CHAPTER V STRUCTURE AND METAMORPHISM

STRUCTURE

Central Crystallines form a major tectonic unit delineating the Higher Himalaya resting over the Lesser Himalayan rocks, and the tectonic plane separating the two was recognised and designated as the Main Central Thrust (MCT) in Kumaun Himalaya as well as in other parts of the Himalaya (Heim and Gansser, 1939; Gansser, 1964; Bordet, 1973; Virdi, 1981; Thakur, 1981; Bahuguna and Saklani, 1988; Fuchs, 1975). Valdiya (1973) postulated yet another thrust in the Higher Himalaya of Kumaun region at a higher tectonic level than the MCT of Heim and Gansser (1939) and named it as 'Vaikrita Thrust'. This thrust was further identified by him (Valdiya, 1980, 1988, 1991, 1993) as the Main Central (Vaikrita) (MC (V) T) Thrust. The original MCT earlier delineated by Heim and Gansser (1939) at a lower tectonic level was redesignated as the Munsiari Thrust by Valdiya (1980). Sharma (1977) and Thakur (1980) traced the Vaikrita Thrust in eastern Himachal Pradesh. The MC(V)T is too, controversial and Mehdi et al. (1972) and Virdi (1980) have questioned the existence of this thrust. While the MCT (of most workers) marks the southern limit of the Central Crystallines, the northern limit is bounded by the steep Malari Thrust, regionally described as the Trans Himadri Thrust by Valdiya (1987, 1988b). Between these two tectonic lineaments occur the huge lithotectonic slab thrusted upto great heights.

On a regional scale considerable structural data has been generated on the MCT and the Central Crystallines of Kumaun Himalaya and the broad details of the structural set up of the area are available (Misra and Bhattacharya, 1976; Valdiya, 1973, 1978, 1979, 1980, 1987, 1988, 1991, 1993; Thakur, 1981; Chamyal, 1987; Roy and Valdiya, 1988; Chamyal and Vashi, 1989; Chamyal and Manudip, 1994). In this study, the author has not been able to go into details of the structural history of the Central Crystallines of Kumaun Himalaya, but with a view to provide appropriate background a generalised picture of the structural characteristics of the granitoids and associated rocks has been worked out. A structural trend map of the Pindar Sarju, Ramganga, Goriganga and Darmaganga valleys (Fig.V.1) and the cross-sections

E713

(Figs.III.2,4,6,8) are prepared to give an bird eye view of the structural setting of the region.

The rocks of the Central Crystallines have undergone polyphase deformation, with imprints of each deformational event preserved in them (Chamyal and Manudip, 1994). The fold history of the crystallines of the Higher Kumaun Himalaya and as well as of the various Lesser Himalayan nappes is summarised in Table V.1. The structural history of the Lesser Himalayan Crystalline nappes is found similar (Chamyal and Vashi, 1989). It is obvious as these have been identified to comprise remnants of synformally folded Central Crystalline thrust sheet (Auden, 1937; Heim and Gansser, 1939; Gansser, 1964).

ISOCLINAL/RECLINED FOLDING

The first two foldings (F_1 and F_2) recorded in the Central Crystallines as well as in the various Crystalline nappes of the Lesser Himalaya are co-axial, having identical geometry with variable plunges towards NNE-NE/SSW-SW and are represented by the tight isoclinal/reclined folds (Plates V.1,2).

The main schistosity of the rocks is generally seen to represent axial plane cleavage of F_2 , though relicts of the earlier axial plane foliation related to F_1 are abundantly recorded. Most of the granitoid bands ideally show F_1 and F_2 folds at mesoscopic as

Event	Nature	Central Crystallines Pindar/Sarju/Raæganga Goriganga/Daræaganga valleys	Crystalline Nappes Almora/Baijnath/ Askot/Dharaægarh Chiplakot	Trend
F ₁	Isoclinal/ Reclined	Present	Present	NNE-NE/ SSW-SW
F2	Isoclinal/ Reclined	Present	Present	nne-ne/ SSW-SW
F3	Synformal folding	Present	Present	NW-SE
F ₄	Flexural folding	Present	Present	NE-S₩

Table V.1 : The fold history of the Central Crystallines in Kumaun.

Plate V.1 F₂ fold in augen gneiss at Kalamuni, Goriganga Valley

Plate V.2 Quartzo-feldspathic veins folded on F₂near Munsiari, Goriganga Valley

well as at microscopic scales (Plates V.1 and 2). Hence, it is reasonable to conclude that the granitisation precluded the F_1 and F_2 fold episodes. The granitoids which are involved in F_1 and F_2 constitute F_1 fold cores refolded on F_2 . These F_1 and F_2 folds are also preserved in the quartzites and quartz rich variety of schists (Plates V.3). The hinge portions of these mesoscopic folds are generally thick and the limbs are thin. The rootless and tight folds of F_1 and F_2 generation are more intense in the thrust zone. According to Merh (1984) and Chamyal and Vashi (1989) F_1 and F_2 foldings are pre-Himalayan and of Precambrian age. The axial planes of these folds have a regional strike WNW-ESE with moderate northerly dips.

The dominant schistosity (S_2) and the related planar structures characterise the axial plane direction of F_2 . That S_2 is derived from S_1 , is ideally shown in some thin sections of micaschists, that reveal tight chevron folds (micro-crinkles) (Plate V.3). The linear structures L_1 and L_2 related to F_1 and F_2 ; are the axes of the microscopic folds in quartz and quartzofeldspathic veins, which many a time are rolled into rods; axes of the banding of stretched quartz veins; orientation of mica flakes along S_0/S_1 and S_2 intersections; and the axes of the reclined crinkles. The two tectonic units (Munsiari and Vaikrita) of Valdiya (1977) as per Roy and Valdiya (1988) show different structural patterns. The author however could not record any change in the structural trends.

