
Chapter 4

Halo orbits around L1, L2 and L3

for Sun-Mars system in the

elliptical restricted three body

problem with radiation pressure

4.1 Introduction

In Ch. 2, halo orbits around L1, L2 and L3 are computed in CRTBP framework and

effects of perturbations of radiation pressure and oblateness on parameters of halo or-

bits are analyzed. In solar system, planets and other celestial bodies move in elliptical

orbits. So, it becomes necessary to study ERTBP for understanding the behaviour

of celestial objects. Researchers (Danby (1964), Bhatnagar and Hallan (1978), Rabe

(1973), Meire (1981), Markellos et al. (1992), Roberts (2002), Kumar and Narayan

(2012), Györgyey (1985), Kumar and Choudhry (1990), Douskos and Markellos (2006),

Suraj et al. (2018), and Hussain and Umar (2019)) have computed libration points of

ERTBP and studied their linear and non-linear stability. The study shows that the

stability of Lagrangian points is affected due the to non-zero value of eccentricity of

orbit of primaries. Also, the location and the size of the stability region depends on

the value of eccentricity of the orbit of the primaries. This gives motivation for finding

halo orbits in ERTBP framework.

For the CRTBP, a significant amount of analytical and numerical work for halo or-

bits has been performed, whilst relatively fewer analytical results are available for the

ERTBP. Luo et al. (2018) have obtained natural formation flying on quasi-halo orbits in

photogravitational CRTBP using a method based on ergodic Poincaré mapping. Peng

et al. (2017b) have used the Monte Carlo method in a pulsating synodic system for the
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study of the maintenance of libration point orbit in elliptic Sun-Mercury model. The

Hamiltonian of ERTBP explicitly depends on the independent variable, time, which

makes the computation as well as the study of properties of two and three dimensional

periodic and quasi-periodic orbits difficult. Palacián et al. (2006) and Neishtadt et al.

(2021) have averaged the Hamiltonian of ERTBP with respect to independent variable

time for simplifying the computations and obtained new family of periodic orbits in

spatial ERTBP. Peng and Xu (2015) and Peng et al. (2017a) have used the numerical

technique for finding multi-revolution elliptic halo orbits and studied the stability of

these orbits for M5N2, M7N3 and M9N4 resonant orbits.

In ERTBP, independent variable appears explicitly in the equations of motion of in-

finitesimal body which makes the computation of halo orbits difficult. Lindstedt-

Poincaré method is the most commonly used method for finding halo orbits. The

solutions obtained using Lindstedt-Poincaré method are revised by applying differen-

tial correction method. For simplifying the computations, the eccentric anomaly is

considered as independent variable and the equations of motion are averaged with re-

spect to it.

In this chapter, a first guess for halo orbits around collinear Lagrangian points is

obtained using the Lindstedt-Poincaré method upto the third order approximation.

This analytical solution is taken as an initial guess in differential correction method

and a revised, more precise solution is obtained. Further, the more massive primary is

considered as a source of radiation and the effects of this perturbation on parameters

of halo orbits are analyzed. So, in this study q1 = q and q2 = 1 is taken in equation

(1.25). This model is applied to the Sun-Mars system and bifurcation point of halo

orbits from planar Lyapunov orbits for different radiation pressures of the Sun are

computed. The stability of halo orbits is studied and the effects of solar radiation on

stability region are observed. For bifurcation and stability analysis, natural parameter

continuation is used. The variations in size, location, amplitude and period of halo

orbits due to radiation pressure are shown graphically. At last, a graphical comparison

between halo orbits in CRTBP and ERTBP framework is done which shows the effect

of eccentricity of primaries’ orbit on parameters of halo orbits. All lengthy expressions

appearing in computation of analytic solution are given in Appendix B.
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4.2 Computation of halo orbits

The procedure of computation of halo orbits is similar in CRTBP and ERTBP. In

ERTBP also, the origin is translated to the Lagrangian point and the new coordinate

system is normalized by dividing with the distance γ between the Lagrangian point

and the nearest primary as described in Chapter 2. The transformation (2.1) is used

to get the coordinates in new coordinate system x̃ỹz̃. In this case, γ is the root

of the polynomial (1.38), (1.39) or (1.40). Then the equations of motion (1.24) get

transformed to

x̃′′ − 2ỹ′ =
1

γ2
∂Ω

∂x̃
,

ỹ′′ + 2x̃′ =
1

γ2
∂Ω

∂ỹ
,

z̃′′ =
1

γ2
∂Ω

∂z̃
,

(4.1)

where

Ω =
1√

1− e2

[
1

2

(
(γx̃− µ+ 1∓ γ)2 + (γỹ)2

)
+

(1− µ)q

R1

+
µ

R2

]
, (4.2)

