1-phenylpropylamino)-4,4-dibenzyl-	188
5.2.100	1H-pyrazol- $5(4H)$ -one (229)	100
5.2.101	3-(1-(4-Bromophenyl)-3-oxo-3- <i>p</i> -tolylpropylamino)-4,4-dibenzyl-	189
••==•=	1H-pyrazol- $5(4H)$ -one (230)	10)
5.2.102	3-(1-(4-Bromophenyl)-3-(4-chlorophenyl)-3-oxopropylamino)-4,4-	189
	dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (231)	
5.2.103	3-(3-(4-Chlorophenyl)-3-oxo-1-phenylpropylamino)-4,4-dibenzyl-	190
5 0 10 4	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (232)	100
5.2.104	3-(1-(4-Chlorophenyl)-3-oxo-3- <i>p</i> -tolylpropylamino)-4,4-dibenzyl-	190
5.2.105	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (233) 3-(1,3- <i>bis</i> (4-chlorophenyl)-3-oxopropylamino)-4,4-dibenzyl-1 <i>H</i> -	191
3.2.103	pyrazol-5(4 <i>H</i>)-one (234)	171
5.2.106	3-(3-(4-Chlorophenyl)-1-(4-methoxyphenyl)-3-oxopropylamino)-	192
	4,4-dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (235)	
5.2.107	3-(3-(4-Nitrophenyl)-3-oxo-1-phenylpropylamino)-4,4-dibenzyl-	192
	<i>1H</i> -pyrazol-5(<i>4H</i>)-one (236)	
5.2.108	3-(3-(4-Chlorophenyl)-1-(4-nitrophenyl)-3-oxopropylamino)-4,4-	192
5.2.109	dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (237) 3-(3-Oxo-1,3-di <i>p</i> -tolylpropylamino)-4,4-dibenzyl-1 <i>H</i> -pyrazol-	193
3.2.109	5(4H)-one (238)	195
5.2.110	3-(3-Oxo-1-phenyl-3-p-tolylpropylamino)-4,4-dibenzyl-1 <i>H</i> -	193
	pyrazol-5(4 <i>H</i>)-one (239)	
5.2.111	3-(1-(4-Fluorophenyl)-3-oxo-3-p-tolylpropylamino)-4,4-dibenzyl-	194
	1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (240)	
5.2.112	3-(1-(4-Chlorophenyl)-3-(4-fluorophenyl)-3-oxopropylamino)-4,4-	194
5 2 1 1 2	dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (241)	195
5.2.113	3-(3-(3-Chlorophenyl)-3-oxo-1-phenylpropylamino)-4,4-dibenzyl- 1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (242)	195
5.2.114	3-(3-(3-Fluorophenyl)-3-oxo-1- <i>p</i> -tolylpropylamino)-4,4-dibenzyl-	195
~,4,117	1H-pyrazol- $5(4H)$ -one (243)	170
5.2.115	3-(1-(3-Fluorophenyl)-3-(4-fluorophenyl)-3-oxopropylamino)-4,4-	196
	dibenzyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (244)	
5.2.116	3-(1-Phenyl-3-oxo-3-phenylpropylamino)-4,4-bis(4-	196
	methylbenzyl)-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (245)	

5.2.117	3 (1 (A Chlorophenyl) 3 ovo 3 phonylpropylamino) 4.4 hig/4	197
3.4.11/	3-(1-(4-Chlorophenyl)-3-oxo-3-phenylpropylamino)-4,4-bis(4- methylbenzyl)-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (246)	17/
5.2.118	3-(1-(4-Fluorophenyl)-3-oxo-3-phenylpropylamino)-4,4-bis(4- methylbenzyl)-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (247)	198
5.2.119	3-(1-(4-Tolyl)-3-oxo-3-phenylpropylamino)-4,4-bis(4-	198
5 0 100	methylbenzyl)-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (248)	100
5.2.120	3-(1-(4-Nitrophenyl)-3-oxo-3-phenylpropylamino)-4,4-bis(4- methylbenzyl)-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (249)	199
5.2.121	3,3-Dibenzyl-3,3a-dihydro-5,7-diphenylpyrazolo[1,5- <i>a</i>]pyrimidin-	199
	2(1 <i>H</i>)-one (250)	
5.2.122	3,3-Dibenzyl-5-(4-chlorophenyl)-3,3a-dihydro-7-	200
	phenylpyrazolo[1,5- <i>a</i>]pyrimidin-2(1 <i>H</i>)-one (251)	•
5.2.123	3,3-Dibenzyl-3,3 <i>a</i> -dihydro-5-(4-nitrophenyl)-7-	200
5.2.124	phenylpyrazolo[1,5- <i>a</i>]pyrimidin-2(1 <i>H</i>)-one (252) 3,3-Dibenzyl-3,3 <i>a</i> -dihydro-7-phenyl-5- <i>p</i> -tolylpyrazolo[1,5-	201
3.2.124	<i>a</i>]pyrimidin-2(1 <i>H</i>)-one (253)	201
5.2.125	3,3-Dibenzyl-5-(4-fluorophenyl)-3,3 <i>a</i> -dihydro-7-	201
	phenylpyrazolo[1,5- <i>a</i>]pyrimidin-2(1 <i>H</i>)-one (254)	
5.2.126	3,3-Dibenzyl-5-(3-chlorophenyl)-3,3a-dihydro-7-	202
	phenylpyrazolo[1,5- <i>a</i>]pyrimidin-2(1 <i>H</i>)-one (255)	
5.2.127	3,3-Dibenzyl-5-(3-fluorophenyl)-3,3 <i>a</i> -dihydro-7-	202
5 2 1 2 9	phenylpyrazolo[1,5- <i>a</i>]pyrimidin-2(1 <i>H</i>)-one (256)	202
5.2.128	3,3-Dibenzyl-7-(4-fluorophenyl)-3,3 <i>a</i> -dihydro-5- phenylpyrazolo[1,5- <i>a</i>]pyrimidin-2(1 <i>H</i>)-one (257)	203
5.2.129	3,3-Dibenzyl-3,3 <i>a</i> -dihydro-5,7-di <i>p</i> -tolylpyrazolo[1,5- <i>a</i>]pyrimidin-	203
••=•==>	2(1H)-one (258)	200
5.2.130	3,3-Dibenzyl-5-(4-fluorophenyl)-3,3a-dihydro-7-p-	204
	tolylpyrazolo[1,5- <i>a</i>]pyrimidin-2(1 <i>H</i>)-one (259)	
5.2.131	3,3-Dibenzyl-3,3 <i>a</i> -dihydro-5-phenyl-7- <i>p</i> -tolylpyrazolo[1,5-	204
5 0 1 2 0	a]pyrimidin-2(1 <i>H</i>)-one (260)	205
5.2.132	3,3-Dibenzyl-7-(4-chlorophenyl)-3,3 <i>a</i> -dihydro-5- phenylpyrazolo[1,5- <i>a</i>]pyrimidin-2(1 <i>H</i>)-one (261)	205
53		205
5.3	Biological screening	
5.3.1	MABA	205
5.3.2	Principle	206
5.3.3	Assay Procedure	206
5.3.4	Cell viability assay	207
5.4	References	208
	Conclusion	211
		Si-
	Supplementary material	XXXV
		ΛΛΛΥ