[73]

THRUSTING

A thrust movement along the pre-existing lineament (MCT) pushed the crystallines over the Lesser Himalayan rocks (Chamyal and Vashi, 1989; Chamyal and Manudip, 1994). The MCT is essentially a Pre-Himalayan tectonic feature (Sychanthavong and Merh, 1984; Chamyal et al., 1984). According to Merh (1984) this major tectonic lineament developed during the waning phase of Hercynian orogeny on account of crustal stretching and rifting, the mechanism related to a process of obduction along the northern flank of the subducted mid-oceanic ridges. The Central Crystallines, thus comprise a tectonic flake demarcated by MCT, a dislocation developed within the Indian Precambrian shield under collisional compressive slicing mechanism (Oxburg, 1972).

The MCT in Kumaun trends E-W to NW-SE dipping due N to NE. The movement along this thrust has not only sheared the rocks but has also given rise to a new set of folds (related to the drag effect) superimposed over the Precambrian deformation (Plate V.4). As the drag folds also show a NNE to NE axes, it appears that the major movement along MCT was from NW. Besides the drag folds, rootless and tight folds are also observed in the vicinity of the thrust with their plunge in the same direction (NNE to NE or SSW to SW). They have folded the schistosity (S₂) and their axes marks the thrust related linear structure (L_T) while the phyllonitic cleavage represents the planar structure (S_T). The fact that the F₁, F₂ folds

Plate V.3 Photomicrograph showing F₂ folds (Crossed Nicols X 40)

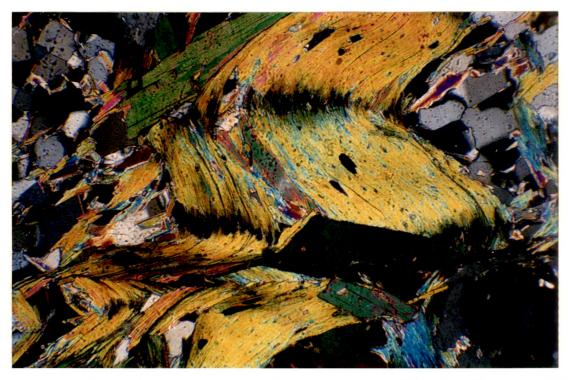


Plate V.4 Photomicrograph showing drag folds (Crossed Nicols X 60)

and the thrust related drag folds show similar trends (Chamyal and Manudip, 1994), is not yet fully understood. Perhaps it is just a coincidence.

SYNFORMAL FOLDING

The next fold episode (F_3) is essentially a Tertiary event related to the Himalayan uplift. It is this folding which is held responsible for the folding of the crystalline thrust sheet into various synformal nappes (Vashi and Merh, 1974; Chamyal and Vashi, The F_3 folds show NW/SE trend and are open in nature, 1789). related to this are various mesoscopic synformal nappes with asymmetrical and parasitic folds. F_{τ} folding has also given rise to extensive crinkling (Plate V.5) of the schists and is almost at right angles to F_1 and F_2 . The planar structure related to F_3 includes the axial plane cleavage S_3 trending NW/SE. The most significant phenomenon related to this folding and very well exhibited in the vicinity of the various crystalline thrusts is development of a strong striation lineation ('a'), trending NE and perhaps owes its origin to the effect of flexural slip during F₃ (Chamyal and Vashi, 1989; Chamyal and Manudip, 1994). The lineation at places is marked by slickensides, stripping and stretching of minerals in a direction normal to the F_3 axial trend (Chamyal et al., 1984).

[75]

FLEXURAL FOLDING

The F_4 which is the last fold episode has imparted only waviness to the regional foliation trends (Plate V.6). The folds are open to chevron, trending NNE-NE/SSW-SW. The planar elements related to F_4 include the axial plane cleavage S_4 trending NE-SW and also the crenulation axes of F_4 (L₄) trending NE/NNE-SW/SSW with deviation towards N-S direction.

Almost all over the Himalaya are observed transverse faults trending N-S, NNW-SSE, NNE-SSW. They have even dislocated the MCT and perhaps represent the last deformational event in the Himalayas (Valdiya, 1976).

Roy and Valdiya (1988) while describing the tectonometamorphic evolution of the Kumaun Higher Himalaya classified the small scale structures into two types - (i) folds parallel to lineation and (ii) folds at high angles to lineation. According to these workers F_1 and F_2 folds (and their subtypes) formed under different tectonic conditions and the terms F_1 and F_2 do not imply the chronological order of their formation, but are descriptive terms indicating the orientation of the axes and axial planes of the folds in relation to the direction of tectonic transport. However, Chamyal and Vashi (1989) and Chamyal and Manudip (1994) find it difficult to agree with this statement. They have assigned Precambrian ages to F_1 and

[76]

Plate V.5 Photomicrograph showing F₃ folds (Crossed Nicols X 40)

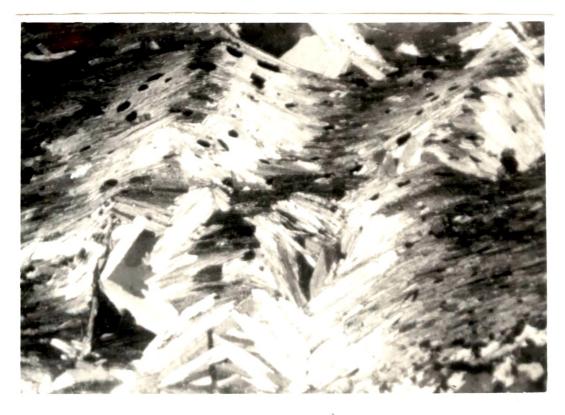


Plate V.6 Photomicrograph showing open folds related to F_4 (Crossed Nicols X 40)

 F_2 (which are part and parcel of the Precambrian orogenic event), and Himalayan to Late-Himalayan ages to F_3 and F_4 .