R1 =
√

(γx̃+ 1∓ γ)2 + (γỹ)2 + (γz̃)2, (4.3)

R2 =
√

(γx̃∓ γ)2 + (γỹ)2 + (γz̃)2, (4.4)

for L1 and L2. And for L3,

Ω =
1√

1− e2

[
1

2

(
(γx̃− µ− γ)2 + (γỹ)2

)
+

(1− µ)q

R1

+
µ

R2

]
, (4.5)

R1 =
√

(γx̃− γ)2 + (γỹ)2 + (γz̃)2, (4.6)

R2 =
√

(γx̃− γ − 1)2 + (γỹ)2 + (γz̃)2. (4.7)

In (4.2), the upper sign corresponds to L1 and the lower sign corresponds to L2. By

using the generating function relation (2.11) of the classical Legendre polynomials for

expansion of 1/R1 and 1/R2, system (4.1) gets transformed to (Koon et al. (2011,

p.146)):
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x̃′′ − 2ỹ′ − (α + 2b2)x̃ =
∂

∂x̃

∑
m≥3

bmν
mPm

(
x̃

ν

)
,

ỹ′′ + 2x̃′ + (b2 − α)ỹ =
∂

∂ỹ

∑
m≥3

bmν
mPm

(
x̃

ν

)
,

z̃′′ + b2z̃ =
∂

∂z̃

∑
m≥3

bmν
mPm

(
x̃

ν

)
,

(4.8)

where

α =
1√

1− e2
,

ν2 = x̃2 + ỹ2 + z̃2,

bm =
1

γ3
√
1− e2

[
(1− µ)q(−1)m

(
γ

1∓ γ

)m+1

+ (±1)mµ

]
, m ≥ 0, for L1 and L2,

and for L3,

bm =
1

γ3
√
1− e2

[
(1− µ)q + µ

(
γ

1 + γ

)m+1
]
, m ≥ 0.

In the expansion of 1/R1 and 1/R2, the terms containing the products of Legendre

polynomials are neglected. In system (4.8), the left hand side has all linear terms and

non-linear terms in x̃, ỹ and z̃ are collected on the right hand side. The solution of the

linear system corresponding to the non-linear system (4.8) is given by

x̃(E) =A1e
χE + A2e

−χE + A3 cosλE + A4 sinλE,

ỹ(E) =− κ1A1e
χE + κ1A2e

−χE − κ2A3 sinλE + κ2A4 cosλE,

z̃(E) =c1 cos
√
b2E + c2 sin

√
b2E,

(4.9)

where A1, A2, A3, A4, c1 and c2 are arbitrary constants. The quantities χ, λ, κ1 and κ2

are given by

χ =

√
−(4− b2 − 2α) +

√
16 + 9b22 − 16α− 8b2
2

,

λ =

√
(4− b2 − 2α) +

√
16 + 9b22 − 16α− 8b2
2

,

κ1 =
α + 2b2 − χ2

2χ
,

κ2 =
λ2 + α + 2b2

2λ
.
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Since χ and −χ are two real roots of the characteristic equation of the linearized

system having same magnitude and opposite signs, the solution (4.9) is unbounded.

For getting a bounded solution, the values of A1 and A2 are taken to be zero. Also,

remaining arbitrary constants are selected as: A3 = −Ax̃ cosϕ,A4 = Ax̃ sinϕ,

c1 = Az̃ sinψ, c2 = Az̃ cosψ. Then solution (4.9) can be expressed as:

x̃(E) =− Ax̃ cos(λE + ϕ),

ỹ(E) =κAx̃ sin(λE + ϕ),

z̃(E) =Az̃ sin(
√
b2E + ψ).

(4.10)

Here, κ = κ2; Ax̃, λ, ϕ, respectively, are the in-plane amplitude, frequency and phase;

Az̃,
√
b2, ψ are out-of-plane amplitude, frequency and phase, respectively. Since the

in-plane and out-of-plane frequencies are not equal, quasi-periodic Lissajous orbits are

obtained if the ratio of these frequencies is irrational. For getting periodic orbits, in

this case (ERTBP) also the last equation of system (4.8) is expressed in the form

z̃′′ + λ2z̃ =
∂

∂z̃

∑
m≥3

bmν
mPm

(
x̃

ν

)
+∆z̃, (4.11)

where ∆ = λ2 − b2 is the frequency correction term.

