Chapter 4

Halo orbits around Ly, Lo and L3
for Sun-Mars system in the
elliptical restricted three body

problem with radiation pressure

4.1 Introduction

In Ch. 2, halo orbits around L, Ly and L3 are computed in CRTBP framework and
effects of perturbations of radiation pressure and oblateness on parameters of halo or-
bits are analyzed. In solar system, planets and other celestial bodies move in elliptical
orbits. So, it becomes necessary to study ERTBP for understanding the behaviour
of celestial objects. Researchers (Danby (1964), Bhatnagar and Hallan (1978), Rabe
(1973), Meire (1981), Markellos et al. (1992), Roberts (2002), Kumar and Narayan
(2012), Gyorgyey (1985), Kumar and Choudhry (1990), Douskos and Markellos (2006),
Suraj et al. (2018), and Hussain and Umar (2019)) have computed libration points of
ERTBP and studied their linear and non-linear stability. The study shows that the
stability of Lagrangian points is affected due the to non-zero value of eccentricity of
orbit of primaries. Also, the location and the size of the stability region depends on
the value of eccentricity of the orbit of the primaries. This gives motivation for finding
halo orbits in ERTBP framework.

For the CRTBP, a significant amount of analytical and numerical work for halo or-
bits has been performed, whilst relatively fewer analytical results are available for the
ERTBP. Luo et al. (2018) have obtained natural formation flying on quasi-halo orbits in
photogravitational CRTBP using a method based on ergodic Poincaré mapping. Peng
et al. (2017b) have used the Monte Carlo method in a pulsating synodic system for the
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study of the maintenance of libration point orbit in elliptic Sun-Mercury model. The
Hamiltonian of ERTBP explicitly depends on the independent variable, time, which
makes the computation as well as the study of properties of two and three dimensional
periodic and quasi-periodic orbits difficult. Palacian et al. (2006) and Neishtadt et al.
(2021) have averaged the Hamiltonian of ERTBP with respect to independent variable
time for simplifying the computations and obtained new family of periodic orbits in
spatial ERTBP. Peng and Xu (2015) and Peng et al. (2017a) have used the numerical
technique for finding multi-revolution elliptic halo orbits and studied the stability of
these orbits for M5N2, M7N3 and M9N4 resonant orbits.

In ERTBP, independent variable appears explicitly in the equations of motion of in-
finitesimal body which makes the computation of halo orbits difficult. Lindstedt-
Poincaré method is the most commonly used method for finding halo orbits. The
solutions obtained using Lindstedt-Poincaré method are revised by applying differen-
tial correction method. For simplifying the computations, the eccentric anomaly is
considered as independent variable and the equations of motion are averaged with re-

spect to it.

In this chapter, a first guess for halo orbits around collinear Lagrangian points is
obtained using the Lindstedt-Poincaré method upto the third order approximation.
This analytical solution is taken as an initial guess in differential correction method
and a revised, more precise solution is obtained. Further, the more massive primary is
considered as a source of radiation and the effects of this perturbation on parameters
of halo orbits are analyzed. So, in this study ¢; = ¢ and ¢ = 1 is taken in equation
(1.25). This model is applied to the Sun-Mars system and bifurcation point of halo
orbits from planar Lyapunov orbits for different radiation pressures of the Sun are
computed. The stability of halo orbits is studied and the effects of solar radiation on
stability region are observed. For bifurcation and stability analysis, natural parameter
continuation is used. The variations in size, location, amplitude and period of halo
orbits due to radiation pressure are shown graphically. At last, a graphical comparison
between halo orbits in CRTBP and ERTBP framework is done which shows the effect
of eccentricity of primaries’ orbit on parameters of halo orbits. All lengthy expressions

appearing in computation of analytic solution are given in Appendix B.
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4.2 Computation of halo orbits

The procedure of computation of halo orbits is similar in CRTBP and ERTBP. In
ERTBP also, the origin is translated to the Lagrangian point and the new coordinate
system is normalized by dividing with the distance v between the Lagrangian point
and the nearest primary as described in Chapter 2. The transformation (2.1) is used
to get the coordinates in new coordinate system zgyz. In this case, v is the root
of the polynomial (1.38), (1.39) or (1.40). Then the equations of motion (1.24) get

transformed to

& —of =22,
V2 0x
Y+ 27 :%g—gy}, (4.1)
L _ 109
v2 07’
where
0t (07— ur 1z an2) + S B )
Ry =/(YZ+1F )2+ (79)* + (72)?, (4.3)
Ry =/ (72 F 7)? + (79)? + (72)?, (4.4)
for Ly and Lo. And for Ls,
0-—t 30 -n-aprem) + L5 2] )
Ri =/ (v = 7)? + (v9)? + (72)?, (4.6)
Ry =/(vZ =7 = 1)2 + (79)? + (72)%. (4.7)

