
Chapter-II

Theoretical Details

This chapter gives the general introduction of 

transition metal oxide glassesy small polaron 

and mixed conducting system. Different models 

for ac and dc conductivity is also discussed. At 

the end, theoretical background of various 

techniques used for characterization is also 

included.

26



Most of the glasses are insulating in nature but the addition of transition metal 

oxides (TMO) such as V2O5, Fe203 etc. makes these glasses semiconducting in 

nature. These glasses have attracted scientific interest and technical applications. 

Systems based on glass forming compounds usually offer the possibility of 

preparing the solids within a much wider range of composition than their 

crystalline analogs. The differences in composition can result in considerable 

differences in the physical properties e.g., the electrical conductivity of the 

glasses. Therefore, silver oxide containing barium vanado-tellurite glasses have 

been chosen for the present study, which shows mixed conducting nature.

2.1 Transition Metal Oxide Glasses:

Glasses which have the major constituent as oxides of transition metal such as 

V2O5, Fe203, Mo03 etc. are known as transition metal oxide glasses. These 

glasses are of the charge-charge transfer or mixed valence type of semiconducting 

conductor. These glasses exhibit semiconducting behavior due to the presence of 

multivalent states of transition metal ions in the glassy matrices [1, 2] (e.g., V+4 

and V*5 in vanadate and Cu+1 and Cu+2 in cuprate glasses). It is generally agreed 

that the dc electrical conduction in these glassy semiconductors take place by the 

hopping movement of small polarons between different valence states of TMI 

sites [1, 2, 3-7]. Consequently, the conduction is through the d-levels of the 

transition metal and as the d-overlap is small, the bandwidth is also small, the

heffective mass m* is large and the electron wavelength X------- ;—ry- is of the
(2rtm kTy

order of lattice spacing. The electron is, therefore, essentially localized and almost 

certainly self trapped through the formation of small polaron conduction occurred
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by hopping but localization due to disorder makes a contribution to conduction 

too. Austin and Mott [2] described a conduction mechanism in non-crystalline 

solids. Anderson et. al. [8] had given a clear picture about localization of electron 

and Miller & Abraham [9] gave a mechanism of conductivity in Si and Ge. An 

electron in non-crystalline solids moves by thermally activated hopping from one 

localized state to another one and activation energy associated with this hopping, 

due to localization of its state, is quantized energy for a certain range. An 

exchange of energy with phonon causes the localization in these glasses.

2.2 Small polaron conduction:

A polaron is a conceptual construct consisting of an electron which occupies each 

site in its motion through the crystal for a time sufficiently long that the ions, of 

which the crystal is composed, have time to relax into a configuration appropriate 

to the altered charge on the host ion. This alteration is largest in the neighborhood 

of the host ion. The electron and its accompanying distortion may be treated as a 

single particle called the ‘polaron’ [2, 10]. The nature of the polaron transport 

mechanism in the lattice depends upon the integral of the overlap of the electron 

wave function on adjacent sites. The polaron binding energy is that change in the 

electron potential energy that comes about as a result of the lattice distortion that 

the electron induces in the neighborhood of its host. The size of the polaron 

(measured by the size of the induced lattice distortion) depends upon whether the 

electron overlap is larger or smaller than the binding energy of the polaron. If the 

overlap integral is small compared to the binding energy of the polaron, the linear 

dimensions of the polaron become comparable to the lattice spacing which is the
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case of the small polaron. Now, it is obvious that we can attain the small polaron 

condition in two types of materials. Those materials in which the coupling of the 

electron to the lattice is particularly large producing a small ratio of overlap 

integral to polaron binding energy and also those materials in which a small value 

of the overlap (due to larger ion spacing etc.) yields a similar ratio of overlap to 

binding energy, should both show small polaron effects for appropriate 

concentrations of ions. That is, the small polaron describes both the case of 

“strong electron-lattice interactions” and that of strongly “localized electrons”.

2.3 Mixed Conducting System:

Electrical properties of oxide glasses containing large amounts of transition metal 

ions are determined by their presence in two different valence states. Electrical 

conduction in these semiconducting glasses is explained on the theories of Mott 

and Austin [2]. Many workers [2, 8-12] had reported on such type of materials and 

suggested the carrier mechanism in such materials be due to small polaron. When 

an alkali oxide is added during glass preparation, one may also expect mobile 

alkali ions to contribute to the charge transport and the mixed conductivity to be 

observed. The dc ionic conduction in glasses occurs by the migration of cations 

between occupied and vacant sites that are randomly distributed in the glass 

structure.

According to Frenkel et. al. [13], the ions causing conduction leave their positions 

and enter interstitial sites, and thus become quasi-free ions with the ability to 

migrate. At the same time, their former positions are free, so that vacancy 

conduction becomes possible. Generally, ionic conductivity depends on alkali
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concentration and ion mobility. Assuming that the motion of alkali ions and 

polarons are independent, we may expect electrical conductivity to increase with 

increasing alkali content.