6.

Introduction

TB is the major death-causing disease all around the world especially, in the developing countries. TB was the leading cause of mortality from a single infectious agent, until the coronavirus pandemic in 2019. It is a granulomatous, contagious airborne disease proved to be fatal if not treated. TB is caused by *Mycobacterium* species and generally affects the lungs, but it can also affect other body parts as well¹. Earlier TB was successfully controlled by a set of drugs namely, isoniazid (2), rifampicin (3), ethambutol (4) and pyrazinamide (5). These drugs are the first line agents used primarily to cure the disease. During the later years, other drugs such as fluorouinolones, ofloxacin, cycloserine (7) etc were introduced to aid the first-line agents.² These are also known as second line drugs. There are more than two dozen drugs available to treat TB. Still, TB remains one of the major concerns to the healthcare professionals, as it is associated with development of resistance, patient's incompliance, serious side effects and long duration of treatment³.

Development of resistance against available drugs have been the major concern for quite some time now. When the patient is non-responsive to the first line agents like, isoniazid (2) and rifampicin (3), it known as Multidrug resistance (MDR).⁴ If the resistance has been developed against first line drugs and one of the second line drugs, then it's called extensive drug resistance (XDR). If the patient is non-responsive to any treatment given, then its a case of severe total drug resistance (TDR). Resistance may be caused by mutation in one or more chromosomal genes in *Mtb*.⁵ There is lot of research going on the field of TB, yet only three drugs namely bedaquiline (17), delamanid (19) and pretomanid (18) have been approved lately by USFDA for the treatment of resistant TB. But, unfortunately bedaquilline resistant strains of *Mtb* have also been reported lately.⁶

There is an urgent need to address the deadliest communicable disease, Tuberculosis. Presently, there are over two dozen anti-tubercular agents present in the market to tackle the disease. Yet, it is still spreading and proving the available anti-TB drugs inefficient. The main reason for failure of the existing drugs is attributed to the development of resistance by *Mycobacterium Tuberculosis*, patient incompliance and long durations of treatment.

The Mycobacterium cell wall is the first point of contact between the host and *Mtb*. The cell wall has always been an effective target for developing anti-TB agents. Many available drugs such as isoniazid, cycloserine, ethambutol etc. inhibit cell wall synthesis. There are various enzymes involved in the biosynthesis of cell wall such as InhA, Kas A, DprE1, MmpL3

etc. which regulate the cell permeability. Thus, targeting these enzymes could be an effective approach for design and development of newer anti-TB agents.

DprE1 is the most exploited target at present for development of newer anti-TB agents. DprE1 enzyme is involved in the synthesis of decaprenylphosphoryl- β -*D*-arabinofuranose (DPA) which is the only source of arabinan for synthesis of arabinogalactan layer of the cell wall. At present there are only four DprE1 inhibitors present in the clinical trials, namely BTZ043, PBTZ169, TBA-7371 and OPC-167832. Thus, it was planned to target DprE1 for designing and development of novel anti-TB agents.

The brief research methodology and the key findings

The overall work is divided into two sub-categories since two different approaches were used to carry out the research work. These approaches are stated as below:

1. Design and development of novel anti-TB agents based on the existing DprE1 inhibitors

A vast literature is available on the enzyme DprE1 and its inhibitors. The available literature indicates towards the diversity of chemical scaffolds as DprE1 inhibitors. The various scaffolds that exhibit DprE1 inhibitory activity are azaindoles (24), benzothiazinones (25-26, 35), benzothiazoles (36), pyrazolopyridine (42) etc. So, it was thought logical to develop a common pharmacophoric features using reported DprE1 inhibitors. The so developed common pharmacophoric features could be used for design of newer DprE1 inhibitors.