4.2.1 Analytic computation of halo orbits using Lindstedt-

Poincaré method

As described in Chapter 2, the non-linear terms of system (4.8) give rise to secular

terms in successive approximations. So, the new independent variable τ = ωE, ω

being the frequency connection term, is considered. Then system (4.8) in terms of

new independent variable τ can be expressed as (Richardson (1980) and Thurman and

Worfolk (1996))

ω2D2x̃− 2ωDỹ − (α + 2b2)x̃ =
∂

∂x̃

∑
m≥3

bmν
mPm

(
x̃

ν

)
,

ω2D2ỹ + 2ωDx̃+ (b2 − α)ỹ =
∂

∂ỹ

∑
m≥3

bmν
mPm

(
x̃

ν

)
,

ω2D2z̃ + λ2z̃ =
∂

∂z̃

∑
m≥3

bmν
mPm

(
x̃

ν

)
+∆z̃,

(4.12)

where D denotes differentiation with respect to τ . System (4.12) is obtained by replac-

ing the last equations of system (4.8) with the equation (4.11). For finding the third

order approximate solution, series in system (4.12) is expanded upto m = 4. Then we
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get,

ω2D2x̃− 2ωDỹ − (α + 2b2)x̃ =
3

2
b3(2x̃

2 − ỹ2 − z̃2) + 2b4x̃(2x̃
2 − 3ỹ2 − 3z̃2),

ω2D2ỹ + 2ωDx̃+ (b2 − α)ỹ =− 3b3x̃ỹ −
3

2
b4ỹ(4x̃

2 − ỹ2 − z̃2),

ω2D2z̃ + λ2z̃ =− 3b3x̃z̃ −
3

2
b4z̃(4x̃

2 − ỹ2 − z̃2) + ∆z̃.

(4.13)

Consider the solution of the system (4.13) in the perturbation form as (Thurman and

Worfolk (1996)) given in equations (1.41)-(1.44). Since we want to find the third order

solution, the series in equations (1.41)-(1.44) are terminated after three terms. Then

the solution will have following form:

X(τ) = ϵX1(τ) + ϵ2X2(τ) + ϵ3X3(τ), (4.14)

Y (τ) = ϵY1(τ) + ϵ2Y2(τ) + ϵ3Y3(τ), (4.15)

Z(τ) = ϵZ1(τ) + ϵ2Z2(τ) + ϵ3Z3(τ), (4.16)

and

ω = 1 + ϵω1 + ϵ2ω2 + ϵ3ω3. (4.17)

Using (4.14)-(4.17) into third order equations (4.13) and equating the coefficients of

ϵ, ϵ2 and ϵ3, the first, second and third order solutions are obtained, respectively.

The first order equations

Equating the coefficients of ϵ, the first order equations are obtained as

D2x̃1 − 2Dỹ1 − (α + 2b2)x̃1 = 0,

D2ỹ1 + 2Dx̃1 + (b2 − α)ỹ1 = 0,

D2z̃1 + λ2z̃1 = 0.

(4.18)

The periodic solutions of above system are given by

x̃1(τ) = − Ax̃ cos(λτ + ϕ),

ỹ1(τ) =κAx̃ sin(λτ + ϕ),

z̃1(τ) =Az̃ sin(λτ + ψ).

(4.19)

The second order equations

Incorporating the first order solutions (4.19) of the system (4.18) into the equations of

motion (4.13) and then equating the coefficients of ϵ2, the second order equations are
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computed as

D2x̃2 − 2Dỹ2 − (α + b2)x̃2 = γ21,

D2ỹ2 + 2Dx̃2 + (b2 − α)ỹ2 = γ22,

D2z̃2 + λ2z̃2 = γ23,

(4.20)

where

τ1 =λτ + ϕ, τ2 = λτ + ψ,

γ21 =2ω1λAx̃(κ− λ) cos τ1 + α1 + γ1 cos 2τ1 + γ2 cos 2τ2,

γ22 =2ω1λAx̃(λκ− 1) sin τ1 + β1 sin 2τ1,

γ23 =2ω1λ
2Ax̃sinτ2 + δ1 sin(τ1 + τ2) + δ1 sin(τ2 − τ1),

and remaining coefficients are given in Appendix B. Since the solution of the linearized

system corresponding to the system (4.13) is already considered while obtaining the

second order equations (4.20), it is sufficient to find particular integral of the system