It is known that in the systems Li20-W03-P20s [14] and Na20- V2O5- Te02 [15], 

by modifying the composition it is possible to prepare glasses with predominantly 

ionic or electronic conduction. Other studies [16, 17] also showed that the same 

holds for silver-vanadate phosphate glasses of the quaternary system Agl-Ag20- 

V2O5-P2O5. Ternary systems Agl-Ag20-P205 and Agl-Ag20-V205 with a low 

concentration of V2O5 are well known as super ionic glasses [18, 19]. On the other 

hand, binary glasses V2O5-P2O5 of high V2O5 content exhibit electronic 

(polaronic) conductivity [20, 21].

Our aim is to study the electrical properties of the glasses of the quaternary system 

Ba0-Ag20-V205-Te02 exhibiting mixed ionic-electronic conduction. In this 

system V2O5 is the main glass former and the matrix for electronic conduction, 

Te02 is also a supporting glass former, whereas Ag20 and BaO are the glass 

modifiers.

2.4 Models for DC Conductivity:

2.4.1 Mott’s Model for DC Conductivity;

Mott has investigated the conduction model for glasses containing transition metal 

ions. Conduction in these glasses is considered in terms of phonon assisted 

hopping of small polaron between localized states. According to Mott’s model, if 

a carrier remains for a sufficiently long time on a particular atomic or ionic site 

(i.e., V+5) than the period of vibration, then the ions in the neighborhood of this
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excess charge will get enough time to get a new equilibrium position consistent 

with the presence of this additional charge. This will generate potential well for 

additional carriers. A carrier may bound to a state due to a deep potential well. 

Thus, a bound carrier and its induced lattice deformation in a solid, is termed as a 

"Polaron A Polaron is said to be small if a potential well is localized at a single 

atomic or ionic site. Fig.(2.1) shows a clear picture of this model.

As shown in Fig 2.1 (a), initially an electron is trapped in a potential well and the 

smallest activation energy corresponds to this state is given in Fig 2.1 (b), when 

thermal fluctuation ensures that the wells have the same depths. The energy 

required for this configuration is given by 

1WH =-Wp =------H 2 P 4s r .(2.1)
p p

where z

..

UJ
, ss and are the static and high frequency dielectric

constants of this material. Electron hopping process is between a and b ions when 

the states are localized, rp is the polaron radius i.e., a distance from the electron 

beyond which the medium is polarized, Wh is the activation energy and WP is the 

small polaron binding energy defined as the total potential energy of the electron 

and that of its attendant lattice distortion.

At a large distance from the electron, the potential energy of another electron in a 

crystal is whereas if the ions could not move, it would be where

Ss and are the static and high frequency dielectric constants.

Thus the potential energy Vp(f) in the potential well due to the displacement of 

the ions is given by
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Fig.2.1: Picture of small Polaron Conduction Model: The polarization wells for two 
transition metal ions in glass during hopping process: (a) before hopping (b) 
thermally activated states when electron can move (c) after hopping.
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(2.12)K(r)-
(v)

where Sp is the effective dielectric constant and r is the radius of an ion. 

The electron digs a potential well for itself for which

K(r)-
spr

for r > r„ (2.13)

sPrP
for r<r„ -(2.14)

The value of rp can be determined by minimizing the kinetic energy of electron 

i.e., by localized state.

In Mott’s model, conductivity for the nearest neighbor hopping in the high 

temperature region (T> 0D/2) (do is the Debye temperature) is given by

-W^
<7 = Vn

Ne2R2c(l-c) 

kT
exp(-2a i?) exp f •

\kT ) (2.15)

where v0 is the optical phonon frequency (generally v0 ~1013), N is the 

transition metal ion sites per unit volume, C is the ratio of concentration of ions in

low valance state to the total concentration of ion i.e., —— , CC is the electron
Iota!

wave function decay constant, W is the activation energy for dc conduction and 

R. is the average site separation.

Assuming a strong electron-phonon interaction, Austin & Mott, have shown that

[2,22].

w-wH+~wD 0(for T>-±) Innon-adiabaticregion................(2.16)
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6W= Wd (for ) In adiabatic region...................... (2.17)

where T is the absolute temperature, 0D is the Debye temperature defined by 

hv0 —k0D (h is the Planck’s constant, v0 is the optical phonon frequency, k is the

Boltzmann constant) and WH &~Wp , where Wp is the polaron binding energy

and WH is the polaron hopping energy. Equation (2.15) is for the hopping of 

polarons in non-adiabatic region. For the hopping of polarons in the adiabatic 

region, the tunneling term reduces to unity i.e., exp(-2«is!) -»1.

Then equation (2.15) becomes,

cr = <r0 exp f-JJ-j -----—---- <2-18)

where <x0 =
rv0e2c(l-c)

kTR
is the pre exponential term for conductivity and can be

estimated from the conductivity data.