2. Design and development of novel anti-TB agents based on hybrid approach

From the literature, it has been found that chalcones (**43**, **48**, **50**, **52** and **56**) are biologically active moieties having vast range of biological activity including anti-TB activity^{7–}¹⁰. Some of the reports also indicated that chalcones exhibit binding to the DprE1 enzyme via hydrogen bonding, π - π interactions and van der Waals interactions^{11,12}. Further, chalcones and related compounds are not explored to the extent as anti-tubercular agents. Thus, it was thought logical to explore chalcone scaffold (**Figure 1**).

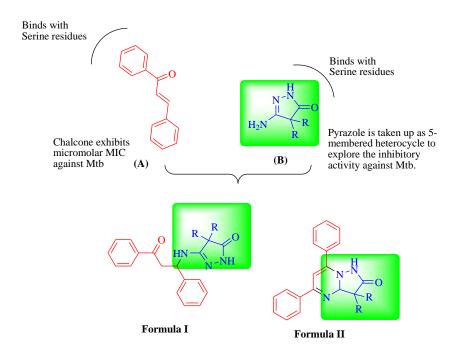
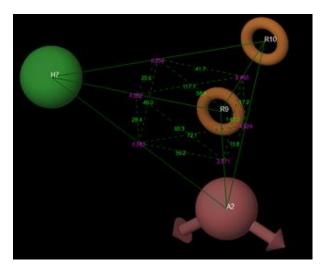


Figure 1: Designing of pyrazole fused dihydrochalcone derivatives (I, II) using hybrid approach

Thus, the work has been subcategorized based on the approach used for design and development of compounds.

SECTION I

Based on the structure of reported DprE1 inhibitors, a pharmacophore model was generated having common structural features. The generated pharmacophore model was used as a filter in the virtual screening of Asinex database to search for newer scaffold as DprE1 inhibitor. Other filters such as molecular docking and rule of five was also applied to get a hit molecule. This hit molecule was further optimized using molecular docking and ADMET predictions to get a lead compound (**Figure 4**)


Pharmacophore model

The present work aimed to identify the minimium structual features required for DprE1 inhibition. To serve the aim, a definite pharmacophore model was generated using reported DprE1 inhibitors. Active and inactive threshold pIC_{50} were fixed to 6.9 and 5.0 respectively and applied to the dataset of 140 compounds, giving 41 active, 15 inactive and 84 moderately active compounds. For generation of pharmacophore model, all the 41 active compounds were used. Pharmacophoric sites were created to give six types of structural features such as aromatic ring (R), negative (N), positive (P), hydrophobic (H), H-bond donor (D), and acceptor (A). The

software was restricted to find a minimum of 3 and maximum of 5 sites. Based on the active structures of the dataset, several 3-point and 4-point hypothesis were generated. AHRR, AAR, AAH, ARR, HRR and AHR were found to be most probable hypothesis. All the generated hypothesis were evaluated. The survival score ranged from 2.714 to 3.310 (**Table 1**).

ID	Survival	Survival	Post hoc	Site	Vector	Selectivity	Match	Energy
	score	inactive	score					
AHRR.28	2.990	1.641	2.991	0.63	0.897	1.359	22	2.254
AHRR.29	2.714	1.782	2.714	0.51	0.850	1.362	22	1.185
AAR.4	3.310	2.432	3.310	0.76	0.901	0.848	21	0.467

The highest ranked survival score for 3-point hypothesis was obtained for AAR.4 i.e. 3.310 whereas 4-point hypothesis AHRR.28 and AHRR.29 were scored as 2.990 and 2.714 respectively as shown in **Table 1**. The best model (AHRR.28) containing one hydrogen bond acceptor, one hydrophobic group and two aromatic rings is shown in **Figure 2**.

Figure 2: Pharmacophore model AHRR.28. Orange coloured torus represents aromatic rings (R9 and R10), green coloured sphere represents hydrophobic group (H7), and light magenta coloured vector represents hydrogen bond acceptor group (A2). Values in purple colour represent distances and in green colour represent the angles between the pharmacophoric features

The angles and distances of AHRR.28 among the pharmacophore are given in **Table 2** and **3**. The top three ranked pharmacophore models AHRR.28, AAR.4 and AHRR.29 were then used to align the molecules to build atom-based 3D-QSAR analysis. The best model was denoted by various statistical measures. The accuracy of the generated QSAR model was verified by the statistical data such as R^2 and Q^2 .

Site 1	Site 2	Site 3	Angle
H7	A2	R9	56.2
H7	A2	R10	72.1
R9	A2	R10	15.8
A2	H7	R9	28.4
A2	H7	R10	49.0
R9	H7	R10	20.6
A2	R9	H7	95.3
A2	R9	R10	147.0
H7	R9	R10	117.7
A2	R10	H7	58.9
A2	R10	R9	17.2
H7	R10	R9	41.7

Table 2: Angles between the different pharmacophoric features of AHRR.28 model

Table 3: Distance between the different pharmacophoric features of AHRR.28 model

Site 2	Distance (Å)
H7	5.583
R9	2.671
R10	4.924
R9	4.662
R10	6.204
R10	2.465
	H7 R9 R10 R9 R10

Virtual screening

Virtual screening has been proved to be a competent technique for the identification of hits using already available database in public/private domain. Various filters were applied to the Asinex database consisting of 2,12,526 compounds, so as to get initial hits as DprE1 inhibitors. The virtual screening results are illustrated in Figure 3.

