LIST OF TABLES

Table	Table title	Page
No.		no.
1.1	Parts of plants providing essential oils	32
3.1	Formulation and process parameters	84
4.1	Preservative practices followed by the Museums	100
4.2	Bacterial load on nutrient agar for the three fabrics	107
4.3	Colony appearance of the non-identical bacteria isolated from cotton	108
	fabric	
4.4	Colony appearance of the non-identical bacteria isolated from silk	109
	fabric	
4.5	Colony appearance of the non-identical bacteria isolated from wool	109
	fabric	
4.6	Biochemical characteristics of bacteria's isolated from cotton fabric	111
4.7	Biochemical characteristics of bacteria's isolated from Wool fabric	112
4.8	Biochemical characteristics of bacteria's isolated from Silk fabric	112
4.9	Screening of Chitosan for Neem oil nanoparticles	115
4.10	Screening of the two Surfactants for Neem oil nanoparticles	115
4.11	Screening of Chitosan: Oil for Neem oil nanoparticles	116
4.12	Screening of Cross-linking agent for Neem oil nanoparticles	116
4.13	Screening of type of method and RPM used for Neem oil	117
	nanoparticles	
4.14	Screening of Chitosan for Cinnamon oil nanoparticles	117
4.15	Screening of Surfactants for Cinnamon oil nanoparticles	117
4.16	Screening of Cross-linking agent for Cinnamon oil nanoparticles	117
4.17	Screening of Chitosan: Oil for Cinnamon oil nanoparticles	118
4.18	Screening of type of method and RPM used for Cinnamon oil	118
	nanoparticles	
4.19	Screening of Chitosan for Clove oil nanoparticles	119
4.20	Screening of Chitosan: Oil for Clove oil nanoparticles	119
4.21	Screening of Surfactants for Clove oil nanoparticles	120
4.22	Screening of Cross-linking agent for Clove oil nanoparticles	120

4.22		100
4.23	Screening of type of method and RPM used for Clove oil	120
	nanoparticles	
4.24	Screening of Chitosan for Carom oil nanoparticles	121
4.25	Screening of Chitosan: Oil for Carom oil nanoparticles	121
4.26	Screening of Surfactants for Carom oil nanoparticles	122
4.27	Screening of Cross-linking agent for Carom oil nanoparticles	122
4.28	Screening of type of method and RPM used for Carom oil	122
	nanoparticles	
4.29	Optimized conditions of the nanoparticles selected under the study	136
4.30	MIC of nanoparticles against Bacillus cereus	144
4.31	MIC of nanoparticles against Staphylococcus aureus	145
4.32	MIC of nanoparticles against Pseudomonas	146
4.33	MIC of nanoparticles against Escherichia coli	146
4.34	MIC of nanoparticles against Aspergillus fumigatus	153
4.35	Preliminary data of the selected fabric	150
4.36	Zone of inhibition of the nanoparticle treated cotton and polyester	153
	fabric against Bacillus cereus	
4.37	Zone of inhibition of the nanoparticle treated cotton and polyester	155
	fabric against Staphylococcus aureus	
4.38	Zone of inhibition of the nanoparticle treated cotton and polyester	156
	fabric against Pseudomonas	
4.39	Zone of inhibition of the nanoparticle treated cotton and polyester	158
	fabric against Escherichia coli	
4.40	% retention of oil of covered samples in a petri dish	170
4.41	% retention of oil for Uncovered samples (exposed to room	171
	temperature)	
5.1	Optimized conditions of the final nanoparticles	188