Mott [23] has pointed out that at very low temperatures, the observed values of

WD (disorder energy) should approach zero because the most probable jump will 

not be to nearest neighbors but to more distant sites where the energy difference is 

small. The conductivity for variable range hopping is given by the following 

Equation

cr = zlexpfp!-j ................................. (2.19)

where A and B are constants and given by

e2
2(%nf2 *0 akT

(2.20)
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and 1? = 2.1
-ii/4

a
W{Ef)

,(2.21)

where N(EA is the density of states at the Fermi level, CSC describes the decay

of the localized state wave function and v0 is the optical phonon frequency

(«10B5_1)[24]. So, the variable range hopping model predicts a Tm 

dependence of the logarithm of conductivity at low temperatures. Similar 

temperature dependence of the conductivity at low temperatures has been also 

obtained by Ambegaokar and co-workers [25] on the basis of percolation model. 

Thus the equation for conductivity, in non-crystalline solids, carries a great 

importance and gives a clear picture of conduction in such types of materials.

2.4.1.1 Small polaron and large polaron hopping;

At a given density of electrons N(e), the mobility of electrons is zero at a finite E, 

i.e., cr£(0) vanishes for these energies then the electron is said to be localized 

with energy E. If states are localized, mobility JU vanishes at T=0. At finite 

temperature, the mobility is essentially due to interaction with phonons. In 

principle, localization (cr£(0)=0) can occur for a given energy E for the 

following reasons;

i) a random potential at each atom [3],

ii) fluctuations in the density or meaft interatomic distance and

iii) absence of long range order.

When a state is localized, we consider two approximations for hopping after 

determining small polaron radius (j"p). First is when the effective mass m* of the
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h27T2
electron is too high and the kinetic energy —, - due to the localization of the

m rp

wells is very small or negligible. Then rp (polaron radius) must be less than the

interatomic distance R i.e., (fp<R) and the polaron is said to be “small 

polaron”. In this case total potential energy of the electron becomes

\sPrPj
.(2.22)

Second is when the polaron radius fp is greater than the interatomic distance R 

i.e.,(rp then the polaron hopping becomes a “largepolaron” due to smaller

2_2h 7tm *. Here we have to add the kinetic energy ——;—j of an electron so in this case
2m r.

total energy is given by

-w =
p 2 s r 2m*r2

P P P

Eq.2.23 will be minimum when 

2tc 2h\

.(2.23)

.(2.24)

H

Eq.2.1 is corrected for larger value of R i.e., distance between the centers. 

Therefore, for a larger value ofi? , two polarization clouds overlap and W, 

becomes dependent on jumping distance R . Mott in 1968 [1] modified Eq.2.1 as 

1Wu
( l\

e 1 l)

Jr ~R) .(2.25)

where &p is the effective dielectric constant, Yp is the small polaron radius and
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R is the average site separation calculated by the relation

.(2.26)

Polaron radius for a crystalline material is given by

6) UJ (2.27)

where N is the number of sites (i.e., Vtotai ions in V2O5) per unit volume [26] and 

can be calculated as

where d is the density of the glass sample, Fw is the weight fraction of V2O5,

Mw is the molecular weight of V2O5 and NA is the Avogadro number, 

respectively.

2.4.1.2 Nature of polaron hopping:

In non crystalline solids having a disordered system, an additional term Wd 

(disorder energy) i.e., energy difference arising from the differences of neighbors 

between a and b sites (Fig. 2.1), may appear in the activation energy for the 

hopping process. In this case, the total activation energy for the hopping process 

in the high temperature region is [2]

(2.28)

(2.29)

or
w (WD+4WHf

(2.30)
16W„
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If WD<WH

w=,wH+hvD (2.31)

For a disordered lattice, the coincidence of electronic energy level of the bound 

electron sites with the local electronic energy level on neighborhood gives rise to 

transfer of a small polaron. This transfer probability is given by,

P = probability of coincidence x (probability of transfer when coincidence occurs)

where p is probability of transfer when coincidence occurs, which is related to 

two types of cases. If the value of p (probability of transfer) is;

i) equal to unity ( p =1) In this case time duration of coincident event is long 

compared with the time it takes an electron to transfer between two sites and 

electron always follows lattice motion.

ii) less than unity (p «1) When the time required for an electron to hop is 

large compared with the duration of a coincident event. In this case electron 

will not always follow lattice motion and miss many coincident events before 

making a hop.

In this case the probability of transfer p is given by [10]

f 2tt ^
n

U®oJ jWHkT _

where J is the electron transfer integral and is a measure of wave function 

overlap of the neighboring sites. If J>ha^ and the tunneling probability 

exp(-2ai?) is small, where or is a spatial decay constant of electron wave

(2.32)
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function, then conduction is due to adiabatic hopping. A non-adiabatic hopping 

process would occur if J(i.e., predominantly phonon energy). Hence p 

contains the factor exp(-2ai?).

In the frame work of Mott’s model [1,2, 3], the nature of hopping mechanism can 

be ascertained by a different method i.e., by plotting a graph between log crand W 

at an arbitrary chosen temperature. If the estimated temperature calculated from 

the slope (l/(2.303kl)) of the plot, is close to T, it means exp(-2aR) term of Eq. 