METAMORPHISM

From the metamorphic angle too, the Central Crystallines show polyphased metamorphism (Pande and Saxena, 1968; Powar, 1972; Gairola, 1975; Gairola and Ackermand, 1984; Thakur and Chaudhary, 1983; Chamyal, 1984). The textural as well as field studies reveal that these rocks have suffered metamorphism ranging upto upper amphibolite facies. According to Merh (1984) and Chamyal and Vashi (1989) the Crystalline Group of rocks of Kumaun show a metamorphic history, extending from the Precambrian times to as late as the Tertiary.

The rocks of the Higher Kumaun Himalaya (Central Crystallines) exhibit metamorphic characters that indicate mainly two progressive phases followed by retrogression. In the vicinity of the various thrusts (Main Central Thrust, Baijnath Thrust, North and South Almora Thrusts, Dharamgarh Thrust, North and South Chiplakot Thrusts and Askot Thrust) a gradual decrease in metamorphism is observed. The mineralogy, texture and structure of these rocks reveal metamorphic changes that synchronise with the successive deformational events, Pre-Himalayan as well as Himalayan (Chamyal, 1984). The relation between the various deformational episodes with attendant metamorphic events in the Sarju, Pindar, Ramganga,

[77]

Goriganga and Darmaganga valleys has been worked out by the present author (Table V.2).

METAMORPHIC EVENT (M)

Very limited data is available on this earliest metamorphic event, owing to obliteration of the evidences. However, evidences do point to the existence of a metamorphic event prior to F_1 folding under microscope. Extensive crinkling of mica flakes is conclusive indication of the existence of an early micaceous foliation, which was later on involved in F_1 folding.

METAMORPHIC EVENT (M,)

The granitisation and formation of the granitoid rocks within the crystallines, perhaps comprised a phenomenon related to this metamorphic event. With increasing depth, the earlier rocks might have changed over to granitoids. The field setting of the granitoid rocks pointing to successive stages of increased granitisation and the existence of more than one granitoid bands within the schists, do point out to the following facts :

- 1. The involvement of granitoid rocks in F, folding,
- The pre F₁ granitisation could be part and parcel of the earlier metamorphism M.

Deformation	Metamorphic event	Hetamorphism/Netamorphic Products
Load	M	Development of bedding cleavage, minerals unknown.
Isoclinal folding (F _l)	Mi	Development of schistosity S ₁ and gneissic foliation, granitisation and formation of granitoids,
Isoclinal folding (F ₂)	M ₂	Development of main schistosity S ₂ , growth of snowball garnets, change over of basic rocks to amphibolites, involvement of granitoid rocks in F ₂ folding.
Movement along thrust and related drag folding (F ₇)	ĦŢ	Development of phyllonites, chlorite, sericite schists, granulation and fracturing of quartz and development of strain shadows in quartz grains.
Synformal folding (F ₃)	M3	Crinkling of the foliation S ₂ and developmentofstrain—slipcleavageS ₃ , formation of new garnet, of muscovite andbiotite porphyroblasts along axial planes of the crinkles.
Open flexuring F ₄	M _g	Development of minor open folds and formation of biotite and muscovite flakes.

Table V.2 Relation between the deformational episodes with attendant metamorphic changes.

•

This is recorded by the appearance of abundant plagioclase in the groundmass of the feldspathic schists. In the advanced stages augen and ultimately porphyroblastic gneisses were formed due to increasing activity of potassic emanations over sodic emanations. A number of plagioclase porphyroblasts are gradually replaced by microcline because of increasing potassic content in the porphyroblastic variety. Studies on similar rocks in the various synformal nappes by various workers (Pande, 1963; Powar, 1972; Merh and Vashi, 1965) have furnished interesting details about the processes of granitisation. The undoubted involvement of the gneissic bands in F₁ isoclinal folding in Almora Crystallines (Karanth, 1977, 1985) adequately establishes that the granitisation pre-F, and obviously Precambrian. The was available geochronological data on the gneissic rocks also points to their being Precambrian age (Bhanot et al., 1977; Pande et al., 1986).

METAMORPHIC EVENT (M7)

The most conspicuous and widespread metamorphism that synchronised with the isoclinal folding (F_2) , is of regional dynamothermal type. The event is characterised by the development of the axial plane schistosity (S_2) , growth of snowball garnets, and kyanites. The mineral assemblages of the various rock types suggests that M_2 was a regional phenomenon, with the maximum grade of metamorphism being of upper amphibolite facies. The most striking textural feature of S, recorded is the microfolding of the

[79]

earlier cleavage S_1 . Tightly folded mica flakes define the S_2 plane and in the hinge zones of the F_2 folds most of the micas are realigned parallel to the main traces of S_2 foliation. The recrystallization of the quartz and mica reflects the effect of M_2 metamorphism. The garnet porphyroblasts of M_2 generation show a syntectonic rotational growth. The garnets with spirally arranged inclusions indicate the role of differential slipping during its growth, which is synchronous with the F_2 folding.

METAMORPHIC EVENT (MT)

This event is well evidenced in the vicinity of MCT and other thrusts, bounding various crystalline nappes. It is characterised by the conspicuous phenomenon of retrogression (M_{f}) along the thrust planes; the rocks along which have been diaphthorised to phyllonites and chlorite schists. Obviously, the retrogression is due to the largescale movement of the Central Crystallines along the MCT. The downgrading of the metamorphism is reflected even in the rocks which are away from the thrust zone and the phenomenon is revealed by the following changes :

- 1. Granulation and fracturing of quartz,
- 2. Development of strain shadows in quartz grains,
- 3. Chloritization of garnet and biotite,
- 4. Sericitization of muscovite,

[80]

5. Formation of fine grained phyllonites from the coarse to medium grained garnet mica schists, along some thrust related shear zones.

The effect of the metamorphic event diminishes progressively on moving away from the thrust northwards.