2,12,526 compounds

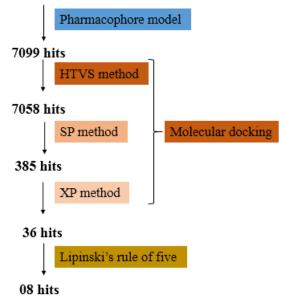
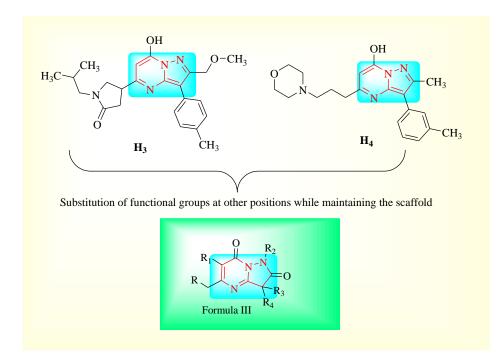
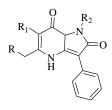
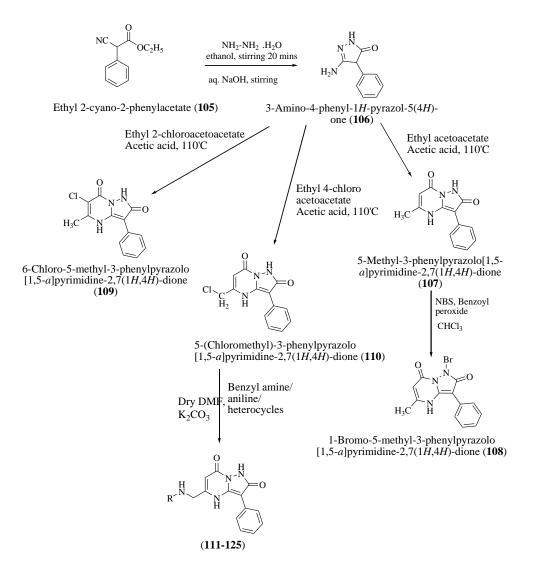
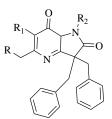




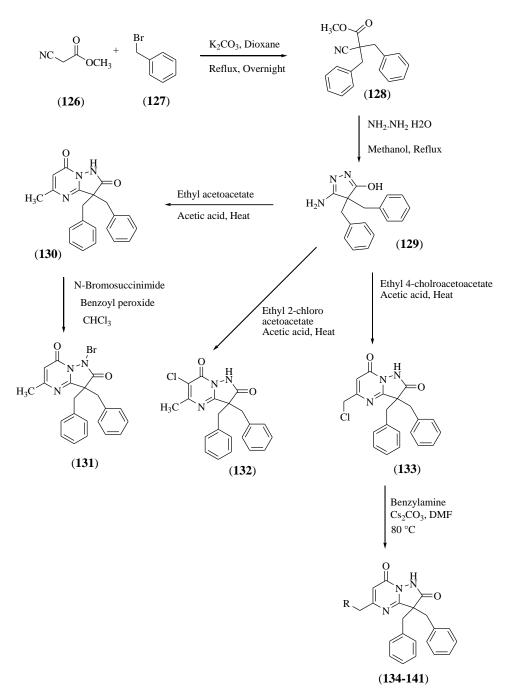
Figure 3: Flow chart of virtual screening


Figure 4: Designing of pyrazolo[1,5-*a*]pyrimidine-2,7(1*H*,4*H*)-dione compounds based on the hits obtained by virtual screening

For the synthesis of the aimed compounds (**Formula IIIa**) the following steps have been utilized as explained in **Scheme 1**.

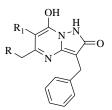

Formula IIIa

3-Amino-4-phenyl-*1H*-pyrazol-5(*4H*)-one (**106**) was synthesized by reacting commercially available ethyl-2-cyano-2-phenylacetate (**105**) with hydrazine hydrate 99%. The synthesized compound was further reacted with various ethyl acetoacetates in presence of glacial acetic acid to yield substituted 3-phenylpyrazolo[1,5-*a*]pyrimidine-2,7(1*H*,4*H*)-dione (**107**, **109-110**) by substitution and subsequent cyclization. It was aimed to synthesize three different substituted 3-phenylpyrazolo[1,5-*a*]pyrimidine-2,7(1*H*,4*H*)-dione (**107**, **109-110**). The first class of derivative (**107**, **109-110**) was reported as such. The second category of 3-phenylpyrazolo[1,5-*a*]pyrimidine-2,7(1*H*,4*H*)-dione (**107**) was brominated with *N*-bromosuccinimide to give 1-bromo5-methyl-3-phenylpyrazolo[1,5-*a*]pyrimidine-2,7(1*H*,4*H*)-dione (**108**). The third category of compounds was synthesized by substitution reaction of the compound (**110**) with various amines such as benzyl amine, anilines and heterocyclic amine.