2.15 does not contribute to the conductivity, then the adiabatic hopping process 

occurs in the glass system but if the estimated temperature is different from the 

chosen temperature, exp(-2aR) term contributes to conductivity and non-adiabatic 

hopping occurs.

2.4.2 Molecular Crystal Model:

Holstein and co-workers [11, 27, 28] have investigated a generalized polaron 

hopping model assuming that the disorder energy, Wp=0, covering both the 

adiabatic and non-adiabatic hopping processes. Holstein has derived an expression 

for the dc conductivity in the non-adiabatic region as

( J-'hm2 r2\( 'I/2e NR J 
kT

n
kTWu exp kT

(2.34)

Conductivity in the adiabatic region is given by

<7~

(7

v -> y
elNRl k 

kT ’ '-4 (2.35)

where N is the site concentration, J is the polaron band width related to the 

electron wave function overlap on adjacent sites.
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According to this model, adiabatic and non-adiabatic condition may be separated 

depending on the value of J as below

J >
2kTWH ~ 1/4 'to'o*

71 n _
~2kTWH~ 1/4 ~hva~

n n

1/2

1/2

adiabatic hopping

non-adiabatic hopping

(2.36)

with the condition for the existence of a small polaron being J<-WH. The 

polaron band width J can be estimated from [29,23]

-iI/2

J*e? 3/2 (2.37)

The polaron band width J can also be estimated from the difference of mean 

value of hopping energy Wh and the experimental activation energy W i.e., by 

[30], By the estimation of the value of J , nature of hopping in 

several glasses was also reported [2, 22, 26, 29-36].

2.4.3 Schnakenberg’s Model:

A more general polaron hopping model has been considered by Schnakenberg 

[37], where 0, in which optical multiphonon process determines the dc 

conductivity at high temperature, while at low temperatures, charge carrier 

transport is an acoustical one phonon-assisted hopping process. The temperature 

dependence of the dc conductivity in this model has the form

<r r., (hvn Yi 1/2 r 4 w„') f hvB Vsmh —— exp — xtanh
L \.2kT)j l hv0 J UkT)\ exp kT

...(2.38)

The above equation predicts a temperature dependent hopping energy given by
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The above Eq.(2.39) shows a decrease of activation energy with decrease of

temperature.

2.4.4 Triberis and Friedman’s Model:

Triberis and Friedman [38] and Triberis [39] have studied dc hopping 

conductivity in disordered systems at low and high temperatures using percolation 

considerations. In this case, the electronic transport is described as a single 

phonon-induced tunneling of electrons between localized states which are 

randomly distributed in energy and position. Considering correlation due to 

energy of common sites in a percolation cluster, the following expression for the 

conductivity has been obtained.

<x = cr0 exp (2.40)

where T0 is constant and has different forms at high and low temperatures. T0 is 

given by

Gx3

kNn
(2.41)

=12.5 cc'/kNo for high temperatures .................(2.42)

=17.So^/kNo for low temperatures .................(2.43)

where No (density of localized states) is assumed constant. Thus, the percolation



sl/4

model of Triberis and Friedman predicts a | — dependence of the logarithmic
J

conductivity in the high as well as low temperature region.

2.4.5 Killias Model:

Killias [40] has proposed a polaron model in which the variation of activation 

energy is considered due to the thermally activated hopping in a system which has 

a distribution of hopping distances. Assuming a Gaussian distribution for the 

hopping distances centered around a median value Ro, Killias has obtained the 

following expression for the dc conductivity.

a = A exp
W(Rg) f a > tT

X 1-—erfc
kT (2pkTJ L 2 l fiRo

IpkT
.(2.44)

where A is a constant, 0,—dW/dR and fi4 is proportional to the width of the 

Gaussian distribution. The above equation predicts a non linear variation of the dc 

conductivity which may be described most conveniently by a temperature 

dependent activation energy given by

W(T) = W0^l-^fj ......................(2.45)

where Wo and 0r are constant and Or is given by

eD a
4pkW0

.(2.46)

2.5 Models for AC conductivity:

In general, electrical characterization of the materials can be done by dc and ac

measurement technique. Though the dc measurement technique is straight
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forward, it cannot be implemented for ionic or mixed electronic-ionic systems 

because on application of dc field, the ionic material gets polarized. Due to which 

the ionic conductivity gradually ceases, giving only electronic conductivity. To 

overcome the above problem, ac technique is preferred over dc technique.

Frequency dependent conductivity behavior of ionically conducting glasses has 

been the focus for large number of studies [41-44] although very limited 

understanding of this multi-faceted problem has been achieved so far. While there 

are large number of theories, to explain the dispersion behavior of glasses, among 

them universal model for ac transport seems to have been successful. Jonscher 

[42] has proposed a universal model, which describes the dispersion behavior 

observed in ac conductivity.

