Figure	Figure title	Page
No.		No.
1.1	Breakdown of cellulose to glucose by hydrolysis caused by enzymes	2
1.1	Two cysteines bound together by a disulphide bond	3
2.1		14
	Shattered weighted silk costume due to UV radiation	
2.2	Exposure of light to a blue-dyed fabric causing fading	14
2.3	Insects causing degradation of textiles	17
2.4	Irregular shaped holes in wool fabric caused by insect attack	18
2.5	Types of dust covers for vertical storage system	19
2.6	Horizontal/ flat laying of textile on acid free card support	20
2.7	Example of suspension storage system for rolled carpets	20
2.8	Padded hangers for extra protection	21
2.9	Padding the pleats with cotton knit tubing stuffed with polyester	22
	fibrefill to prevent tight folds and crease	
2.10	Morphological structure of cotton fiber showing distribution of the	23
	components in various fiber layers	
2.11	Chemical structure of cotton fiber	24
2.12	Growth of fungal colonies on a cotton fabric	25
2.13	Helical structure of wool keratin	26
2.14	Schematic diagram of silk structure	27
2.15	Bioactive compounds present in essential oils	35
2.16	Action mechanism of essential oils on microbes	35
2.17	Action mechanism of essential oil nanoparticles on insects	37
2.18	Size scale of objects between 0.1 nm and 1 mm	38
2.19	Classification of nanomaterials based on their nanoscale dimensionality	39
2.20	Schematic diagram of top-down and bottom-up approaches for	40
	preparing nanomaterials	
2.21	Schematic diagram of a formation of a microcapsule containing oil	43
2.22	Types of micro/ nano-capsules	44
2.23	Schematic diagram showing control release mechanism of an oil	45
	capsule	

2.24	Oil and water emulsion systems	46
2.25	Ionic gelation method with TPP (sodium tripolyphosphate) as a cross-	47
	linking agent, chitosan as a polymer matrix and the drug solution as a	
	core material	
2.26	Schematic diagram of the steps of complex coacervation method	48
2.27	Schematic diagram of spray-drying microencapsulation process	49
2.28	Molecular structure of Chitosan	50
2.29	Chemical structure of phytochemicals encapsulated in chitosan or	52
	modified chitosan nanoparticles	
3.1	Spread plate method	77
3.2	Morphological characteristics of bacterial colonies	78
3.3	Steps for Gram staining test	78
3.4	Procedure for streak plate method	80
3.5	Emulsification + Ionic gelation method of preparing EO CSNPs	82
3.6	Nano-emulsion + Ionic gelation method for preparing EO CSNPs	83
3.7	High-shear homogenizer	83
3.8	UV- Vis spectrophotometer	87
3.9a	A typical Dynamic light scattering system	89
3.9 b	DLS principle	89
3.10 a	Benchtop freeze dryer,	90
3.10 b	Lyophilization cycle	90
3.11	Illustration of the principle of energy dispersive x-ray analysis (EDX)	95
4.1	Colonies developed on Agar plates	107
4.2	Fungal growth on media and spore morphologies: A, B- Aspergillus	114
	Niger; C, D- Aspergillus Fumigatus	
4.3	PDI of the optimized Neem essential oil chitosan nanoparticles	141
4.4	PDI of the optimized Cinnamon essential oil chitosan nanoparticles	142
4.5	PDI of the optimized Clove essential oil chitosan nanoparticles	142
4.6	PDI of the optimized Carom essential oil chitosan nanoparticles	143
4.7	SEM image of optimized neem essential oil chitosan nanoparticles	149
4.8	SEM image of optimized cinnamon essential oil chitosan nanoparticles	149
4.9	SEM image of optimized clove essential oil chitosan nanoparticles	150

4.10	Padding mangle	151
4.11	Antibacterial activity of the treated cotton (on the left of the petri dish)	152
	and polyester fabric (on the right of the petri dish) against Bacillus	
	cereus. A-Neem oil chitosan	
	nanoparticle, B- Cinnamon oil chitosan nanoparticle, C- Clove oil	
	chitosan nanoparticle, and D- Cinnamon and Clove oil chitosan	
	nanoparticle	
4.12	Antibacterial activity of the treated cotton (on the left of the petri dish)	154
	and polyester fabric (on the right of the petri dish) against	
	Staphylococcus aureus. A-Neem oil chitosan nanoparticle, B-	
	Cinnamon oil chitosan nanoparticle, C- Clove oil chitosan	
	nanoparticle, and D- Cinnamon and Clove oil chitosan nanoparticle	
4.13	Antibacterial activity of the treated cotton (on the left of the petri dish)	156
	and polyester fabric (on the right of the petri dish) against	
	Pseudomonas. A-Neem oil chitosan nanoparticle, B- Cinnamon oil	
	chitosan nanoparticle, C- Clove oil chitosan nanoparticle, and D-	
	Cinnamon and Clove oil chitosan nanoparticle	
4.14	Antibacterial activity of the treated cotton (on the left of the petri dish)	158
	and polyester fabric (on the right of the petri dish) against Escherichia	
	coli. A-Neem oil chitosan nanoparticle, B- Cinnamon oil chitosan	
	nanoparticle, C- Clove oil chitosan nanoparticle, and D- Cinnamon and	
	Clove oil chitosan nanoparticle	
4.15	Antibacterial activity of blank chitosan nanoparticles on cotton (on the	160
	left of the petri dish) and polyester fabric (on the right of the petri dish)	
	against A-Bacillus cereus, B- Staphylococcus aureus, C-	
	Pseudomonas, and D- Escherichia coli.	
4.16	Antifungal activity of the treated cotton fabric against <i>Aspergillus</i>	163
	fumigatus (A- Neem nanoparticles, B- C1NP- Cinnamon nanoparticles,	
	C- C2NP-Clove nanoparticles, and D- C1NP+C2NP- Cinnamon and	
	Clove nanoparticle)	
4.17	Antifungal activity of the treated polyester fabric against Aspergillus	164
	<i>fumigatus</i> (A- Neem nanoparticles, B- C1NP- Cinnamon nanoparticles,	

	C- C2NP-Clove nanoparticles, and D- C1NP+C2NP- Cinnamon and	
	Clove nanoparticle)	
4.18	EDX analysis of neem essential oil chitosan nanoparticle coated cotton	166
	fabric	
4.19	EDX analysis of Cinnamon essential oil chitosan nanoparticle coated	166
	cotton fabric	
4.20	EDX analysis of Clove essential oil chitosan nanoparticle coated cotton	167
	fabric	
4.21	EDX analysis of Cinnamon and Clove essential oil chitosan	167
	nanoparticle coated cotton fabric	
4.22	EDX analysis of neem essential oil chitosan nanoparticle coated	168
	polyester fabric	
4.23	EDX analysis of cinnamon essential oil chitosan nanoparticle coated	168
	polyester fabric	
4.24	EDX analysis of clove essential oil chitosan nanoparticle coated	169
	polyester fabric	
4.25	EDX analysis of cinnamon+ clove essential oil chitosan nanoparticle	169
	coated polyester fabric	
4.26	Change in % entrapment efficiency of Clove essential oil chitosan	174
	nanoparticle treated cotton fabric after exposing to different storage	
	condition for two months	
4.27	Jars kept in an incubator room at 24C at RH 70% for 14 days	175
4.28	From left- Untreated fabric, C1NP, C2NP, NNP, C1NP + C2NP treated	175
	cotton fabrics exposed to cigarette beetle larvae	