(4.20). The secular terms appearing in the particular integral can be removed by

setting ω1 = 0. Then the solutions of the system (4.20) are

x̃2(τ) = ρ20 + ρ21 cos 2τ1 + ρ22 cos 2τ2,

ỹ2(τ) =σ21 sin 2τ1 + σ22 sin 2τ2,

z̃2(τ) =κ21 sin(τ1 + τ2) + κ22 sin(τ2 − τ1).

(4.21)

All the coefficients appearing in the solution (4.21) are given in Appendix B.

The third order equations

By embedding the solutions of the first and second order equations into system (4.13)

and equating the coefficients of ϵ3, the third order equations can be obtained as

D2x̃3 − 2Dỹ3 − (α + 2b2)x̃3 = γ31,

D2ỹ3 + 2Dx̃3 + (b2 − α)ỹ3 = γ32,

D2z̃3 + λ2z̃3 = γ33,

(4.22)

where

γ31 = [ν1 + 2ω2λAx̃(κ− λ)] cos τ1 + γ3 cos 3τ1 + γ4 cos(2τ2 + τ1) + γ5 cos(2τ2 − τ1),

γ32 = [ν2 + 2ω2λAx̃(λκ− 1)] sin τ1 + β2 sin 3τ1 + β3 sin(2τ2 + τ1) + β4 sin(2τ2 − τ1),

γ33 =
[
ν3 + (2ω2λ

2 +∆)Az̃

]
sin τ2 + δ2 sin 3τ2 + δ3 sin(2τ1 + τ2) + δ4 sin(2τ1 − τ2),
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and remaining coefficients are listed in Appendix B. The terms cos τ1, sin τ1, sin τ2,

cos(2τ2 − τ1), sin(2τ2 − τ1) and sin(2τ1 − τ2) appearing in γ31, γ32 and γ33 generate

secular terms in the solution which cannot be removed by just selecting a value of ω2.

For removing the secular terms from the solution generated due to the last equation

of the system (4.22), two conditions must be satisfied. First, the in-plane and out-of-

plane phases ϕ and ψ, respectively, are adjusted such that sin(2τ1 − τ2) ≈ sin(τ2). For

this, the relationship between the phases

ψ = ϕ+
π

2
p, p = 1, 3 (4.23)

must be satisfied. Relation (4.23) is called phase angle relation. Using the phase angle

relation (4.23) in the expression of γ33, secular terms can be removed from the solution

of the last equation of system (4.22) if

ν3 + (2ω2λ
2 +∆)Az̃ − δ4 = 0. (4.24)

Equation (4.24) is the second condition for removing the secular term from the solution

of the last equation of system (4.22) and it is called amplitude constraint relation. The

first two equations of system (4.22) are coupled equations, so the secular terms arising

in their solution can be removed by using the single condition (Thurman and Worfolk

(1996))

(4.25)(ν1 + 2ω2λAx̃(κ− λ)− γ5)− κ(ν2 + 2ω2λAx̃(λκ− 1)− β4) = 0

from which the value of ω2 can be obtained as

ω2 =
(ν1 − γ5)− κ(ν2 − β4)

2λAx̃(λ(κ2 + 1)− 2κ)
.

Simplifying,

ω2 = s1A
2
x̃ + s2A

2
z̃. (4.26)

The quantities s1 and s2 are given in Appendix B. Substituting above expression of ω2

in (4.24), the amplitude constraint can be expressed in the form

l1A
2
x̃ + l2A

2
z̃ +∆ = 0, (4.27)

where l1 and l2 are given in Appendix B.
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Using conditions (4.23), (4.24) and (4.25) into system (4.22), revised third order equa-

tions are

D2x̃3 − 2Dỹ3 − (α + 2b2)x̃3 =κβ5 cos τ1 + (γ3 − γ4) cos 3τ1,

D2ỹ3 + 2Dx̃3 + (b2 − α)ỹ3 = β5 sin τ1 + (β2 − β3) sin 3τ1,

D2z̃3 + λ2z̃3 =(−1)
p−1
2 (δ3 − δ2) cos 3τ1, p = 1, 3,

(4.28)

where β5 = ν2 + 2ω2λAx̃(λκ− 1)− β4.