According to Jonscher’s universal power law, the variation of ac conductivity 

with frequency is given by o(ai)=cro+Aa/'. The log a versus log frequency plot 

enables us to visualize the range of ionic phenomena from long range 

displacement to resonant vibration. It was evident from log-log plot of 

conductivity that at high frequencies a{m) follows an apparent power law, o{o)) a 

of, where n is power law exponent while at low frequencies, there is a gradual 

transition to frequency independent conductivity.

In jump relaxation model, Funke [45] has proposed that the dc plateau and the 

power law region should be considered as a single entity. Both these regions 

together represent ‘successful’ and ‘unsuccessful’ hopping of the mobile ions. 

According to this model, at veiy low frequencies (aA>0), an ion can jump from 

one site to its neighboring vacant site successfully contributing to dc conductivity. 

At high frequency, the probability for the ion to go back again to its initial site
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increases due to the short time periods available. This high probability for the 

correlated forward backward hopping at high frequencies together with the 

relaxation of the dynamic cage potential is responsible for the high frequency 

dispersion.

The relaxation process in glasses is generally non-Debye in nature. Kawamura 

et.al. [46] have explained the origin of non exponential (non-Debye) behavior in 

phosphate glasses by considering the effective random potential acting on a 

mobile charge. Different approaches have been taken by Jonscher [47] and Ngai 

[48] accounting for the non-exponential behavior by considering many body 

effects and by the fractional exponential relaxation formalism in association with 

coupling theory respectively. The many body interaction among mobile ions is 

significant in high ion conducting glasses. The universal theory by Jonscher [41, 

42], coupling theory [49], cluster relaxation theory [50], diffusion controlled 

relaxation model [51, 52] and Debye-Falkenhagen-type theory [53] supports this 

view point.

AC Conductivity over wide ranges of temperature and frequency have shown that 

a single power law is inadequate to describe the dispersion of conductivities in 

many cases, therefore, in that case a double power law of the form 

o( ®)=(jfoffA af'+Bof2 describes the ac conductivity better than a single power 

law. The behavior of the first region, in the double power law equation can be 

described by the Diffusion Controlled Relaxation model (DCR model) of Elliot 

[51, 52].

The electric field relaxation due to the motion of ions is first described by
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Kohlrausch William Watt exponent [54, 55, 56] ^(f) — exp
t

r, /

where ta

and p are the parameters of stretched exponential function and are respectively 

the conductivity relaxation time and the Kohlrausch exponent. The values of P 

varies from 1 to 0. The smaller is the value of P , the larger is the deviation of the 

relaxation with respect to a Debye type relaxation. Ngai [49] has proposed that a 

correlation exists between n and p , namely n = 1 - p. Several other attempts 

have also been made to correlate P with a large number of parameters like 

Structural Unpinning Number (SUN) [57] and intercationic distance [58]. The P 

parameter has been interpreted either as representatives of a distribution of 

relaxation times [59, 60] or as characteristic of cooperative motions between 

charge carriers [61, 48], The concept of the cooperative motions in a glass is 

issued from the ‘universal’ behavior discussed by Jonscher [47]. It means that 

jump of a mobile ion in a glass may not be treated as an isolated event i.e., when 

the ion jumps from one equilibrium position to another it causes a time dependent 

movement of other charge carriers in the surroundings, which leads to additional 

relaxation of the applied field [62]. So it results the smaller value of p to a more 

extended co-operation between the charge carriers [62].

2.6 Theoretical details of different characterization techniques:

Different experimental techniques have been used to characterize the glassy 

samples which are discussed briefly in the sub-sections below.
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2.6.1 X-Rav Diffraction:

X-ray diffraction is based on the constructive interference of monochromatic x- 

rays from a crystalline sample. These x-rays are generated by a cathode ray tube, 

filtered to produce monochromatic radiation, collimated to concentrate and 

directed toward the sample. The interaction of the incident rays with the sample 

produces constructive interference (and a diffracted ray) when conditions satisfy 

Bragg’s law [Fig.2.2] (nX=2d sin 9) where X is the wavelength in A, d is the 

interatomic spacing in angstroms, 9 is the diffraction angle in degrees and n is an 

integer representing the order of the diffraction peak. This law relates the 

wavelength of electromagnetic radiation to the diffraction angle and the lattice

Fig.2.2. Schematic representation of diffraction X-rays by crystal.
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spacing in a crystalline sample. These diffracted x-rays are then detected, 

processed and counted by scanning the sample through a range of 20 angles. All 

possible diffraction directions of the lattice should be attained due to the random 

orientation of the powdered material. Conversion of the diffraction peaks to d- 

spacing allows identification of the mineral because each mineral has a set of 

unique d-spacings.

X-rays are electromagnetic radiation with typical photon energies in the range of 

100 eV-100 KeV. For diffraction applications, only short wavelength x-rays (hard 

x-rays) in the range of a few angstroms to 0.1 A (1 KeV-120 KeV) are used. 

