Table of contents

Contents	Page no.
List of abbreviations	I-II
List of Figures	III-VIII
List of Tables	IX
Abstract	X-XII
1. Introduction	1
1.1 Background	1
1.2 Soil pollution: An emerging threat to agriculture	3
1.2.1 Contribution of soil in agriculture sustainability	3
1.2.2 Threats to soil and environment	4
1.2.3 Extent of soil degradation in India	6
1.3 Heavy metal pollution	7
1.3.1 Sources of heavy metal pollution	7
1.3.2 Negative effects of heavy metal pollution	8
1.3.3 Records of soil pollution by heavy metals throughout India	10
1.3.3.1 Arsenic pollution prevalence in India	10
1.3.3.2 Cadmium pollution prevalence in India	11
1.4 Heavy metal remediation	12
1.4.1 Phytoremediation	12
1.4.2 Bioremediation	13
1.4.2.1 Mechanisms employed by bacteria/PGPR to combat heavy	14
metals	
1.5 Symbiosis- heavy metals- glutathione relation and interplay	16
1.5.1 Rhizobium, a PGPR capable of symbiosis with legumes	16
1.5.2 Prokaryotic glutathione secretion mechanism and the	17
importance of rhizobial glutathione in symbiosis	
1.6 Effect of heavy metal stress on fenugreek and alleviation of stress	18
by PGPR	
1.6.1 Fenugreek- an important culinary microgreen	18

1.7 Ge	oal of our study	19
1.8 Re	ferences	20-28
2. Objectives of our study		29-30
sy	oning <i>Escherichia coli</i> DH10B Gamma glutamyl Cysteine nthetase (YbdK) in rhizobia for the overproduction of ntathione	31
3.1 In	troduction	32
3.1.1	Biosynthesis of Glutathione	32
3.1.2	Roles of glutathione in bacteria	32
3.1.3	Roles of glutathione in Plant-rhizobia interaction	33
3.1.4	YbdK is a Carboxylate-amine ligase found in <i>E. coli</i>	34
3.1.5	Rationale behind using YbdK in this study	34
3.2 M	aterials and methods	35
3.2.1	Microorganisms, plasmids and primers used in the study	35
3.2.2	Bacterial growth media composition	37
3.2.3	Genomic DNA extraction and PCR amplification	38
3.2.4	Restriction cloning	40
3.2.5	Bacterial transformation and plasmid purification	41
3.2.6	Plasmid validation by restriction digestion	41
3.2.7	Transformation of Rhizobium by electroporation	41
3.2.8	Bacterial growth curve	41
3.2.9	Glutathione estimation from bacteria	42
3.3 Re	esults and Discussion	43
3.3.1	Construction of a recombinant plasmid pPAT	43
3.3.2	Transformation of Rhizobium bacteria by the recombinant plasmid pPAT	48
3.3.3	Growth curve of wild type and transformed Rhizobium	50
3.3.4	Estimation of glutathione from the wild type and transformed rhizobium bacteria	52

3.4 Co	onclusion	55
3.5 Re	ferences	56-59
4. De	termining the effect of rhizobia overproducing glutathione on	60
ab	iotic stress mediated damage in fenugreek seedling	
4.1 In	troduction	61
4.1.1	Fenugreek and its agricultural importance	61
4.1.2	Heavy metal stress in Legumes and its mitigation by PGPR	62
4.1.3	Plan of work	63
4.2 M	aterials and methods	63
4.2.1	Bacterial growth and colony morphology under the influence of	63
	heavy metal stress	
4.2.2	Seed radicle emergence test	64
4.2.3	Spot assay	64
4.2.4	Soil selection and analysis	64
4.2.5	Bacterization of seeds and pot experiments	65
4.2.6	Growth measurements	66
4.2.7	Chlorophyll and Carotenoids estimation	67
4.2.8	Estimation of hydrogen peroxide	67
4.2.9	Estimation of Lipid peroxidation	67
4.2.10	Antioxidant enzyme estimation from roots and shoots	67
4.3 Re	sults and Discussion	69
4.3.1	Effect of arsenic and cadmium on the growth and colony	69
	morphology of bacteria	
4.3.2	Effect of Arsenic and Cadmium on seed radicle emergence	71
4.3.3	Spot analysis to determine the sensitivity of bacteria towards	72
	arsenic and cadmium	
4.3.4	Investigating the effect of genetically modified Sinorhizobium	74
	fredii NGR 234 & Sinorhizobium meliloti (NAIMCC-B-00863)	

4.5 References	108-114
4.4 Conclusion	107
Arsenic contaminated soil	
seedlings treated with GMO and wild type bacteria growing in	
oxidative parameters and antioxidant enzyme levels in fenugreek	
4.3.6.1 Assessment of growth parameters, chlorophyll production,	96-107
in Arsenic and Cadmium contaminated soil	
4.3.6 Effect of rhizobial consortium on fenugreek seedlings growing	96
4.3.5.4 Discussion	95
seedlings treated with GMO and wild type rhizobium bacteria	
4.3.5.3 Changes in antioxidant enzymes in cadmium stressed fenugreek	93
Cadmium contaminated soil	
seedlings treated with GMO and wild type PGPR growing in	-
4.3.5.2 Changes in the production of H2O2 and MDA in fenugreek	91
Arsenic contaminated soil	
seedlings treated with GMO and wild type bacteria growing in	
4.3.5.1 Assessment of growth and chlorophyll production in fenugreek	86
soil.	
on the growth of fenugreek seedlings in Cadmium contaminated	
fredii NGR 234 & Sinorhizobium meliloti (NAIMCC-B-00863)	00
4.3.5 Investigating the effect of genetically modified Sinorhizobium	86
seedlings treated with GMO and wild type rhizobium bacteria.	62
4.3.4.3 Changes in antioxidant enzymes in Arsenic stressed fenugreek	82
seedlings treated with GMO and wild type PGPR growing in Arsenic contaminated soil	
4.3.4.2 Changes in the production of H2O2 and MDA in fenugreek	80
Arsenic contaminated soil	20
seedlings treated with GMO and wild type bacteria growing in	
4.3.4.1 Assessment of growth and chlorophyll production in fenugreek	74
soil.	
on the growth of fenugreek seedlings in Arsenic contaminated	

5. Exploring the ability of genetically modified rhizobia to produce nanoparticles to combat heavy metal stress.	115			
5.1 Introduction	116			
5.1.1 Heavy metal bioremediation by microorganisms	116			
5.1.2 Biosynthesis of nanoparticles by microorganisms	116			
5.1.3 Rationale behind the objective	117			
5.2 Materials and Methods	117			
5.2.1 Biosynthesis of Cadmium sulphide nanoparticles and	117			
glutathione estimation				
5.2.2 Characterization of cadmium sulphide nanoparticles	118			
5.3 Results and Discussion	119			
5.3.1 Glutathione estimation from supernatant	119			
5.3.2 Cadmium sulphide (CdS) nanoparticles biosynthesis	120			
5.3.3 Characterization of Cadmium sulphide nanoparticles	122			
5.4 Conclusion	128			
5.5 References	129-133			
6. Summary	134-136			
List of publications	137			
List of posters 13				
Reprints of publications	I			
Certificates of achievements				
Ph.D. thesis Synopsis				