In (4.2), the upper sign corresponds to L; and the lower sign corresponds to Ls. By
using the generating function relation (2.11) of the classical Legendre polynomials for
expansion of 1/R; and 1/Rs, system (4.1) gets transformed to (Koon et al. (2011,
p.146)):
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m>3
7' 427+ (b — ) = 2= Y bt Py <f> : (4.8)
Yy m>3 v
z//_’_bQZ: NmeVum ? ,

82’ m>3 v

where
1

o =

m >0, for Ly and Lo,

)

by = [(1 — (-1 (L)m ()™

1F~y

and for Ls,
1

- V31 — €2
In the expansion of 1/R; and 1/Ry, the terms containing the products of Legendre
polynomials are neglected. In system (4.8), the left hand side has all linear terms and

non-linear terms in z,y and z are collected on the right hand side. The solution of the

m+1
v
b 1— L > 0.
m ( u)q+u<1+7> ]7m_0

linear system corresponding to the non-linear system (4.8) is given by
T(E) =A1XF + Aye™F 4 Aycos \E + Ay sin \E,
U(E) = — k1 A1 + k1 Aye™F — Ky Agsin AE + kg Ay cos AE, (4.9)
Z(E) =c; cos \/boE + ¢y sin /by E,

where Aq, Ag, A3, Ay, c1 and ¢y are arbitrary constants. The quantities x, A, k1 and ko

are given by

X:\/—(4—bg—2a)+\/16+9b§—16a—8bz
2 )

/\_\/(4—b2—2a)+\/16+9b§—16a—862

2
o+ 2by — x?
K| =,
2x
A2+ o+ 2by
Ky =————.
2 2\
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Since y and —y are two real roots of the characteristic equation of the linearized
system having same magnitude and opposite signs, the solution (4.9) is unbounded.
For getting a bounded solution, the values of A; and A, are taken to be zero. Also,
remaining arbitrary constants are selected as: A3 = — Az cos ¢, Ay = Az sin ¢,

c1 = Azsint), o = Az costp. Then solution (4.9) can be expressed as:

T(E) = — Az cos(AE + ¢),
J(E) =rkAzsin(A\E + ¢), (4.10)
3(E) = Assin(\/boE + ).

Here, k = ko; Az, A, ¢, respectively, are the in-plane amplitude, frequency and phase;
Az, /by, 1) are out-of-plane amplitude, frequency and phase, respectively. Since the
in-plane and out-of-plane frequencies are not equal, quasi-periodic Lissajous orbits are
obtained if the ratio of these frequencies is irrational. For getting periodic orbits, in

this case (ERTBP) also the last equation of system (4.8) is expressed in the form

0 T
~1/ 2~ m ~

m>3

where A = \2 — b, is the frequency correction term.

4.2.1 Analytic computation of halo orbits using Lindstedt-

Poincaré method

As described in Chapter 2, the non-linear terms of system (4.8) give rise to secular
terms in successive approximations. So, the new independent variable 7 = WF, w
being the frequency connection term, is considered. Then system (4.8) in terms of
new independent variable 7 can be expressed as (Richardson (1980) and Thurman and
Worfolk (1996))

2D% _ 2wD7 ) boop (E
W D*T — 2wDY — (a + 2by)T 8vamV,

w?D*y 4 2wDT + (by — )y Z bt P, ( ) : (4.12)

m>3

2 N2> 2~ m E =
w2D?Z 4+ \ _8—,52bw Pm<;)+Az,

m>3

where D denotes differentiation with respect to 7. System (4.12) is obtained by replac-
ing the last equations of system (4.8) with the equation (4.11). For finding the third

order approximate solution, series in system (4.12) is expanded upto m = 4. Then we
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get,