Diffraction is most effective when the wavelength of the incident radiation is 

comparable to the size of the diffracting object. Diffraction occurs as waves 

interact with a regular structure whose repeat distance is about the same as 

wavelength. Diffracted waves from different atoms can interfere with each other 

and the resultant intensity distribution is strongly modulated by this interaction. In 

crystals, the diffracted waves will consist of sharp interference maxima (peaks) 

with the same symmetry as in the distribution of atoms while for amorphous 

sample, diffraction pattern shows few diffused halos instead of sharp peaks.

2.6.2 Differential Scanning Calorimetry:

One of the techniques used for characterization is the thermal analysis technique,

which is based on the relationship between temperature and some property of a

system such as mass, heat of reaction or volume. Le Chatelier [63] was the father

of thermal analysis. After that other investigators [64-67] have studied the thermal

changes in a substance during the heat treatment. Thermogravimetry (TG),

Diffrential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC),
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Enthalpimetric Method are the different methods used for thermal investigations 

[68, 69].

Differential Scanning Calorimetry is a thermoanalytical technique in which the 

difference in the amount of heat required to increase the temperature of the sample 

and reference are measured as a function of temperature. Both the sample and 

reference are maintained at nearly the same temperature throughout the 

experiment. Generally, the temperature program for a DSC analysis is designed 

such that the sample holder temperature increases linearly as a function of time. 

The reference sample should have a well defined heat capacity over the range of 

temperatures to be scanned. Fig. 2.3 shows the cross sectional diagram of DSC 

cell. In the cell, a metallic disc (made of constantan alloy) is the primary means of 

heat transfer to and from the sample and the reference. The sample contained in a 

metal pan and the reference (an empty pan) sit on raised platforms formed in the 

constantan disc. As heat transferred through the disc, the differential heat flowing 

to the sample and reference is measured by thermocouples formed by the junction 

of the disc and chromel wafers which cover the underside of the platforms. These 

thermocouples are connected in series and measure the differential heat flow using 

the thermal equivalent of ohms written as:

^ = — ....................(2.47)
dt Rd

where —^ is heat flow, AT is the temperature difference between reference and 
dt

sample, RD is the thermal resistance of the disc. The result of a DSC experiment 

is a curve of heat flux versus temperature as observed in Fig.2.4. In the DSC plot, 

exothermic peak is due to the evolution of heat from the sample which raises the
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Fig.2.3. Crossseetional diagram of DSC heat flux.

Fig.2.4. A schematic DSC curve demonstrating the appearance of several common 
features.
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temperature temporarily above that of the reference material; whereas, 

endothermic peak is just due to the reverse type of process.

The main application of DSC is in studying phase transitions, such as melting, 

glass transitions and crystallization. These transitions involve energy changes or 

heat capacity changes that can be detected by DSC with great sensitivity.

Detection of Phase Transition:

The basic principle underlying this technique is that, when the sample undergoes a 

physical transformation such as phase transitions, more or less heat will need to 

flow through it than the reference, to maintain both at the same temperature. Flow 

of less or more heat through the sample, depends on whether the process is 

exothermic or endothermic. For example, as a solid sample melts to a liquid it will 

require more heat flowing to the sample to increase its temperature at the same 

rate as the reference. This is due to the absorption of heat by the sample as it 

undergoes the endothermic phase transition from solid to liquid. Likewise, as the 

sample undergoes exothermic processes (such as crystallization), less heat is 

required to raise the sample temperature. By observing the difference in heat flow 

between the sample and the reference, differential scanning calorimeters are able 

to measure the amount of heat absorbed or released during such transitions. DSC 

may also be used to observe more subtle phase changes, such as glass transitions. 

DSC is widely used in industrial settings as a quality control instrument due to its 

applicability in evaluating sample purity and for studying polymer curing [70-72].

2.6.2 Fourier Transform Infrared Spectroscopy:

IR Spectroscopy is a fundamental technique for chemical identification of a
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functional group, which provides a useful information regarding 

molecules. It involves the twisting, bending, rotating and vibrational motions of 

atoms in a molecule. Upon interacting with IR radiation, portions of the incident 

radiation are absorbed at particular wavelengths. The multiplicity of vibrations 

occurring simultaneously produces a highly complex absorption spectrum, which 

is unique characteristic of the functional groups comprising the molecule and of 

the overall configuration of the atoms as well.

Absorption in the infrared region results in changes in vibrational and rotational 

status of the molecules. The absorption frequency depends on the vibrational 

frequency of the molecules, whereas the absorption intensity depends on how 

effectively the infrared photon energy can be transferred to the molecule and this 

depends on the change in the dipole moment that occurs as a result of molecular 

vibration. As a consequence, a molecule will absorb infrared light only if the 

absorption causes a change in the dipole moment and known as "IR active 

molecule”. Thus, all those compounds which are IR active can be analyzed by 

their characteristic infrared absorption.

Fig.2.5 shows the optical diagram of the Fourier transform Infrared spectrometer. 