The solution of system (4.28) is given by

x̃3(τ) =ρ31 cos 3τ1,

ỹ3(τ) =σ31 sin 3τ1 + σ32 sin τ1,

z̃3(τ) =(−1)
p−1
2 κ31 cos 3τ1, p = 1, 3.

(4.29)

The coefficients ρ31, σ31, σ32 and κ31 are given in Appendix B.

Final approximation

Final approximate solution for the initial guess of halo orbits can be obtained by

substituting the first, second and third order solutions in the equations (4.14)-(4.17).

From these expressions, ϵ can be removed by using the transformation Ax̃ → Ax̃/ϵ

and Az̃ → Az̃/ϵ. Then the final solution becomes (Thurman and Worfolk (1996) and

Tiwary and Kushvah (2015))

x̃(τ) = ρ20 − Ax̃ cos τ1 + (ρ21 − ρ22) cos 2τ1 + ρ31 cos 3τ1,

ỹ(τ) = (κAx̃ + σ32) sin τ1 + (σ21 − σ22) sin 2τ1 + σ31 sin 3τ1,

z̃(τ) = (−1)
p−1
2 (Az̃ cos τ1 + κ21 cos 2τ1 + κ22 + κ31 cos 3τ1), p = 1, 3.

(4.30)

Using solution (4.30), the third order approximate solution for halo orbits around

collinear Lagrangian points in ERTBP can be obtained.

4.2.2 Numerical computation of halo orbits using Differential

Correction method

Analytic solution obtained using equation (4.30) is revised using DC method. For

applying DC method, system (1.24) is converted to corresponding first order system

of Ordinary Differential Equations (ODEs) and this first order system is solved using

using the inbuilt function ode113 of MATLAB with relative tolerance 2.5× 10−4 and

absolute tolerance 10−22. In ode113, the analytic solution computed from (4.30) is

used as initial condition. Then the numerical solution obtained using ode113 function
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is revised using DC method and this process is repeated till the error between two

successive solutions become less than 10−12. In most of the cases, desired accuracy is

achieved within five iterations.

System (1.24) can be converted to first ODEs as follows. Let

x1 = x, x2 = y, x3 = z,

x4 = x′, x5 = y′, x6 = z′.

Then system (1.24) becomes

x′1 = x4,

x′2 = x5,

x′3 = x6,

x′4 = 2x5 +
1√

1− e2

[
x1 −

(1− µ)q(x1 + µ)

r31
− µ(x1 + µ− 1)

r32

]
,

x′5 = −2x4 +
1√

1− e2

[
1− (1− µ)q

r31
− µ

r32

]
x2,

x′6 = − 1√
1− e2

[
1− (1− µ)q

r31
− µ

r32

]
x3.

The Sun-Mars system with eccentricity e = 0.0935, the eccentricity of the orbit of

the Mars around the Sun, is considered to check the applicability of the model. Here,

the Sun is the source of radiation and there is no perturbation due to the Mars. So,

q1 = q and q2 = 1 is substituted in system (1.24) to get above first order system. In

Tables 4.1-4.4, a comparison between the state vectors computed using analytic and

numerical method at initial time and after half period are given for halo orbits around

L1. A similar comparison between state vectors of halo orbits around L2 are given in

Tables 4.5-4.8. These state vectors are computed for q = 1.000, 0.995, 0.990 and 0.985.

From Tables 4.1-4.8, it can be noted that the y, x′ and z′ components of state vectors

at half period are closer to zero when the analytical solution is revised using the DC

method. So, more accurate solution for finding halo orbits can be obtained when the

analytical solution is revised using the DC method.
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Chapter 4. Halo orbits around L1, L2 and L3 for Sun-Mars system in the elliptical
restricted three body problem with radiation pressure

4.3 Bifurcation and Stability analysis

Bifurcation of halo orbits from planar Lyapunov orbits can be identified using the eigen

values of monodromy matrix. Also, these eigenvalues are useful for stability analysis

of halo orbits. A State Transition Matrix (STM) evaluated at one orbital period is

called monodromy matrix. For a periodic orbit, STM is a 6×6 matrix, so monodromy

matrix is a 6×6 matrix. The eigenvalues of this matrix, λi, are always in reciprocal

pairs and one pair, called the trivial pair, has eigenvalues equal to one (Zimovan (2017)

and Vutukuri (2018)). The stability index of a periodic orbit is defined as

νi =
1

2

(
λi +

1

λi

)
.