- - 3, o
WD*T — 20Dy — (a4 2b,)T = 563(2.%2 — % = Z%) + 2047 (22% — 3y — 372),
~ - - 3,
w?*D*§ 4+ 2wDT + (by — @)y = — 3b3TY — 5b4y(452 —y? =77, (4.13)

- - 3, -
w?D?Z + \?Z = — 3b37z — §b4z(4x2 -7 =2+ Az

Consider the solution of the system (4.13) in the perturbation form as (Thurman and
Worfolk (1996)) given in equations (1.41)-(1.44). Since we want to find the third order
solution, the series in equations (1.41)-(1.44) are terminated after three terms. Then

the solution will have following form:

X(1) = X1 (1) + €Xa(1) + € X3(7), (4.14)
Y (1) = €Yi(7) + €Ya(T) + €Y3(7), (4.15)
Z(1) = €Zy(T) + € Zo(7) + €3 Z3(7), (4.16)
and
w=1+ew; + wy + ws. (4.17)

Using (4.14)-(4.17) into third order equations (4.13) and equating the coefficients of
€,e? and €, the first, second and third order solutions are obtained, respectively.
The first order equations
Equating the coefficients of ¢, the first order equations are obtained as

D2§1 — QDgl - (Oé + 2()2)%1 = 0,

D*y; 4+ 2DTy + (b — a)ih = 0, (4.18)
ngl + )\251 =0.

The periodic solutions of above system are given by

T1(1) = — Az cos(AT + ),
y1(7) = KAz sin(AT + ¢), (4.19)
’ZVl (7’) = Ag Sin(>\7' + 77/})

The second order equations

Incorporating the first order solutions (4.19) of the system (4.18) into the equations of

motion (4.13) and then equating the coefficients of €, the second order equations are
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computed as

D?%y — 2D — (a + by)To = Yo,
D2y + 2DTy + (by — @)Yy = Y22, (4.20)
D?Zy + N\°Zy = Y23,

where

TI=AT+ ¢, To=A+1,
Va1 = 2w AAz (K — A) cos Ty + ayq + 71 €08 2T + 72 €OS 2Ty,
Yoz = 2w AAz(Ak — 1) siny + [y sin 27,

Yoz = 2w A2 AzsinTy + 01 sin(7, + 7o) + 9y sin(me — 71),

and remaining coefficients are given in Appendix B. Since the solution of the linearized
system corresponding to the system (4.13) is already considered while obtaining the
second order equations (4.20), it is sufficient to find particular integral of the system
(4.20). The secular terms appearing in the particular integral can be removed by

setting wy; = 0. Then the solutions of the system (4.20) are

To(T) = pao + P21 COS 2Ty + pag €OS 27y,
?72(7-) =021 Sin27'1 + 099 sin27'2, (421)

Zo(T) = Koy 8in(1y + T2) + Kog sin(m — 7).

All the coefficients appearing in the solution (4.21) are given in Appendix B.

The third order equations

By embedding the solutions of the first and second order equations into system (4.13)

and equating the coefficients of €2, the third order equations can be obtained as

D?*%5 — 2D7y3 — (o + 2by)T3 = 731,
D*y5 + 2D%5 + (by — )3 = 732, (4.22)
Dng + )\253 = 733,

where
Y31 = (11 + 2w A Az (K — )] cos 1 + 73 cos 3Ty + Y4 €08(272 + T1) + Y5 cos(2m — ),
Y32 = [Va + 2w AAz(Ak — 1)]sin Ty + Posin 371y + B3 sin(279 + 71) + By sin(272 — 11),

Y33 = [Vg + (2wa A + A)Ag} sin 7y + g 8in 379 + 03 8in (277 + 12) + 4 8in (21 — 7o),
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and remaining coefficients are listed in Appendix B. The terms cos 11, sin 71, sin 7,

cos(21y — 1), sin(2m, — 1) and sin(2m; — 7) appearing in 731, y32 and 733 generate
secular terms in the solution which cannot be removed by just selecting a value of ws.
For removing the secular terms from the solution generated due to the last equation
of the system (4.22), two conditions must be satisfied. First, the in-plane and out-of-
plane phases ¢ and 1, respectively, are adjusted such that sin(27 — 75) & sin(7z). For

this, the relationship between the phases
s

must be satisfied. Relation (4.23) is called phase angle relation. Using the phase angle
relation (4.23) in the expression of 733, secular terms can be removed from the solution

of the last equation of system (4.22) if
Vs + (2(,(}2)\2 + A)Ag - (54 = 0. (424)