From the IR source light travels to the beam splitter, 50% of the light is reflected 

to the fixed mirror and 50% is transmitted to the movable mirror. Light travels to 

each of the mirrors and recombines at the beam splitter before passing through the 

sample and to the detector. As the light intensity of the recombined beam is 

recorded at the detector, the movable mirror travels towards the beam splitter, 

producing an inteferrogram. As the movable mirror travels, different frequencies 

are reflected in different ways. The summation of constructive and destructive
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Fig.2.5, The optical diagram of a Fourier transform Infrared Spectrometer.

interference over time makes an interferogram, from which a Fourier transform is 

used to calculate a spectrum.

FTIR provides the following information ->

❖ It can identify unknown materials.

❖ It can determine the quality or consistency of a sample.

❖ It can determine the amount of components in a mixture.

2.6.3.1 Requirements for absorption of IR:

A natural vibrational mode within a molecule will absorb IR radiation, if the 

following conditions are fulfilled.

52



1) Those molecules will absorb IR radiation in which the natural frequency of 

vibration of the molecule is the same as the frequency of the incident radiation. 

The IR radiation, that is absorbed, causes the molecule to vibrate at increased 

amplitude (Resonance).

2) Those molecules can absorb IR radiation in which absorption produces some 

changes in the electric dipole of the molecules. Such molecules are known as IR 

active materials. The dipole moment is determined by the positions of the centers 

of gravity of the positive and negative electrical charges. When a molecule having 

electric dipole is kept in the electric fields it exerts a force on the electric charges 

in the molecules, which gives rise to decrease or increase of a separation. Change 

in the electric field of IR radiation causes a change in polarity periodically, it 

means that the spacing between the charged atoms of the molecule also changes 

periodically and vibration of these charged atoms causes the absorption of IR 

radiation. In symmetrical stretching vibration, the centers of gravity of the charges 

coincide in every vibrational position, no dipole moment is created and the 

absorption characteristic of this mode is not observed in IR. Such vibrations are 

said to be IR inactive. However, in unsymmetrical stretching vibration, a dipole 

moment is produced and the vibration is IR active and is observed in IR spectrum.

2.6.3.2 Theory of IR absorption spectroscopy :

The position of atoms in a molecule is not fixed; they are subjected to a number of 

different vibrations and rotations. Two atoms are joined by a covalent bond which 

may undergo stretching vibrations. The atoms can undergo a variety of stretching 

and bending vibrations. Energy of a vibration depends on (1) the mass of the atom
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present in a molecule, (2) strength of a bond and (3) the arrangement of various 

atoms in a molecule.

The position of IR band is described in terms of wavelength X (usually measured 

in microns, ju) or wave number, V. Both these units are related to each other by 

the relation

The positions of absorption bands, as determined from the mechanical theory of 

harmonic oscillators, are given by [73]

where Wj and are the masses of two adjacent atoms in a molecule and k is 

the restoring force per unit displacement and can be expressed as

where iST is the band order (i.e., effective number of covalent or ionic bands), X\

and Xi are the electro negativities of the atoms, d is the internuclear distance in 

angstroms and a (=1.67) and b (=0.30) are constants. From the above relations, it 

is clear that the bond length can be a good guide to the direction of a shift of band 

resulting from a change in chemical group- the greater the length, the lower the 

frequency. Bending modes usually produce lower frequency absorption bands 

than fundamental stretching modes.

(2.48)

(2.49)

,(2.50)
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2.63.3 Stretching vibrations:

It arises due to stretching and contracting of bond without producing any change 

in the bond angles, which are of two types.

1) Symmetric stretching:

If the movement of atoms with respect to a particular atom in a molecule is in the 

same direction, it is called symmetrical stretching vibrations as shown in Fig. 2.6.

2) Asymmetric stretching:

If one atom approaches the central atom whereas the other approaches away from 

it in a triatomic system, it gives unequal movement of the outer atom with respect 

to central one, as shown in Fig. 2.7. Because of this, the change in electric dipole 

takes place. Therefore, asymmetric stretching gives it vibrational frequency at 

higher wavenumber than for symmetric system.

2.63.4 Bending vibrations;

It gives rise to deformation of bond angle but there is no change in bond lengths.

In molecules, most of the bond angles are found to be in two categories.

1) Linear or 180° bond angle.

2) Bond angle in a neighborhood of 120° to 110°.

In triatomic molecules, the two atoms are the same and are bound to the middle 

atom by two equal bonds with two different frequencies symmetric or asymmetric.

1/2

,(2.51)
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Fig.2.6: Symmetric Stretching Vibrations: (a) Diatomic Molecule (b) Triatomic 
Molecule.

Fig.2.7: Asymmetric Stretching Vibrations: (a) and (b) Triatomic Molecule.
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Vas)m(Cm~ )Hi*

2 nc j

J 1 t (l—cos Of)] 1/2

m.end m„
.(2.52)

where a is a bond angle, v is a frequency in cm'1, k is the force constant in 

dyne/cm, mend and mnid are the masses of one end and middle atom respectively. 

The above Eqn. 2.51 and 2.52 can also be written as.