Since the eigenvalues are in reciprocal pairs, there are three stability indices, ν1, ν2 and

ν3. The stability index corresponding to the trivial pair is ν2 = 1 and the out of plane

stability index is denoted by ν3.

4.3.1 Bifurcation analysis

For finding the bifurcation point of halo orbits from planer Lyapunov orbits, a family

of planar Lyapunov orbits is obtained. A family of periodic orbits can be generated

using natural parameter continuation or pseudo arclength continuation method. Here,

natural parameter continuation method is used for generating a family of planar Lya-

punov as well as halo orbits. In this method, a solution obtained by revising an analytic

guess using a differential correction is considered. Then, one parameter of this revised

solution is varied. In most of the cases, variation is made in x0, y0, z0, time of flight or

in a parameter having physical significance. Then, in the existing solution, old value

of parameter is replaced by the revised value of parameter and this solution is used as

an initial guess in DC method. This will provide a new trajectory in the neighborhood

of previously existing trajectory. This process is continued to generate new family

members. Here, the parameter which is modified should not be included in the free

variable vector (Zimovan (2017)). The algorithm of natural parameter continuation

method with increments in x0 is described below for an arbitrary three dimensional

periodic orbit.
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1. Using DC method, get a periodic orbit with initial condition

x∗
0,j =



x0,j

0

z0,j

0

y′0,j

0


and period Tj. The superscript ∗ refers to a solution modified using DC method.

No superscript implies an initial guess.

2. Increase the value of x0 by a small quantity, say β, which will give a new initial

guess of a nearby family member,

x0,j+1 =



x0,j + β

0

z0,j

0

y′0,j

0


with period Tj. The value of β depends on the sensitivity of the system, but in

most of the cases, it is ±0.0001 dimensionless units.

3. Now, use x0,j+1 as an initial guess in DC to obtain a revised nearby solution

x0,j+1
∗. Here, x-coordinate should not be included in the free variable vector.

4. The DC method gives a nearby solution or a family member, with initial condi-

tions

x0,j+1
∗ =



x0,j + β

0

z0,j+1

0

y′0,j+1

0


with period Tj+1.

5. This process is repeated to generate the family.

Once the family of planar Lyapunov orbits is generated, the stability indices of each

member of this family are obtained. When the stability index of a pair of eigenvalues
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Figure 4.1: Out of plane stability index ν3

0.9945 0.995 0.9955 0.996 0.9965 0.997 0.9975 0.998 0.9985 0.999

x

-4

-2

0

2

4

6

8

10

S
ta

b
il
it

y
 I
n

d
e
x
, 

i

1

3

(A) q = 1

0.994 0.9945 0.995 0.9955 0.996

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

S
ta

b
il

it
y
 I

n
d

ex
, 

i

0.9956 0.9957 0.9958

x

0.95

1

1.05

1.1
S

ta
b

il
it

y
 I

n
d

ex
, 

i

3

1

(B) q = 0.995

Figure 4.2: L1 Halo family stability indices ν1 and ν3

crosses the line ν = 1, tangent bifurcation occurs. In this study, two tangent bifur-

cations occur as out of plane stability index ν3 crossed the line ν3 = 1 two times. In

Fig. 4.1(A) and Fig. 4.1(B), halo and axial bifurcations around L1 and L2, respectively,

are shown for four different values of mass reduction factor (q). Here, the curves of

stability index ν3 corresponding to q = 1.000, 0.995, 0.990 and 0.985 are plotted in

blue, red, green and magenta colour, respectively. In natural parameter continuation,

as we move from the Sun-Mars L1 towards the Sun, stability index ν3 increases and

crosses the line ν3 = 1. Here, halo bifurcation occurs. If we further move towards the

Sun, the stability index ν3 attains a maximum and then starts decreasing and again

crosses the line ν3 = 1. Here, axial bifurcation occurs. From Figs. 4.1(A) and 4.1(B),

it can be observed that as the radiation pressure increases, the separation between

halo and axial bifurcation around L1 and L2 increases.
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4.3.2 Stability analysis

The linear stability of a periodic orbit can be analyzed from its stability indices.