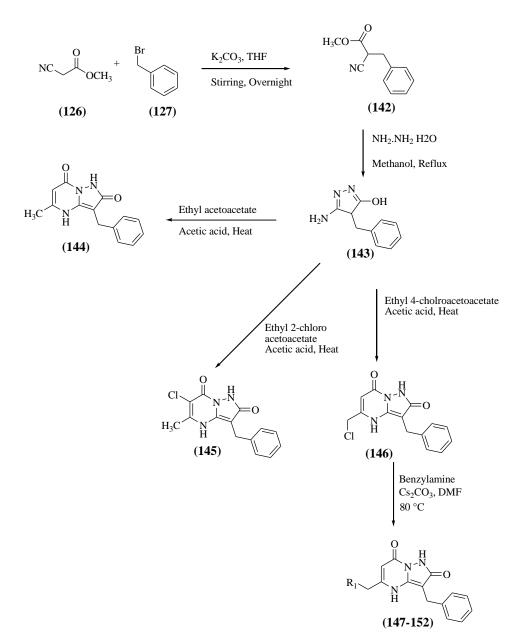


Scheme 1: Synthesis of compounds of 3-phenylpyrazolo[1,5-*a*]pyrimidine-2,7(1*H*,4*H*)-dione (**Formula IIIa**) based compounds

The designed compounds having **formula III-b** were synthesized by implementing **scheme 2**.



Formula III-b



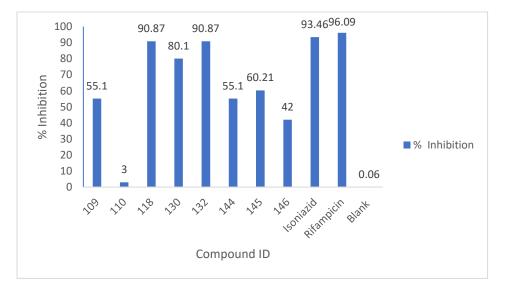
Scheme 2: Synthesis of disubstituted pyrazolo-pyrimidine derivatives (Formula IIIb)

The designed compounds having **formula III-c** were synthesized by implementing **scheme 3**.

Formula III-c

Scheme 3: Synthesis of 3-benzyl-7-hydroxy-5-methylpyrazolo[1,5-*a*]pyrimidin-2(1*H*)-one derivatives

Biological screening of synthesized compounds as anti-TB agents using MABA assay


The prepared compounds were evaluated for their percentage inhibition against *Mycobacterium bovis* (BCG). Results are shown in **Table 4** and **Figure 5**. Overall, seven compounds (**109, 118, 130, 132, 144, 145 and 146**) out of 38 compounds exhibited inhibition of the bacteria. It was found that compound **118** and **132** was exhibiting 90.87% inhibition, comparable to that of standard drugs. Compounds **130, 144, 145,** and **109** having chlorine in the 6th and 5th position respectively are showing inhibition, thus it can be agreed that presence of chlorine atom is favorable for inhibitory activity.

Comp ID	% Inhibition	Comp ID	% Inhibition	Comp ID	% Inhibition
108	NI	122	NI	140	NI
109	55.1	123	NI	141	NI
110	3	124	NI	144	55.1
111	NI	125	NI	145	60.21
112	NI	130	80.1	146	42
113	NI	131	NI	147	NI
114	NI	132	90.87	148	NI
115	NI	133	NI	149	NI
116	NI	134	NI	150	NI
117	NI	135	NI	151	NI
118	90.87	136	NI	152	NI
119	NI	137	NI	Isoniazid	93.46
120	NI	138	NI	Rifampicin	96.09
121	NI	139	NI	Blank	0.06

Table 4: Anti-tubercular activity of the synthesized compounds

NI: No inhibition at $10\mu g/mL$.

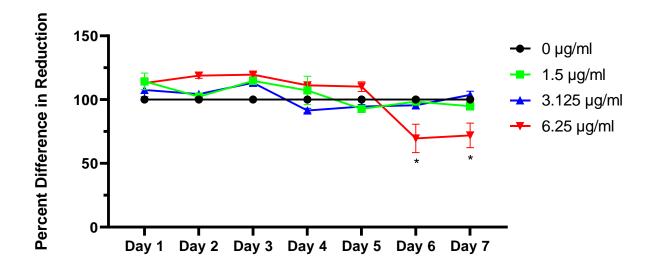

Inspired from the results of the primary screening, compound (118) was taken up for further studies and it was found that compound (118) was exhibiting an MIC value of $\leq 1.5 \mu g/ml$.

Figure 5: Percentage inhibition of *Mycobacterium bovis* (BCG) by the synthesized compounds using MABA assay.

Cell viability assay

As compound (**118**) was found to be significantly active, its safety aspect was assessed by performing cell viability assay using human lung adenocarcinoma cell line A549. This cell viability assay was based on resazurin dye. Results indicated that the compound (**118**) does not show any significant reduction in cell viability at 1.5 μ g/ml and 3.125 μ g/ml at any point of time. However significant reduction in cell viability was observed at the concentration of 6.25 μ g/ml after 6th day of treatment. The results are demonstrated in **Figure 6**.