Equation (4.24) is the second condition for removing the secular term from the solution
of the last equation of system (4.22) and it is called amplitude constraint relation. The
first two equations of system (4.22) are coupled equations, so the secular terms arising
in their solution can be removed by using the single condition (Thurman and Worfolk

(1996))
(11 + 2w A Az (K — A) —95) — k(e + 2w AAz( Ak — 1) — B4) =0 (4.25)

from which the value of ws can be obtained as

Wy — (11 —5) — k(e — Ba)
2T DA;(AREH 1) — 25R)

Simplifying,
Wy = SlAg. + SQA?. (426)

The quantities s; and s, are given in Appendix B. Substituting above expression of wy

in (4.24), the amplitude constraint can be expressed in the form
LAZ +1,A2+ A =0, (4.27)

where [; and [, are given in Appendix B.
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Using conditions (4.23), (4.24) and (4.25) into system (4.22), revised third order equa-

tions are

D?*%3 — 2D73 — (a0 + 2by) T3 = kf5 cos Ty + (73 — 74) cos 371,
ngg + 2D:fg + (b2 - Oé):gg :65 sin T + (ﬂg - 53) sin 37'1, (428)
D2’53—|—)\223 :(—1)%_1(53—52) COS?)7'1, P = 1,3,

where 5 = vg + 2w Az (Ak — 1) — Sy
The solution of system (4.28) is given by

T3(7) =p31 cos 37y,
y3(7) =031 8in 31 + 032 8in 7, (4.29)

z3(7) :(—1>L;1/<031 cos3m, p=13.

The coefficients ps1, 031,032 and k3 are given in Appendix B.

Final approximation

Final approximate solution for the initial guess of halo orbits can be obtained by
substituting the first, second and third order solutions in the equations (4.14)-(4.17).
From these expressions, € can be removed by using the transformation A; — A;/e
and A; — A;/e. Then the final solution becomes (Thurman and Worfolk (1996) and
Tiwary and Kushvah (2015))

%(T) = P20 — Aj; cos Ty + (p21 — pgg) COSs 27’1 + P31 COS 37’1,
y(7) = (kAz + 032) sin Ty + (021 — 022) $in 27y + 031 sin 37y, (4.30)

~ p—1
Z(1) =(—1) 2 (Az;co8T + Koy COS2T1 + Koo + K31 cos37y), p=1,3.

Using solution (4.30), the third order approximate solution for halo orbits around

collinear Lagrangian points in ERTBP can be obtained.

4.2.2 Numerical computation of halo orbits using Differential

Correction method

Analytic solution obtained using equation (4.30) is revised using DC method. For
applying DC method, system (1.24) is converted to corresponding first order system
of Ordinary Differential Equations (ODEs) and this first order system is solved using
using the inbuilt function ode113 of MATLAB with relative tolerance 2.5 x 10~* and
absolute tolerance 10722, In odel13, the analytic solution computed from (4.30) is

used as initial condition. Then the numerical solution obtained using ode113 function
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is revised using DC method and this process is repeated till the error between two
successive solutions become less than 1072, In most of the cases, desired accuracy is

achieved within five iterations.

System (1.24) can be converted to first ODEs as follows. Let

T =@, T2 =Y, I3 = 2,

— / — o/ _
vy =2, x5=19y", wg=2"

Then system (1.24) becomes

Ty = 1y,

Ty = w5,

Ty = T,
1 1-— z + r1+u—1

Y= 2w [ (L= paler+p) o+ >],
—e€ 1 T

/ (I—pg n

Ty = —2x4 + — [1— 3 _Elm%

1
V1 —e?

The Sun-Mars system with eccentricity e = 0.0935, the eccentricity of the orbit of
the Mars around the Sun, is considered to check the applicability of the model. Here,
the Sun is the source of radiation and there is no perturbation due to the Mars. So,
¢1 = q and ¢ = 1 is substituted in system (1.24) to get above first order system. In
Tables 4.1-4.4, a comparison between the state vectors computed using analytic and
numerical method at initial time and after half period are given for halo orbits around
Ly. A similar comparison between state vectors of halo orbits around L, are given in
Tables 4.5-4.8. These state vectors are computed for ¢ = 1.000,0.995,0.990 and 0.985.
From Tables 4.1-4.8, it can be noted that the y, 2’ and 2z’ components of state vectors
at half period are closer to zero when the analytical solution is revised using the DC
method. So, more accurate solution for finding halo orbits can be obtained when the

analytical solution is revised using the DC method.
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Chapter 4. Halo orbits around Ly, Lo and L3 for Sun-Mars system in the elliptical
restricted three body problem with radiation pressure