Excluding the trivial pair of eigen values, if remaining two stability indices of an

orbit have modulus less than one, then the orbit is stable in linear sense. If either

of the stability index has magnitude greater than one, then the orbit is unstable. In

Fig. 4.2(A), the stability curves for halo orbits around L1 with q = 1 are plotted. It

can be observed from the Fig. 4.2(A) that halo orbits around L1 are stable when x-

coordinate of these orbits lie in the interval [0.996893099, 0.998688516]. For q = 0.995,

the stability curves for halo orbits around L1 are plotted in Fig. 4.2(B). In this case,

the stable orbits lie in the range 0.995590245 ⩽ x ⩽ 0.995671331. From Fig. 4.2, it can

be noted that due to radiation of the Sun, the region of stability shrinks and it shifts

towards the Sun. Further, a comparison between the present study and classical study

done by Howell (1984) shows due to the non-zero value of eccentricity of primaries’

orbit, the stability index ν1 goes closer to zero.

(A) halo orbits around L1
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Figure 4.3: Variation in size of halo orbits around L1 against variation in
radiation pressure
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4.4 Results and Discussion

(A) halo orbits around L2
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Figure 4.4: Variation in size of halo orbits around L2 against variation in
radiation pressure

Halo orbits around L1, L2 and L3 of the Sun-Mars system in ERTBP framework are

plotted in a dimensionless synodic coordinate system xyz, having origin at the barycen-

tre of the primaries, for analyzing the effects of solar radiation pressure on parameters

of these orbits. By multiplying with the distance between the Sun and the Mars, the

orbits in actual dimensions can be obtained. These orbits are plotted using MATLAB

by taking e = 0.0935, the eccentricity of the orbit of the Mars around the Sun, z-

amplitude Az̃ = 1.25 × 106km, phases ϕ = π and ψ = ϕ + π/2 (p = 1). The values

of masses of the Sun and the Mars, and the eccentricity of the orbit of the Mars are

taken from NASA Fact Sheets for Sun and Mars (https://nssdc.gsfc.nasa.gov/

planetary/factsheet/sunfact.html, https://nssdc.gsfc.nasa.gov/planetary/

factsheet/marsfact.html).
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Figure 4.5: Variation in size of halo orbits around L3 against variation in
radiation pressure
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Figure 4.6: Variation in location of Lagrangian points against variation in
radiation pressure

In Fig. 4.3, Fig. 4.4 and Fig. 4.5, halo orbits around L1, L2 and L3, respectively, are

plotted for q = 1.000, 0.995, 0.990 and 0.985. In these figures, orbits in blue, red, green

and magenta colour correspond to q = 1.000, 0.995, 0.990 and 0.985, respectively. Halo

orbits around L1 are plotted in Fig. 4.3(A) and their xy, yz and xz projections are

shown in Figs. 4.3(B), 4.3(C) and 4.3(D), respectively. It can be noted that due to

solar radiation pressure, halo orbits around L1 contract. Fig. 4.4(A) shows halo orbits

around L2 and the two dimensional projections of these orbits are given in Figs. 4.4(B),

4.4(C) and 4.4(D). From Figs. 4.4 and 4.5 it can be concluded that with the increase

in the solar radiation pressure, halo orbits around L2 and L3 expand.

The change in the location of collinear Lagrangian points due to radiation of the Sun is

shown in Fig. 4.6. Here, x-coordinate of Lagrangian point Li (i = 1, 2, 3), in kilometer,

is taken on y-axis and the values of mass reduction factor in the interval [0.92, 1] are

taken on x-axis. The value q = 1 shows that the perturbation due to solar radiation is
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Figure 4.7: Variation in amplitude of orbits against variation in radiation
pressure

neglected. From Fig. 4.6(A), it can be observed that as the value of q decreases, the x-

coordinate of L1 also decreases which demonstrates that halo orbits around L1 move

closer to the Sun. The x-coordinate of L2 decreases as the radiation pressure increases,

which shows L2 shifts towards the Mars as well as the Sun. Also, from Fig. 4.6(C), it

can be noted that the x-coordinate of L3 also decreases with the increase in the solar

radiation. So, L3 moves away from the Sun and the Mars due to radiation of the Sun.

Fig. 4.7 shows the change in the x amplitude of halo orbits around all three collinear

Lagrangian points due to change in the radiation pressure. By taking Az̃ = 1.25× 106

km, the corresponding value of Ax̃ is computed using the amplitude constraint relation

(4.27). Fig. 4.7(A) shows the value of Ax̃ increases as the value of q decreases from 1

to 0.9895 but for 0.92 ⩽ q < 0.9895, the value of Ax̃ also decreases with the decrease

in q. So, Ax̃ and q are related by a non-monotonic and non-linear function where as

Fig. 4.7(B) shows Ax̃ is a monotonically decreasing function of q for halo orbits around
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Figure 4.8: Variation in period of orbits against variation in radiation pressure

L2. In this case also, the relationship is non-linear. From Fig. 4.7(C), it is clear that

x-amplitude of halo orbits around L3 increases with the increase in solar radiation

pressure.