Figure 6: Impact of compound (**118**) concentrations -1.5μ g/ml, 3.125μ g/ml and 6.25μ g/ml on cell viability in A549 cell line. Percent difference in reduction of Resazurin in A549 cells upon treatment with compound at 1.5μ g/ml, 3.125μ g/ml and 6.25μ g/ml final concentration. The graph represents percent reduction in resazurin compared to untreated positive control at each day. Each concentration was evaluated in triplicates and Error bars depict the standard error of the mean. T-test was used to calculate statistical significance. *p ≤ 0.05 , n=3

Molecular docking, ADMET studies and simulation studies of the synthesized compounds

Computational studies such as molecular docking, ADME predictions, molecular simulations provide an insight to the behaviour of the molecule with the enzyme within the body. These studies also help in deducing the mode of the action as well as figuring out the pharmacokinetics of the compounds. The results were found to be within the range.

Molecular simulations studies of compound (118)

The molecular simulation studies of compound (**118**) show the stability of complex in a time period of 1ns. For the simulation studies different parameters of molecular dynamics has been taken into consideration which includes the RMSD analysis, RMSF analysis and radius of gyration (R_g). From the RMSD analysis it was observed that the complex attains stability

for a very short span of time and the RMSD keep on fluctuating during the given time period window. The deviation occurs in between RMSD 3.0- 4.2 nm for a time period 0.84ns. In last 0.2ns the deviation of complex occurs in between 2.0-3.0 nm.

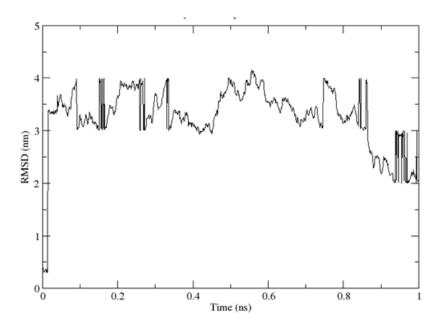


Figure 7: RMSD of complex (118)

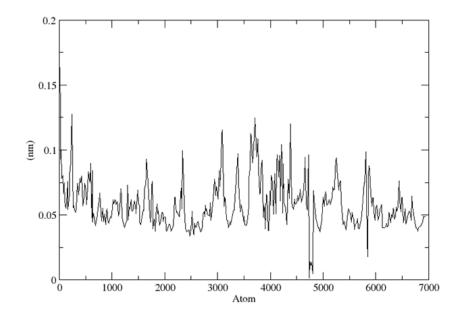
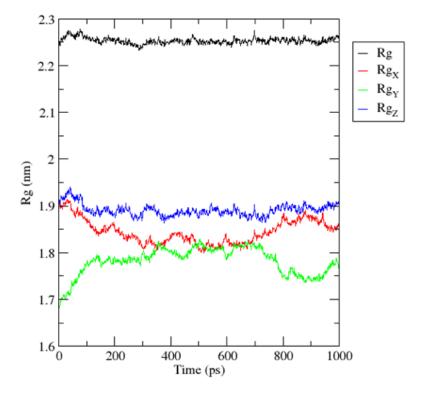
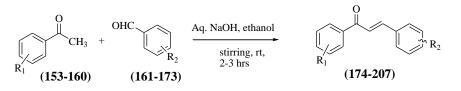



Figure 8: RMS of complex (118)

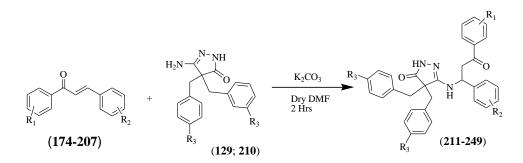
c)Radius of gyration (total and around axes)

Figure 9: Radius of gyration of complex (118)

Additionally, the RMSF studies revealed that the atoms in the complex shows steep fluctuations in the given time period with a low stability profile. The atoms show stability within the plot but only for short intervals. The Root mean square fluctuations observed in between 0.038-0.132 nm. The radius of gyration studies determined for this complex indicates towards the instability and shows no significant deviations between 100-1000ps and the R_g remains in the range 0.25-0.27nm (**Figures 7-9**).


SECTION II

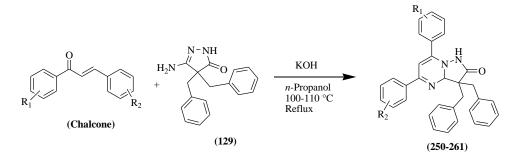
The compounds designed by implementing the hybrid approach of fusing pyrazolone and chalcones are described here.


Synthesis of 3-(3-oxo-1,3-diphenylpropylamino)-4,4-dibenzyl-1*H*-pyrazol-5(4*H*)-one derivatives (211-249)

To prepare substituted chalcone derivatives (174-207), commercially available substituted benzaldehydes were reacted with substituted acetophenones in presence of a strong base (Scheme 4). These substituted chalcones (174-207) were fused with 3-amino-4,4-dibenzyl-1*H*-pyrazol-5(4*H*)-one (129) in presence of weak base such as anhydrous potassium carbonate in DMF to yield the desired compounds (211-249). The reaction proceeds via

Michael-aza addition of NH₂ of the pyrazolone on the double bond of the chalcone to offer final compounds (**211-249**) (**Scheme 5**).