1
2 7tc

J 1 ^l-t-cosa)] -ii/2

M,end M.mid

.(2.53)

2nc \M,

1 +(l-coser)]

end

1/2

.(2.54)

where and Mmjd are the atomic weights of end atom and middle atoms.

A number of boro-vanadate, barium vanadate and barium boro-Vanadate glasses 

were studied [74-76]. In these glasses the vibrational frequency of a bond V-O-V

type can be given by [74] Eqn. 2.53 and 2.54, where =MV and Mmd —Mg

are the atomic weights of vanadium and oxygen atoms respectively. CC is a bond 

angle (always greater than 90°) between V-O-V bonds [Fig. 2.8 & 2.9]. In glasses, 

the bonds are generally broader and overlapping than those observed in the 

crystalline materials. This is because of the lack of long range order in glasses and 

is similar to the broadening of the spectra observed in other techniques (e.g., X- 

ray diffraction, Mossbauer spectra) [77-80],

Bending vibrations are classified into four types, in Fig. 2.8 (a, b) and Fig. 2.9 (a, 

b).

(1) Scissorins Bendine:

In this type of bond vibrations, the two atoms approach each other in the same
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plane as shown in Fig. 2.8 (a).

(1) Rocking Bending:

In this type of bond vibrations, the movements of atom occur in the same direction 

and also in the same plane as shown in Fig.2.8 (b).

Fig.2.8: (a) Scissoring Bending (In plane bending with lower frequency of vibration), 
(b) Rocking Bending (In plane bending with lower frequency of vibration).
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(2) Waesine Bendins:

In this type of bond vibrations, the two atoms move up and down below the plane 

with respect to the central atom as shown in Fig.2.9 (a).

(4) Twistine Bendins:

In this type of vibrations, one of the atoms moves up the plane and the other 

moves down the plane with respect to the central atom as shown in Fig.2.9 (b).

Fig. 2.9: (a) Wagging Bending (Out of plane having high frequency of vibration), 
(b) Twisting Bending (Out of plane bending with high frequency of vibration).
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Here (+ve) and (-ve) sign represents motion above and below the plane of the 

paper respectively. The energy required to stretch a spring is more than that 

needed to bend it so the stretching absorption of the bond will appear at higher 

frequencies than the bending absorption of a bond. Thus IR spectroscopy is 

widely used for molecular structural studies of various glasses.

Fourier transform infrared spectroscopy is preferred over dispersive or filter 

methods of infrared spectral analysis for several reasons:

❖ It is a non-destructive technique.

❖ It provides a precise measurement method which requires no external 

calibration.

❖ It can increase speed, collecting a scan every second.

❖ It can increase sensitivity - one second scans can be co-added together to 

ratio out random noise.

❖ It has greater optical throughput.

❖ It is mechanically simple with only one moving part.

2.7. Transport number measurement:

The transference number of a glass system signifies the contribution of ionic 

conductivity to the total conductivity. Therefore, it is one of the key factors to be 

considered while choosing the system as an electrolyte (in super ionic system) or 

to be used as a cathode material (in mixed conducting system) for battery 

application. Normally, the transport number measurement can be carried out 

through different methods namely, Tubandt’s method [81], Hebb-Wagner’s 

polarization method [82] and electrochemical (EMF) method [83], The electronic
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contribution to the total conductivity can be obtained from Wagner polarization 

technique, whereas the other techniques brief about ionic nature of the conducting

species.

The transport number of a moving charged particle is defined as the ratio of the 

conductivity due to itself and the total conductivity. There are many methods to 

ensure the transference number. In Wagner polarization technique [84-86], the 

sample is placed between two electrodes, one blocking and the other non-blocking 

for the mobile ionic species. Current versus time is monitored for a fixed applied 

dc potential. The initial total current decreases with time due to the depletion of 

ionic species in the samples and becomes constant in the fully depleted situation. 

At this stage, the residual current is only electronic current. The electronic

transference number te and the ionic transference number t, respectively are given 

by

(2.55)

and t, =1—f, (2.56)

where <?e and crT are the electronic conductivity and total conductivity 

respectively while ie is the electronic current and iT is the total current.

1) EMF method:

Transference number can also be measured by EMF method [84, 87]. In this 

method the ionic conductor is placed between a pair of electrodes of different

chemical potentials and/i,. The potential difference (emf) developed across 

the electrodes is given by [83]
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E„t
\Z\F- f.f J' |z|f f|z| .(2.57)

where tt is the ionic transport number, Hx and lh are chemical potential of the 

electrodes, AG is the change in free energy involved for a given pair of

electrodes, |Z| is the valence of mobile ion and F is the Faraday’s constant. For
an

ideal electrolyte with tt =1, the emf generated is given by

AGE,'iheo
FZ .(2.58)

From the above relations, Eobs =tt Etheo. Thus the transport number of the mobile 

ion can be calculated from the ratio of observed emf (Eobs) to the theoretical 

value of emf (Ellteo) for a given pair of electrodes.
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