The effect of radiation on period of halo orbits around collinear Lagrangian points can

be analyzed from Fig. 4.8. Due to increase in radiation, period of halo orbits around

L1 and L3 increases whereas period of halo orbits around L2 decreases. Fig. 4.8(A)

shows that period of halo orbits around L1 is a non-linear monotonically increasing

function of radiation pressure. From Fig. 4.8(B), it can be observed that period of

halo orbits around L2 is a monotonically decreasing function of radiation pressure. In

this case also the relation is non-linear. Period of halo orbits around L3 is a linear

monotonically increasing function of solar radiation (Fig. 4.8(C)).

A graphical comparison between halo orbits in CRTBP and ERTBP framework around
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Figure 4.9: Variation in size of orbits around L1 in CRTBP and ERTBP

L1 is given in Fig. 4.9. The xy, yz and xz projections of halo orbits in Fig. 4.9(A)

are given in Figs. 4.9(B), 4.9(C) and 4.9(D), respectively. It is apparent from Fig. 4.9

that halo orbits shrink due to elliptic orbit of the primaries. From Fig. 4.10, similar

conclusion can be derived for halo orbits around L2 also. Here, in Figs. 4.9 and 4.10,

orbits in blue represent halo orbits in CRTBP framework and orbits in red represent

halo orbits in ERTBP framework.

In Fig. 4.11, variation in x-amplitudes of halo orbits around L1 and L2 due to per-

turbation of solar radiation pressure is shown in CRTBP framework. A comparison

between values of amplitudes in Fig. 4.7(A) and 4.11(A) shows, amplitude of halo

orbits around L1 in ERTBP framework is smaller than amplitude in CRTBP frame-

work. Similar conclusion for amplitudes of halo orbits around L2 can be derived from

Fig. 4.11(B).
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Figure 4.10: Variation in size of orbits around L2 in CRTBP and ERTBP
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Figure 4.11: Variation in amplitude of halo orbits around L1 and L2
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4.5 Conclusions

The Lindstedt-Poincaré method upto the third order approximation is used for get-

ting an initial guess of halo orbits around collinear Lagrangian points L1, L2 and L3 in

the ERTBP framework. This analytic guess is revised using the differential correction

method for acquiring more precise initial condition of halo orbits. The constructed

model is applied to the Sun-Mars system for finding halo orbits. In this computation,

the value of eccentricity e = 0.0935, the eccentricity of the orbit of the Mars around

the Sun, is considered. Also, the perturbation due to radiation of the Sun is considered

to analyze its effects on location of Lagrangian points and parameters of halo orbits.

Using the natural parameter continuation method, the bifurcation for halo and axial

orbits from the planar Lyapunov orbits is obtained. Further, the stability analysis of

halo orbits is also performed using the same method. The bifurcation analysis shows

that due to radiation pressure of the first primary, the separation between the halo and

axial bifurcation increases. Also, the radiation of the more massive primary reduces

the region of stability of halo orbits.

From the analysis of variations in parameters of halo orbits due to radiation, following

conclusions can be made:

� Due to radiation of the more massive primary, halo orbits around L1 move closer

to the first primary, they shrink and their period increase.

� The x-amplitude, Ax̃, is a non-linear and non-monotonic function of radiation

for halo orbits around L1.

� Halo orbits around L2 and L3 expand with the increase in radiation of the more

massive primary.

� As the radiation pressure increases, halo orbits around L2 shift towards the

primaries, their amplitude and period decrease.

� Halo orbits around L3 move away from the primaries, their amplitude and period

increase.

Also, a comparison between halo orbits in ERTBP and CRTBP framework shows that

the orbits in ERTBP are smaller than the orbits in CRTBP. Further, the amplitude

of orbits in ERTBP is less than the amplitude in CRTBP. The effects of radiation

of the more massive primary on parameters of halo orbits are similar in CRTBP and

ERTBP. Also, the location of collinear Lagrangian points do not change due to the

elliptic orbit of the primaries.
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