Scheme 4: Synthesis of chalcone derivatives



Scheme 5: Synthesis of final compounds (211-249)

4.7.2 Synthesis of 3,3-dibenzyl-3,3*a*-dihydro-5,7-diphenylpyrazolo[1,5-*a*]pyrimidin-2(1*H*)-one derivatives (250-261)

3-Amino-4,4-dibenzyl-1*H*-pyrazol-5(4*H*)-one (**129**) was synthesized by using a method discussed in **Scheme 2**. Substituted/unsubstituted chalcones were synthesized by reacting different benzaldehyde with various acetophenones in presence of KOH and aqueous ethanol as discussed in section **Scheme 4**.

The desired final compounds (**250-261**) were obtained by condensing substituted chalcones (**CH1-34**) with 3-amino-4,4-dibenzyl-1*H*-pyrazol-5(4*H*)-one (**129**) in presence of potassium hydroxide in *n*-propanol. The reaction proceeds via Michael-aza addition of -NH₂ on the double bond of chalcone followed by cyclization reaction to give pyrazolo[1,5-a]pyrimidin2(1*H*)-one scaffold (**Scheme 6**).

Scheme 6: Synthesis of final compounds (250-261)

Biological screening of synthesized compounds as anti-TB agents by MABA assay

The prepared compounds were evaluated for their percentage inhibition against *Mycobacterium bovis* (BCG). Overall, four compounds (**213, 214, 216** and **220**) out of 51 compounds exhibited inhibition of the bacteria. It was found that compound **213** and **220** was exhibiting 91% and 93% inhibition, comparable to that of standard drugs. Compounds **214** and **220** having fluorine and bromine respectively in their structure, are showing inhibition, thus it can be agreed that presence of halogen atom is favorable for inhibitory activity. The results are shown in **Table 5** and **Figure 10**. Compound (**216**) exhibited MIC value of 1.5 μ g/mL.

Comp	%	Comp	%	Comp	%
ID	Inhibition	ID 229	Inhibition	ID 245	Inhibition
211	NI	228	NI	245	NI
212	NI	229	NI	246	NI
213	91	230	NI	247	NI
214	79	231	NI	248	NI
215	NI	232	NI	249	NI
216	89	233	NI	250	NI
217	NI	234	NI	251	NI
218	NI	235	NI	252	NI
219	NI	236	NI	253	NI
220	93	237	NI	254	NI
221	NI	238	NI	255	NI
222	NI	239	NI	256	NI
223	NI	240	NI	257	NI
224	NI	241	NI	258	NI
225	NI	242	NI	259	NI
226	NI	243	NI	260	NI
227	NI	244	NI	261	NI
Isoniazid	93.46	Rifampicin	96.09	Blank	0.06

 Table 5: Anti-tubercular activity of the synthesized compounds (211-39 and 250-261)

NI: No inhibition at 10 µg/mL; isoniazid: 0.04 µg/mL; rifampicin: 0.08 µg/mL

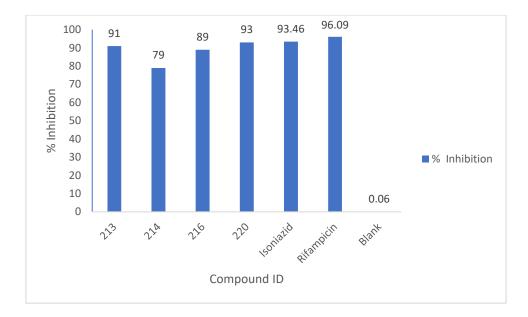
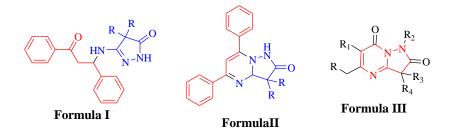



Figure 10: Percentage inhibition of *Mycobacterium bovis* (BCG) by the synthesized compounds using MABA assay.

Conclusions and the recommendations/ suggestions

A thorough literature survey encouraged us to perform pharmacophore modelling to search for common structural features present in the reported DprE1 inhibitors. As a result, a pharmacophore model having AHRR (Hydrogen bond acceptor, Hydrophobic group and aromatic rings) having four feature was developed. With an aim to identify some non-reported scaffold as DprE1 inhibitors, Virtual screening was performed on Asinex database. Results of virtual screening provided eight leads out of which two were pyrazolopyrimidines. These pyrazolopyrimidine hits were optimized to get a lead molecule (**Formula III**).

Hybrid approach has been one of the widely used techniques to develop new drugs. Thus, with an aim to explore some of the reported but not explored scaffolds such as pyrazole and chalcones were fused together via hybrid approach to get some novel compounds (**Formula I** and **Formula II**).

Current work discloses design, synthesis, in silico studies and biological study of novel anti-TB agents. Synthesis of the compounds was done by adopting five general synthetic schemes. Compounds with **Formula III** were synthesized using **Scheme 1-3**, while hybrid compounds with **Formula I** and **Formula II** were synthesized by using **Scheme 5** and **Scheme 6**.

The synthesized compounds were evaluated for their anti-TB activity by using MABA assay. It was noteworthy, that some compounds of were exhibiting excellent MIC value of $1.2 \,\mu$ g/mL.

Overall, pyrazolopyrimidine derivative (109, 118, 130, 132, 144 and 145) showed noticeable inhibition of *Mycobacterium Bovis* (BCG). Wherein compound (118 and 132) demonstrated MIC value of 1.2 μ g/mL. Four hybrid compounds (213, 214, 216 and 220) exhibited good inhibition of *Mycobacterium Bovis* (BCG). Wherein. Wherein compound (216) demonstrated MIC value of 1.2 μ g/mL.