METAMORPHIC EVENT (M3)

This metamorphic event, once again has produced progressive metamorphic changes, but on a limited scale, and is related with the F_3 folding. Development of strain-slip cleavage (S_3) is seen sporadically in quite a few sections and is characterised by the growth of new mica and formation of new garnets during F_3 . Desai (1968), Patel (1971) and Shah (1972) have also described development of this strain-slip cleavage and growth of new garnets in the Almora Crystallines. It is during this metamorphism that the sericite and chlorite recrystallised into porphyroblastic flakes of muscovite and biotite respectively, which show oblique relationship with the main foliation S_3 and define S_3 .

METAMORPHIC EVENT (MA)

This event has not brought any significant metamorphic changes. As it coincides with the F_4 fold episode which produced

open flexures, some of the biotite and muscovite flakes could have formed during this episode.

GEOTHERHOMETRY

The prevailing temperature conditions during metamorphism can be estimated by comparing the natural mineral assemblages with experimentally determined mineral equilibria assuming that the mineral assemblages and reactions were in equilibrium. Thermodynamic properties of partitioning of elements in coexisting minerals can be brought out with the help of electron microprobe (EPMA) data of metamorphic rocks.

The author carried out her studies in the laboratories of N.G.R.I., Hyderabad for obtaining the EPMA data, thin sections (46 mm in length and 25-30 thickness) were prepared and polished on both the sides. Each section was coated with carbon film (100-150 A^0 thick) for uniform electrical conductivity. Mineral analyses was done by using a CAMCEA make, Came box micromode EPMA with an online PDP 11/03 computer. Regress 'ZAF' correction procedure as modified by Henock and Maurice (1978) was used. The absolute error is 2% of the amount present for the major elements. Analyses was done at an accelerating voltage of 15 kv, 6.2 nA sample current and the diameter of the electron beam was approximately 144 with a counting

[82]

time of 10 seconds for each element. The standards used were : albite for Na₂O, orthoclase for K₂O, wollastonite for C₄O and SiO₂, synthetic MgO for MgO, synthetic Cr₂O₃ for Cr₂O₃, Synthetic Mn TiO₃ for MnO and TiO₂, synthetic hematite for Fe₂O₃.

Many models of geothermometers have been proposed for the estimation of temperatures during metamorphism. Some of these models were applied to four samples of granitoid rocks, three from Central Crystallines and one from the Almora Crystalline nappe, keeping in mind the mineralogical assemblage of these rocks. Data obtained by microprobe analyses for these samples are given in Tables V.3, 4, 5 and 6.

Stormer (1975) formulated a geothermometer based on the partitioning of the albite component between plagioclase and alkali feldspar. He used published Margules parameters to obtain a simple expression relating the composition of co-existing feldspars to temperature :

$$(6326.7 - 9963.2 X_{ff} + 943.3 X_{ff}^{2} + 2690.2 X_{ff}^{3}$$

$$+ (0.0925 - 0.1458 X_{ff} + 0.0141 X_{ff}^{2} + 0.0392 X_{ff}^{3})P)$$

$$(-1.9872 \ln X_{ff}/X_{Pl} + 4.6321 - 10.815 X_{ff} + 7.7345 X_{ff}^{2}$$

$$- 1.5512 X_{ff}^{3})$$

Later on Whitney and Stormer (1977) proposed yet another geothermometer based on the partitioning of NaAlSi₃O₈ between coexisting microcline and plagioclase solid-solutions. This model

Table V.3	Repre Kumau	sentative In Himalaya	ve micr aya	Representative microprobe analyses of minerals of Sample No. M17 from Higher Kumaun Himalaya	analyse	s of a	inerals	of Samp	le No. 1	M17 fro	m Highe	£
		Barnet	c.		Σ	Muscovite	e,	Pla	Plagioclas	a	K-Fe	K-Feldspar
	Core	Rim	Core	Rim	Core	Rim	Core	Core	Rim	Core	Rim	Core
5102	34.84	34.37	35.14	35.31	46.82	46.36	46.45	66.77	67.21	67.04	63.88	64.02
Ti02	0.02	0.07	0.18	0.04	0.53	0.53	0.38	1	0.02	0.02	ł	20"0
A1203	21.55	20.91	20.83	20.87	34.13	34.17	34.21	21.18	20.91	21.35	18.65	18.77
FeO(T)	32,08	34.10	30.96	33.60	3.88	3.73	3.79	0.06	1	0.02	0.03	I
MnO	10.15	9.59	11.95	9.51	0.08	0.15	0.02	0.03	0.02	ı	3	ł
що	0.22	0.27	0.30	02.0	0.48	0.39	0.48	ł	1	0.02	1	0.03
CaD	0.96	0.79	ł	0.85	1	I	I	1.27	1.03	1.48	1	1
Na20	0.04	1	0.19	1	0.43	0.37	0.28	9-65	9.64	9.68	09.0	0.79
K2D	0.05	1	0.08	0.09	10.61	10.66	10.35	0.21	0.21	0.19	15.68	15.34
Cr203	1	0.03	0.04	0.07	I	0.06	0.04	0.07	0.08	0.06	0.04	0.01
NiO	0.02	1	I	0.03	0.01	1	0.06	0.03	I	1	0.12	0.01
Total	99.93	100.13	99.67	100-67	96.97	96.42	96.06	99.27	99.16	99.86	99.00	60.66
	Cation	is based	on 12	oxygens	Cations	based s	1 an 20	axygens	Cations	ns based	8 5	oxygens
5i 4+	2.890	14	2.926	2.918		- 10	9	2,935	2.953	2.930	2.982	2.980
AI/AI ^W	ł			ł		1.818	1.798	ł	ł	1	ł	1
74	2.107	2.058	2.044	2.032	3.537	3.552	3.585	1.097	1.082	1.100	1.026	1.030
Ti 4+	0.001	0.004	0.011	0.002	0.053	0.053	0.038	0.000	0.001	0.001	0.000	0.001
Fe 2+	2.225	2.381	2.156	2.322	0.430	0.416	0.423	0.002	0.00	0.001	0.001	0.000
Mn	0.713	0.678	0.843	0.666	0.009	0.017	0.002	0.001	0.001	0.000	0.000	0.000
бщ	0.027	0.034	0.037	0.037	0.095	0.078	0.096	0.000	0.000	0.001	0.000	0.002
С,	0.00	0.002	0.003	0.005	0.00	0.006	0.004	0.002	0.003	0.002	0.001	0.000
Ca S	0.085	0.071	0.000	0.075	0.000	0.000	0.00	0.060	0.048	0.069	0.000	0.000
Na	0.006	0.000	0.031	0.000	0.110	0.096	0.072	0.822	0.821	0.820	0.054	0.071
¥	0.005	0.000	0.008	0.009	1.794	1.813	1.763	0.012	0.012	0.011	0.934	0.911
Total	8.059	8.098	8.059	8.066	14.028	14.031	13.984	4.931	4.921	4.934	4.998	5.634
	and and they are shown on the		track in the second second second second second	- Anno Anno, Anno Angele Anno, Anno, Anno								