4.3 Bifurcation and Stability analysis

Bifurcation of halo orbits from planar Lyapunov orbits can be identified using the eigen
values of monodromy matrix. Also, these eigenvalues are useful for stability analysis
of halo orbits. A State Transition Matrix (STM) evaluated at one orbital period is
called monodromy matrix. For a periodic orbit, STM is a 6x6 matrix, so monodromy
matrix is a 6x6 matrix. The eigenvalues of this matrix, \;, are always in reciprocal
pairs and one pair, called the trivial pair, has eigenvalues equal to one (Zimovan (2017)
and Vutukuri (2018)). The stability index of a periodic orbit is defined as

| |
=Nt
v 2< +>\i>

Since the eigenvalues are in reciprocal pairs, there are three stability indices, v, v and
v3. The stability index corresponding to the trivial pair is o, = 1 and the out of plane

stability index is denoted by vs.

4.3.1 Bifurcation analysis

For finding the bifurcation point of halo orbits from planer Lyapunov orbits, a family
of planar Lyapunov orbits is obtained. A family of periodic orbits can be generated
using natural parameter continuation or pseudo arclength continuation method. Here,
natural parameter continuation method is used for generating a family of planar Lya-
punov as well as halo orbits. In this method, a solution obtained by revising an analytic
guess using a differential correction is considered. Then, one parameter of this revised
solution is varied. In most of the cases, variation is made in xq, yo, 20, time of flight or
in a parameter having physical significance. Then, in the existing solution, old value
of parameter is replaced by the revised value of parameter and this solution is used as
an initial guess in DC method. This will provide a new trajectory in the neighborhood
of previously existing trajectory. This process is continued to generate new family
members. Here, the parameter which is modified should not be included in the free
variable vector (Zimovan (2017)). The algorithm of natural parameter continuation
method with increments in xz is described below for an arbitrary three dimensional

periodic orbit.
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1. Using DC method, get a periodic orbit with initial condition
Zo,j
0
* — ZOJ
7J O
?J(/),j
0

and period Tj. The superscript * refers to a solution modified using DC method.

No superscript implies an initial guess.

2. Increase the value of zy by a small quantity, say , which will give a new initial

guess of a nearby family member,

To; + 3
0
207]‘

0
Z/E),j

0

X0,j+1 =

with period 7j. The value of 8 depends on the sensitivity of the system, but in

most of the cases, it is £0.0001 dimensionless units.

3. Now, use Xgj+1 as an initial guess in DC to obtain a revised nearby solution

Xoj+1*. Here, z-coordinate should not be included in the free variable vector.

4. The DC method gives a nearby solution or a family member, with initial condi-
tions -~ _
To;+ 0
0

20,5+1

0

*
X0,j+1 =

/
Yo,5+1

0

with period T}4q.
5. This process is repeated to generate the family.

Once the family of planar Lyapunov orbits is generated, the stability indices of each

member of this family are obtained. When the stability index of a pair of eigenvalues
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crosses the line v = 1, tangent bifurcation occurs. In this study, two tangent bifur-
cations occur as out of plane stability index v3 crossed the line v3 = 1 two times. In
Fig. 4.1(A) and Fig. 4.1(B), halo and axial bifurcations around L; and L, respectively,
are shown for four different values of mass reduction factor (¢). Here, the curves of
stability index 13 corresponding to ¢ = 1.000,0.995,0.990 and 0.985 are plotted in
blue, red, green and magenta colour, respectively. In natural parameter continuation,
as we move from the Sun-Mars L; towards the Sun, stability index v3 increases and
crosses the line v3 = 1. Here, halo bifurcation occurs. If we further move towards the
Sun, the stability index v3 attains a maximum and then starts decreasing and again
crosses the line v3 = 1. Here, axial bifurcation occurs. From Figs. 4.1(A) and 4.1(B),
it can be observed that as the radiation pressure increases, the separation between

halo and axial bifurcation around L; and L increases.
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4.3.2 Stability analysis