Results of docking studies indicated that anti-TB activity of the synthesized compounds could be a result of binding to the enzyme DprE1. Most of the compounds showed binding affinity similar to the standard compounds while some of the derivatives demonstrated better binding affinity than the standard compound. This was further supported by molecular dynamics simulations studies, that resulted in the stable complex formation of the compound (**118**) and the enzyme. ADMET predictions of the synthesized compounds indicated towards the druglikeness of the compounds, with a few exceptions. Genotoxicity predictions by Nexus Derrek indicated that a majority of compounds are non-mutagenic.

Bibliography and webliography

- (1) WHO, World Tuberculosis Report, 2022.
- (2) Chikhale, R. V.; Barmade, M. A.; Murumkar, P. R.; Yadav, M. R. Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis. *J. Med. Chem.* 2018, *61* (19), 8563–8593. https://doi.org/10.1021/acs.jmedchem.8b00281.
- (3) Sharma, A.; De Rosa, M.; Singla, N.; Singh, G.; Barnwal, R. P.; Pandey, A. Tuberculosis: An Overview of the Immunogenic Response, Disease Progression, and Medicinal Chemistry Efforts in the Last Decade toward the Development of Potential Drugs for Extensively Drug-Resistant Tuberculosis Strains. *J. Med. Chem.* 2021, 64 (8), 4359–4395. https://doi.org/10.1021/acs.jmedchem.0c01833.
- Riccardi, G.; Pasca, M. R. Trends in Discovery of New Drugs for Tuberculosis Therapy. J. Antibiot. (Tokyo). 2014, 67 (9), 655–659. https://doi.org/10.1038/ja.2014.109.
- (5) Singh, V.; Chibale, K. Strategies to Combat Multi-Drug Resistance in Tuberculosis. *Acc. Chem. Res.* **2021**, 54 (10), 2361–2376. https://doi.org/10.1021/acs.accounts.0c00878.
- (6) Ghajavand, H.; Kamakoli, M. K.; Khanipour, S.; Dizaji, S. P.; Masoumi, M.; Jamnani, F. R.; Fateh, A.; Siadat, S. D.; Vaziria, F. High Prevalence of Bedaquiline Resistance in Treatment-Naive Tuberculosis Patients and Verapamil Effectiveness. *Antimicrob. Agents Chemother.* 2019, 63 (3), 1–13. https://doi.org/10.1128/AAC.02530-18.

- (7) Zhang, M.; Prior, A. M.; Maddox, M. M.; Shen, W. J.; Hevener, K. E.; Bruhn, D. F.; Lee, R. B.; Singh, A. P.; Reinicke, J.; Simmons, C. J.; Hurdle, J. G.; Lee, R. E.; Sun, D. Pharmacophore Modeling, Synthesis, and Antibacterial Evaluation of Chalcones and Derivatives. *ACS Omega* 2018, *3* (12), 18343–18360. https://doi.org/10.1021/acsomega.8b03174.
- Marrapu, V. K.; Chaturvedi, V.; Singh, S.; Singh, S.; Sinha, S.; Bhandari, K. Novel Aryloxy Azolyl Chalcones with Potent Activity against Mycobacterium Tuberculosis H37Rv. *Eur. J. Med. Chem.* 2011, 46 (9), 4302–4310. https://doi.org/10.1016/j.ejmech.2011.06.037.
- (9) Ramesh, D.; Joji, A.; Vijayakumar, B. G.; Sethumadhavan, A.; Mani, M.; Kannan, T. Indole Chalcones: Design, Synthesis, in Vitro and in Silico Evaluation against Mycobacterium Tuberculosis. *Eur. J. Med. Chem.* 2020, 198, 112358. https://doi.org/10.1016/j.ejmech.2020.112358.
- Muradás, T. C.; Abbadi, B. L.; Villela, A. D.; Macchi, F. S.; Bergo, P. F.; De Freitas, T. F.; Sperotto, N. D. M.; Timmers, L. F. S. M.; De Souza, O. N.; Picada, J. N.; Fachini, J.; Da Silva, J. B.; De Albuquerque, N. C. P.; Habenschus, M. D.; Carrão, D. B.; Rocha, B. A.; Junior, F. B.; De Oliveira, A. R. M.; Mascarello, A.; Neuenfeldf, P.; Nunes, R. J.; Morbidoni, H. R.; Campos, M. M.; Basso, L. A.; Rodrigues-Junior, V. S. Pre-Clinical Evaluation of Quinoxaline-Derived Chalcones in Tuberculosis. *PLoS One* 2018, *13* (8), 1–13. https://doi.org/10.1371/journal.pone.0202568.
- (11) Yalcin, G.; Burmaoglu, S.; Yildiz, I.; Algul, O. Molecular Docking Studies on Fluoro-Substituted Chalcones as Potential DprE1 Enzyme Inhibitors. J. Mol. Struct. 2018, 1164, 50–56. https://doi.org/10.1016/j.molstruc.2018.02.087.
- (12) Kumar, G.; Siva Krishna, V.; Sriram, D.; Jachak, S. M. Pyrazole–Coumarin and Pyrazole–Quinoline Chalcones as Potential Antitubercular Agents. *Arch. Pharm.* (*Weinheim*). **2020**, *353* (8). https://doi.org/10.1002/ardp.202000077.