-

analvees of minerals of Samula No. M17 from Hinher ţ 444 airr Table V.3 Ranramantstive

			Lebber		LITEUT	1	Himalaya	- 1	ETOMIA)		Lrystallines)	BUIT	ŝ						
		hiso	faiscovi te				Bintite	î te				Plajioclase	clase			ž	K-Feldspar	F.	
	Core	Ria	Ris	Core	Core	Ria	Core	Riæ	Core	Ria	ġ	Rîe	Core	Ria	Core	Core	ğ	Core	Ria
Si02	46.66	46.97	45.70	45.7B	M.33	34.84	34.41	34.52	3 4.64	66 W	55.54	64.82	63.77	64.22	6. M	67.13	64.57	64.29	63.27
Tiaz	0.86	1.02	0.62	0.0	2.91	10 Y	2.94	2.99	02.2	8.5	١	١	۱	0.02	0.02	0.0	ł	0.07	0.02
ALZUS	35.87	35.74	36.22	37.48	19.72	18.%	18.64	18.68	19.25	18.93	21.52	23.12	23.42	22.48	19.14	20.16	18.53	19.40	18.64
Fe0(T)	1.72	2.17	1.89	1.83	3.5	25.30	24.47	24.41	2.3	24.97	0.12	0.01	0.06	0.14	0.03	0.07	0.04	0.04	ł
	ł	0.06	0.08	0.03	0.33	0.33	0.X	0.39	0.27	6 N	0.01	0-01	0.01	1	0.02	50	0.01	0.01	1
0 ⁶ 4	07.0	0.82	0.74	ł	5.23	5.01	5.10	5.20	5.3	5.33	ł	0.01	ı	0.01	0.0	1	0.0	0.03	0.02
F	0.01	0.03	0.04	ı	0.01	0.02	1	0.01	١)	1.45	3.09	88.10	N 2	ł	5	ł	I	1
0ZEN	0.42	0.40	0.56	0.22	0.17	0.15	0.10	0.06	0.12	0.16	9.45	8.41	8.17	8.30	1.21	9.45	1.07	1.14	1.11
Ø	10.05	9.88	10.21	9.93	9.54	9.12	9.14	8.9	8.8%	8.8	20	0.27	87.0	0.2%	14.15	0.91	14.22	14.22	14.25
Crans	1	0.04	ı	0.02	ł	0.01	0.06	0.02	0.04	0.02	0.08	ł	0.01		0.03	ŧ	0.06	1	0.05
NiO	ł	ı	0.03	5.0	0.03	0.11	I	ł	I	0.01	ı	I	1	ł	ı	0.04	0.02	•	0.03
Total	%. 20	97.13 96.09	96.09	75.45	97.92	%.%	5.21	95.27	97.06	96.71	88° 30	M.44	9-6	79.0	99.59	% .83	78.57	99.20	99.39
	Cations based		an Z2 anyg	uəfyta								Cations	based	an 8 arygen	ua (j.				
Si 4+			6.049	6.056	5.261	5.372	5.368	162.3	5.317	212.2	2.910	2.8%	2.814	2.0%	2.984	2.969	3.000	2.969	3.005
AI/AL ^{IV}		1.869	1.951	1.935	2.739	2.629	2.614	2.609	2.683	2-627	ł	t	I	;	1	1	1	1	ł
•	3.703	3.631	3.699	3.917	0.817	0.818	0.825	0.829	0.800	0.809	1.126	1.197	1.218	1.184	1.037	1.051	1.015	1.056	1.011
Ti 4+	0.055	0.100	0.062	0.000	0.335	0.352	0.346	0.331	0.369	0.533	0.00	0.000	0.000	0.001	0.001	0.001	0.000	0.020	0.001
Fe 24	0.189	0.237	0.209	0.205	3.269	3.262	3.205	3.187	3.21	3.215	0.0M	0.000	0.002	0.005	100-0	0.003	0.002	0.020	0.000
ų.	0.000	0.007	0.009	0.030	0.043	0.044	0.046	0.052	0.035	0.039	0,000	0.00	0.000	0.000	0.001	0.001	0.00	0.000	0.00
ų.	0.118	0.160	0.146	0.000	1.205	1.152	1.190	1.211	1.224	1.224	0.000	0.001	0.000	100-0	0.003	0.000	0.003	0.020	0.001
5	0.000	0.004	0.000	0.002	0.000	0.001	0.007	0.002	0.005	0.602	0.003	0.000	0.000	0.000	100-0	0.000	0.002	0.000	0.002
ය	0.001	0.004	0.006	0.00	0.002	0.003	0.000	0.002	0.000	0.000	0.049	0.15	0.183	0.159	0.00	0.049	0.000	0.00	0.00
Na	0.107	0.101	0.144	0.082	0.050	0.045	0.030	810.0	0.036	6.08	0.813	0.716	0.699	0.718	0.108	0.810	0.076	0.102	0.099
₩	1.689	1.645	1.724	1.678	1.862	1.74	1.82	1.791	1.735	1.778	0.012	0.015	0.016	0°0	6.00.0	0.051	0.843	0.838	0.837
Total	13.872	13.872 13.889 13.998 13.	13.998		888 15.5KX	15.472	15.472 15.472	15.443 15.456 15.468	15.456	15.468	4.937	4.920	4.922	4.929	4.965	4.935	4.%1	4.971	4.956