The linear stability of a periodic orbit can be analyzed from its stability indices.
Excluding the trivial pair of eigen values, if remaining two stability indices of an
orbit have modulus less than one, then the orbit is stable in linear sense. If either
of the stability index has magnitude greater than one, then the orbit is unstable. In
Fig. 4.2(A), the stability curves for halo orbits around L; with ¢ = 1 are plotted. It
can be observed from the Fig. 4.2(A) that halo orbits around L; are stable when z-
coordinate of these orbits lie in the interval [0.996893099, 0.998688516]. For ¢ = 0.995,
the stability curves for halo orbits around L; are plotted in Fig. 4.2(B). In this case,
the stable orbits lie in the range 0.995590245 < x < 0.995671331. From Fig. 4.2, it can
be noted that due to radiation of the Sun, the region of stability shrinks and it shifts
towards the Sun. Further, a comparison between the present study and classical study
done by Howell (1984) shows due to the non-zero value of eccentricity of primaries’

orbit, the stability index 14y goes closer to zero.
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FIGURE 4.3: Variation in size of halo orbits around L, against variation in
radiation pressure
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4.4 Results and Discussion
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Halo orbits around Lq, L, and L3 of the Sun-Mars system in ERTBP framework are
plotted in a dimensionless synodic coordinate system zyz, having origin at the barycen-
tre of the primaries, for analyzing the effects of solar radiation pressure on parameters
of these orbits. By multiplying with the distance between the Sun and the Mars, the
orbits in actual dimensions can be obtained. These orbits are plotted using MATLAB
by taking e = 0.0935, the eccentricity of the orbit of the Mars around the Sun, z-
amplitude A; = 1.25 x 10°km, phases ¢ = m and ¢ = ¢ + 7/2(p = 1). The values
of masses of the Sun and the Mars, and the eccentricity of the orbit of the Mars are
taken from NASA Fact Sheets for Sun and Mars (https://nssdc.gsfc.nasa.gov/
planetary/factsheet/sunfact.html, https://nssdc.gsfc.nasa.gov/planetary/
factsheet/marsfact.html).
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FIGURE 4.6: Variation in location of Lagrangian points against variation in
radiation pressure

In Fig. 4.3, Fig. 4.4 and Fig. 4.5, halo orbits around L;, L, and L3, respectively, are
plotted for ¢ = 1.000,0.995,0.990 and 0.985. In these figures, orbits in blue, red, green
and magenta colour correspond to ¢ = 1.000,0.995,0.990 and 0.985, respectively. Halo
orbits around L; are plotted in Fig. 4.3(A) and their xy,yz and xz projections are
shown in Figs. 4.3(B), 4.3(C) and 4.3(D), respectively. It can be noted that due to
solar radiation pressure, halo orbits around L; contract. Fig. 4.4(A) shows halo orbits
around Lo and the two dimensional projections of these orbits are given in Figs. 4.4(B),
4.4(C) and 4.4(D). From Figs. 4.4 and 4.5 it can be concluded that with the increase

in the solar radiation pressure, halo orbits around L, and L3 expand.

The change in the location of collinear Lagrangian points due to radiation of the Sun is
shown in Fig. 4.6. Here, z-coordinate of Lagrangian point L; (i = 1,2, 3), in kilometer,
is taken on y-axis and the values of mass reduction factor in the interval [0.92, 1] are

taken on z-axis. The value ¢ = 1 shows that the perturbation due to solar radiation is
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FIGURE 4.7: Variation in amplitude of orbits against variation in radiation
pressure

neglected. From Fig. 4.6(A), it can be observed that as the value of ¢ decreases, the z-
coordinate of L also decreases which demonstrates that halo orbits around L; move
closer to the Sun. The z-coordinate of Ly decreases as the radiation pressure increases,
which shows Lo shifts towards the Mars as well as the Sun. Also, from Fig. 4.6(C), it
can be noted that the z-coordinate of L3 also decreases with the increase in the solar

radiation. So, L3 moves away from the Sun and the Mars due to radiation of the Sun.