Table V.4 Representative microprobe analyses of minerals of Sample No. A2 from

of Sample	
s of minerals of	
analyses of	umaun Himalaya
e microprobe :	her K
Representativ	No. M2b from Hig
Table V.5	

				Corre 2.64 2.64 0.25 0.25 0.26 0.07 0.07 0.09	Ria 72,42,45 71,48	Care 2.47 34.71 2.47 2.47 17.30 0.22 4.54 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.2	Care 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51		Ria 77.14 77.14 7.15 7.15 7.15 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1	Core Ris 47.68 47.14 0.61 0.62 31.10 31.58 4.22 4.13 0.66 0.12 1.37 1.31 1.37 1.31 0.61 0.29 0.04 0.10		Ria Core 47.21 47.69 4 0.69 0.61 3.83 4.22 0.04 0.65 1.34 1.37 0.31 0.61 1.55 10.42 1
				8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8		A.71 7.2.47 7.2.49 0.73 0.73 0.73 0.73 0.73 0.73 0.73	1 1.2 And 2.4		4.04 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05	47.14 47.12 0.62 0.61 31.58 31.41 4.13 4.07 9.12 0.12 1.31 1.47 1.31 1.47 0.19 0.19 0.10 0.01	47.48 47.14 47.12 0.461 0.42 0.461 31.10 31.58 31.41 4.22 4.13 4.07 0.46 0.12 0.12 1.37 1.31 1.47 0.41 0.29 0.38 10.42 10.42 10.72 0.04 0.10 0.01	47.21 47.48 47.14 47.12 0.69 0.61 0.62 0.61 31.25 31.10 31.58 31.41 31.85 4.22 4.13 4.07 3.88 4.22 4.13 4.07 0.64 0.65 0.12 0.12 0.41 1.37 1.31 1.47 1.31 1.37 1.31 1.47 0.31 0.61 0.25 0.12 0.31 0.41 0.21 0.12 1.31 1.47 1.31 1.47 1.31 1.57 1.31 1.47
		· • • •		48.88 8.88 8.64 8.68 8.68 8.68 8.68 8.68		2.47 27.20 6.22 8.99 8.99			0.61 4.07 4.07 0.12 0.38 1.67 10.72 0.98	0.62 0.61 31.58 31.41 4.13 4.07 0.12 0.12 1.31 1.67 1.31 1.67 0.75 0.38 0.91 0.01	0.61 0.62 0.61 31.10 31.58 31.41 4.22 4.13 4.07 0.05 0.12 0.12 1.37 1.31 1.67 1.31 1.67 0.61 0.29 0.38 10.42 10.62 10.72 0.04 0.10 0.01	0.69 0.61 0.62 0.61 31.25 31.10 31.58 31.41 1.28 4.22 4.13 4.07 0.04 0.65 0.12 0.12 1.31 1.57 1.31 1.67 0.31 0.61 0.27 0.38 10.53 10.42 10.62 10.72
				8 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16		27.2 2.2 6.3 8.9 8.9		31.41 4.07 0.12 1.47 1.47 0.28 0.38		3.55 4.13 1.41 1.41 1.41 1.41 1.41 1.41 1.41	31.10 31.58 4.22 4.13 0.05 0.12 1.37 1.31 1.37 1.31 1.0.27 0.59 10.42 10.62 10.42 10.62 10.42 10.62	31.25 31.10 31.58 3.88 4.22 4.15 0.04 0.66 0.12 1.34 1.37 1.31 1.31 0.42 10.62 10.53 10.42 10.62
11.N N.13				N N N N N N N N N N N N N N N N N N N		2.22 6.23 6.19 8.99		6-10 6-10 6-10 6-10 6-10 6-10	-	4.12 1.41 1.41 1.41 1.41 1.41 1.41 1.41	4.22 4.13 0.65 0.12 1.37 1.31 . 1 0.61 0.29 10.62 10.62 0.04 0.10	3.88 4.22 4.13 0.04 0.65 0.12 1.34 1.37 1.31 0.31 0.61 0.29 10.53 10.42 10.62
27.73	5 7 0 1 0 1 0	8			85,	6.8 6.9 6.9		0.12 0.01 0.01 0.01 0.01	-	0.12 0.19 0.10	0.65 0.12 1.37 1.31 0.61 0.29 10.62 10.62 10.62 10.62	0.01 0.05 0.12 1.31 1.37 1.31 0.31 0.41 0.29 10.53 10.42 0.29
220		R 10 -	8825	6.6	80.0	6.19 8.99			~	10.0	0.01 0.29 10.02 10.62 10.03 10.03	0.31 0.41 0.29
	0.18 9.38	K. 0	9.12	- 8-80 0-04	80°0	0.19 8.79		27.01 10.72	-	0.0 0.0	0.61 0.27 10.62 10.62 0.04 0.10	0.31 0.61 0.27
ł		10 .	9.14	8.8 9.0	- 0.9	8.99		10.01		10.62 0.10	10.42 10.42 0.04 0.10	10.53 10.42 10.42
9.35	I	ŧ	0.63	0.04	1	ł		0.01		0.10	0.04 0.10	
0.08												0.04 0.10
0.04	1	ŧ	0.02	ı	0.02	5.0		0.09	- 0.07		1	0.06 -
% - 80 1(94.15	16.67		% .00	75.71 %.0 0		њ.е	R.N 53.N
	ü								ygen	an 22 angen	based	s based
						5.480		6.337	15	15	15	6.368 6.407 6.335
		• •	• •		• •			1.663	-	1.655	1.573 1.665 1	1.622 1.573 1.665 1
				0.694		0.677		317°		3.336	3.333 3.356	3.336 3.333 3.336
				0.311		0.255		0.052		0.063	0.062 0.063	0.070 0.062 0.063
				31		240.0		904-9				0.432 0.474 0.464
						470°A						0.000 0.000 0.011 0.100 0.577 0.50
				1000		100.1				767°A	707*A 4/7*A	777*A 4/7*A 407*A
				200-0				190.0		110-0	V-UM V-VII	V.VIT V-WT V-VII
				0.000				ANN 4		0, 177L	722 0 230 0 722 0 230 0	4444 4444 4444 4444 4444 4444 44444 4444
				1.777		1.811		B		1.620	1.785 1.629	7 1.812 1.785 1.629
5.57R 5.6H	5.661 1	5.620 1	5.602 1	5.561 1	5.553 1	15.552	1	14.082	14.045 14.082	13.791 14.045 14.022	14.018 13.781 14.045 14.052	14.024 14.018 13.781 14.045 14.082
	104 10	104 10	104 10	104 10	1 1 1 1 1 1 1 1 1 1 1	104 10	10 ⁻⁴⁴ 10 ⁻	1 the 10	104 10	104	- 0.06 - 0.07 0.07 - - 0.08 - 0.09 0.04 0.02 - 0.04 - 0.04 75.33<	0.13 0.04 0.10 0.01 0.04 0.01 - - 0.04 75.33 75.71 75.71 75.71 75.71 75.77 76.47 77.08 76.40 75.33 75.71 75.71 75.77 76.47 77.68 77.68 77.68 77.69 75.34 5.470 5.470 5.470 5.470 5.470 5.470 7.641 77.68 76.40 76.410 77.68 76.400 77.69 76.400 76.410 77.68 76.410 77.69 76.400 77.69 74.90 76.410 77.69 74.90 77.69 74.90 76.47 77.68 54.79 5.479

.

~

			Ascovite	e,					Biotite				Plagu	Plagioclase	K-Fe	K-Feldspar
	Core	Ria	Core	Rie	Core	Core	Ris	Core	Ris	Core	Core	Ria	Ria	20%	Eore	Core
Sitt	47.05	12.0	47.49	47.14	21.12	74.71	34.66	34.05	15 M	10 M	M.15	34.75	62.28	62.40	63.59	63.52
1102	0.80	0.67	0.61	0.62	0.61	2.47	2.42	2.64	2.65	2.60	2.56	2.39	0.04	0.01	ł	0.02
AIZUS	31.24	31.25	31.10	11.18	31.41	17.30	17.48	18.20	17.73	17.40	17.92	17.70	Z. Y.	23.99	19.94	19.45
FeD(T)	3.81	3.83	4.22	4.13	4.07	27.21	18.02	28.51	28.03	28.09	28.12	27.73	0.02	0.10	1	ŧ
HaO	0.08	0.04	0.6	0.21	0.12	0.22	0.22	0.25	0.14	0.23	0.21	0.23	0.05	0.01	0.05	0.03
0 ^{fu}	1.50	1.7	1.37	1.31	1.47	4.54	4.65	4.29	4.5%	31 .45	3. .56	4.52	i	ł	0.06	1
CaO	1	1	1	ł	1	ł	ł	0.02	0.02	I	i	ł	4.15	4.29	}	1
Na2D	0.27	0.31	0.16	0.79	0.38	0.19	0.08	ł	0.72	0.29	0.18	1	9.07	8.40	0.80	1.03
NZN	10.50	10.51	10.42	10.62	10.72	8.99	9.01	8.89	9.14	9.04	9.38	9.36	0.39	0.22	16.00	15.72
Cr203	0.08	0.13	0-04	0.10	0.01	ł	ł	0.04	0.09	ł	1	0.08	0.29	0.22	0.11	0.18
NiO	ł	ł	0.06	I	60.0	0.04	0.02	ı	0.02	1	I	10 °0	9. 9	۱)	0.11
Total	8.13	B.N	17. 27	16.29	94.00	22.67	96.15	96.87	97.17	14.47	69.68	96.90	100.59	79.44	100.55	100.06
	Cations	based	20	240EG								Cations	based	m 8 c x	Men	
4 IS	6.393	6.368		9	6.37	5.489	5.456	5.33	5.394	5.410	5.748	5.439	2.749	2.766	2.929	2.942
Al/Al ^{IV}	1.652	1.652	1.573	1.665	1.663	2.520	2.544	2.667	2.606	2.590	2.652	2.561	I)	ł	ł
2	3.315	3.336		92 Y	3.315	0.679	0.699	0.694	0.635	0.639	0.656	0.703	1.260	1.23	1.083	1.062
Ti 44	0.081	0.070		0.043	0.062	0.275	0.235	0.311	0.311	6°.303	0.301	0.231		0.600	0.000	100.0
Fe 24	0.430	0.472		0.469	0.458	3.592	3.661	3.736	3.657	3.697	3.683	3.629		0.004	0.000	0.000
ų.	0.007	0.065	0.006	0.014	0.014	0.029	0.029	0.013	0.019	0.033	0.028	0.000		0.000	0.002	0.001
Æ	0.302	0.269	0.274	0.262	0.275	1.069	1-044	1.002	1.061	1.040	1.065	1.055	-	0.000	0.004	0.000
<u>ئ</u>	0.009	0.014	0.004	0.011	0.001	0.000	0.000	0.005	0.011	0.000	0.000	0.010	-	0.008	0.004	0.007
Ľ	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.003	0.003	0.000	0.000	0.000		0.204	0.000	0.000
Ra	0.071	0.081	0.042	0.076	0.079	0.058	0.024	0.000	0.067	0.089	0.055	0.000		0.722	0.071	0.072
Ж	1.807	1.812	1.736	1.82	1.839	1.811	1.809	1.777	1.819	1.815	1.874	1.849		0.012	0*6*0	0.929
Total	14.024	14.024 14.018 13.981		14.045 14.092		15.552	15.533	15.552 15.553 15.561 15.602	15.602	15.429 15.461		15.578	5.011	4.969	5.033	5.134