Fig. 4.7 shows the change in the x amplitude of halo orbits around all three collinear
Lagrangian points due to change in the radiation pressure. By taking A; = 1.25 x 105
km, the corresponding value of A; is computed using the amplitude constraint relation
(4.27). Fig. 4.7(A) shows the value of A; increases as the value of ¢ decreases from 1
to 0.9895 but for 0.92 < ¢ < 0.9895, the value of A; also decreases with the decrease
in q. So, Az and ¢ are related by a non-monotonic and non-linear function where as

Fig. 4.7(B) shows A; is a monotonically decreasing function of g for halo orbits around
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Ly. In this case also, the relationship is non-linear. From Fig. 4.7(C), it is clear that
r-amplitude of halo orbits around Lj increases with the increase in solar radiation

pressure.

The effect of radiation on period of halo orbits around collinear Lagrangian points can
be analyzed from Fig. 4.8. Due to increase in radiation, period of halo orbits around
L, and Lj increases whereas period of halo orbits around L decreases. Fig. 4.8(A)
shows that period of halo orbits around L; is a non-linear monotonically increasing
function of radiation pressure. From Fig. 4.8(B), it can be observed that period of
halo orbits around L, is a monotonically decreasing function of radiation pressure. In
this case also the relation is non-linear. Period of halo orbits around L3 is a linear

monotonically increasing function of solar radiation (Fig. 4.8(C)).

A graphical comparison between halo orbits in CRTBP and ERTBP framework around
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FIGURE 4.9: Variation in size of orbits around L in CRTBP and ERTBP

Ly is given in Fig. 4.9. The zy,yz and xz projections of halo orbits in Fig. 4.9(A)
are given in Figs. 4.9(B), 4.9(C) and 4.9(D), respectively. It is apparent from Fig. 4.9
that halo orbits shrink due to elliptic orbit of the primaries. From Fig. 4.10, similar
conclusion can be derived for halo orbits around Ls also. Here, in Figs. 4.9 and 4.10,

orbits in blue represent halo orbits in CRTBP framework and orbits in red represent
halo orbits in ERTBP framework.

In Fig. 4.11, variation in z-amplitudes of halo orbits around L; and Ls due to per-
turbation of solar radiation pressure is shown in CRTBP framework. A comparison
between values of amplitudes in Fig. 4.7(A) and 4.11(A) shows, amplitude of halo
orbits around L; in ERTBP framework is smaller than amplitude in CRTBP frame-
work. Similar conclusion for amplitudes of halo orbits around L, can be derived from
Fig. 4.11(B).
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4.5 Conclusions

The Lindstedt-Poincaré method upto the third order approximation is used for get-
ting an initial guess of halo orbits around collinear Lagrangian points L, Ly and L3 in
the ERTBP framework. This analytic guess is revised using the differential correction
method for acquiring more precise initial condition of halo orbits. The constructed
model is applied to the Sun-Mars system for finding halo orbits. In this computation,
the value of eccentricity e = 0.0935, the eccentricity of the orbit of the Mars around
the Sun, is considered. Also, the perturbation due to radiation of the Sun is considered

to analyze its effects on location of Lagrangian points and parameters of halo orbits.

Using the natural parameter continuation method, the bifurcation for halo and axial
orbits from the planar Lyapunov orbits is obtained. Further, the stability analysis of
halo orbits is also performed using the same method. The bifurcation analysis shows
that due to radiation pressure of the first primary, the separation between the halo and
axial bifurcation increases. Also, the radiation of the more massive primary reduces

the region of stability of halo orbits.

From the analysis of variations in parameters of halo orbits due to radiation, following

conclusions can be made:

e Due to radiation of the more massive primary, halo orbits around L; move closer

to the first primary, they shrink and their period increase.

e The z-amplitude, Az, is a non-linear and non-monotonic function of radiation

for halo orbits around L.

e Halo orbits around L, and L3 expand with the increase in radiation of the more

massive primary.

e As the radiation pressure increases, halo orbits around L, shift towards the

primaries, their amplitude and period decrease.

e Halo orbits around L3 move away from the primaries, their amplitude and period

increase.

Also, a comparison between halo orbits in ERTBP and CRTBP framework shows that
the orbits in ERTBP are smaller than the orbits in CRTBP. Further, the amplitude
of orbits in ERTBP is less than the amplitude in CRTBP. The effects of radiation
of the more massive primary on parameters of halo orbits are similar in CRTBP and
ERTBP. Also, the location of collinear Lagrangian points do not change due to the

elliptic orbit of the primaries.
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