. ų in the second 940 - 1 ~~~ a 1. Tub L

was developed using published Margules parameters for microcline low albite solid solutions. Variations in the structural state of the alkali feldspar as per them could shift the temperature calculated from co-existing feldspar pairs by as much as 100° C. The proposed geothermometer can be calculated using the following equation.

$$T(%) = \frac{[7973.1 - 16910.6 X_{a,ff} + 9901.9 X^{2}_{a,ff} + (0.11 - 0.22 X_{a,ff} + 0.11 X^{2}_{a,ff})P]}{[-1.9872 \ln (X_{a,ff}/a_{a,ff}) + 6.48 - 21.58_{a,ff} + 23.72 X^{2}_{a,ff}]}$$

Powell and Powell (1977) have argued that the plagioclase alkali feldspar geothermometer formulated by Stormer (1975) does not take into account the effect of small amounts of calcium in the alkali feldspar. This geothermometer was hence reformulated and they showed that as the Ca content of the alkali feldspar increases the temperature calculated using the Stormer geothermometer also increased. Their modified geothermometer is as follows:

$$T = \frac{-x_{K_{f}f}^{2} [6330+0.093P+2x_{H_{f}f}(1340+0.019P)]}{R \ln K_{f} + x_{K_{f}f}^{2} (-4.63+1.54x_{H_{f}})}$$

While, Haselton et al. (1983) measured heat capacities by adiabatic calorimetry for five highly disordered alkali feldspars. They opined that positive heat capacity deviations from a linear combination of the end member heat capacities, are present mostly at very low temperatures and result in an excess entropy for intermediate compositions. Also that the excess entropy and the volume of mixing was combined with solvus determinations to obtain a calculated enthalpy of mixing, as the measured enthalpies of mixing were essentially coincident with those calculated from the solvus determinations, no short range order for the alkali site could be inferred. Thus they combined the new data for the alkali feldspars with data for plagioclase feldspars to derive an expression for the two-feldspars thermometer that was also consistent with the present knowledge of the thermodynamics of these solid solutions:

$$T_{K}^{=} \frac{(\chi^{\text{M}}_{\text{(h)}})^{2}(18810 + 17030\chi^{\text{M}}_{\text{R}} + 0.364P) - (\chi^{\text{Pl}}_{\text{R}})^{2}}{(28230 - 39520 \chi^{\text{Pl}}_{\text{R}})}$$

$$= \frac{10.3(\chi^{\text{M}}_{\text{R}})^{2} + 8.3143\ln \{(\chi^{\text{Pl}}_{\text{R}})^{2}(2-\chi^{\text{Pl}}_{\text{R}})/\chi^{\text{M}}_{\text{R}}\}}{10.3(\chi^{\text{M}}_{\text{R}})^{2} + 8.3143\ln \{(\chi^{\text{Pl}}_{\text{R}})^{2}(2-\chi^{\text{Pl}}_{\text{R}})/\chi^{\text{M}}_{\text{R}}\}}$$

Price (1985) applied the ideal contribution to activity end member or the configurational activity of an end member, to the feldspars to yield an adjustment of the two-feldspar geothermometer. For natural feldspars containing Na, K, Rb, Ca, Ba, Sr and Fe the expression is as follows:

$$T_{K}^{=} \frac{(\chi^{AF}_{Br})^{2}(18810 + 17030 \chi^{AF}_{Br} + 0.364P) - (\chi^{PI}_{An})^{2}}{(28230 - 39520 \chi^{PI}_{An})}$$

$$\frac{(\chi^{2}_{Br})^{2} + 8.31431n (\chi^{0}_{PI}\chi^{11}_{AI}\chi^{1$$

The present author has applied all the above mentioned various two-feldspar geothermometers to the microprobe data for the granitoid rocks of the study area. The results were obtained in the form of temperatures in degree centigrade (Table V.7). Though the results are consistent for these rocks, yet it is obvious that the obtained temperature values are low. This could be attributed to the discrepancy caused by the state of order in high grade metamorphic terranes of the minerals used for calculating the temperatures. At upper amphibolite facies the stable feldspar would probably be orthoclase. But, since order-disorder relations are very sluggish, some order may be inherited from lower temperature state, as in alkali exchange experiments (Whitney and Stormer, 1977).

Using the Ti content in muscovite and biotite calculated from the formula based on 22(o), Lal (1991) formulated a geothermometer which is as follows:

For biotite,

 $T^{0}C = C5177/(4.546 - \ln Ti)] - 273.15$

For muscovite,

T ⁰C = E9098/(7.789 - 1n Ti)] - 273.15

The temperatures obtained by using this geothermometer are furnished in Table V.8, and are found to be consistent with those prevailing in the upper amphibolite facies.

Sample No.	Storæer 1975	Whitney and Stormer 1977	Powell and Powell 1977	Haselton et al. 1983	Price 1985
	- Marcado para	All -suffrings			
M 17 at 4 kb	339	473	376	327	326
5 kb	339	473	385	337	336
A 2 at 4 kb	410	543	451	425	424
5 kb	410	543	461	437	435
M 2b at 4 kb	391	528	430	403	402
5 kb	391	528	440	414	413
5 KD	₹£ %	۲۵۳ شته ۲۵۳			720
M 1 at 4 kb	409	550	449	431	428
5 kb	409	550	459	443	439

- - -

Table V.7 : Temperature estimates for the granitoid rocks

Table V.8 : Temperature estimates for the granitoids based on Ti content in micas (Lal, 1991).

ť

.

Sample No.	Biotite	Muscovite	L
M 17	- Yanishi dilahi, mahas ukuma menan angkat danan perjak dalam menan ngala dapat angka dapat Ajartan	567	199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199
A 2	652	611	
M 2b	627	596	
M 1	621	606	