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1 Introduction

In 17th century, Kepler proposed three laws of planetary motion. Using
these laws, Newton developed the formula for gravitational force between
any two point masses. With the help of Newton’s law of gravitation and
three laws of Kepler, it is possible to find a closed mathematical solution
for the two body problem. Later, Newton tried to get a closed form so-
lution for three body problem but could not attain much success. Euler
proposed a simplified form of three body problem in which the mass of
one body is considered to be negligible compared to the masses of other
two bodies. This is called Restricted Three Body Problem (RTBP). This
phenomenon is very useful for studying the motion of celestial objects and
has applications in astrophysics and astrodynamics. In the study of RTBP,
two more massive bodies are called the primaries and the body with the
infinitesimal mass is called the secondary. In a RTBP, if the primaries
move in circular orbits around their barycenter, then it is called a Circular
Restricted Three Body Problem (CRTBP) and if the primaries move in
elliptic orbits, then it is called an Elliptic Restricted Three Body Problem
(ERTBP). These are two widely studied particular cases of RTBP.

Figure 1: Schematic diagram of RTBP in a dimensionless synodic coordi-
nate system

Infinitesimal body experiences forces other than the gravitational force
such as radiation pressure force, force due to oblateness of the primary,
atmospheric drag, etc. These forces are called perturbing forces. In this
study, the perturbing forces due to solar radiation pressure and oblateness
of primary are considered.
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There are several locations in the space where the infinitesimal body expe-
riences the balance between the gravitational force and all other perturbing
forces. Such locations are called equilibrium points or libration points or
Lagrangian points. Every RTBP has five planar Lagrangian points out of
which three Lagrangian points lie on the line joining the primaries. These
three Lagrangian points are called collinear Lagrangian points. Perturbing
forces affect the location as well as stability of Lagrangian points.

Figure 2: Lagrangian points

Halo family is a family of three dimensional periodic orbits around collinear
Lagrangian points which arise as a bifurcation from the planar Lyapunov
family. The concept of halo orbit was introduced by Fqrquhar in 1966
[6]. He discovered trajectories around Earth-Moon L2 in which a commu-
nication satellite could be placed and that would allow a continuous link
between the Earth and the far side of the Moon. He named this orbit
as halo orbit as it appeared like a halo encircling the Moon. A satellite
placed in a halo orbit serves many scientific purposes. International Sun-
Earth Explorer 3 (ISEE-3) was the first halo orbits mission satellite. It was
launched into a halo orbit around Sun-Earth L1 for collecting the data on
solar wind conditions upstream from Earth. ISRO is planning for Aditya
L1 mission which will orbit the L1 point of the Sun-Earth system.

The phenomenon of resonance is useful for studying the dynamics of solar
system and celestial bodies. A resonance arises when there is a numeri-
cal relation between the frequencies or period of celestial bodies. In solar
system, mainly two types of resonances are observed: spin-orbit resonance
and orbit-orbit resonance. Spin-orbit resonance is generated by the rela-
tion between the rotational and orbital period of a single body. Most of
the natural satellites are in 1 : 1 spin-orbit coupling. Due to this, only one
side of Moon is visible form the Earth. Mercury is in a 3 : 2 spin-orbit res-
onance. Orbit-orbit resonance is generated due to relation between orbital
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periods of two or more bodies. The satellites Io and Europa of Jupiter
are in 2 : 1 orbit-orbit resonance. Also, the structure of ring around the
Jupiter is generated due to the resonance between the dust particles in
Jupiter’s gravitational field and the rotation of the magnetic field of the
planet [5]. Many researchers have studied resonant periodic orbits in the
CRTBP framework with various perturbations [15, 12, 14, 9, 10, 11, 8].
Orbit-orbit resonances are mean motion resonances as they are generated
due to numerical relation between mean motions of bodies. Consider two
bodies A and B of arbitrary masses orbiting around a central mass with
mean motions nA and nB, respectively. If there exist integers p and q such
that the ratio of mean motions nA : nB is of the form p : q, then the mean
motion resonance exists between the two bodies. Here, p corresponds to
mean motion of A and q corresponds to mean motion of B. In general,
orbit-orbit resonances are broadly classified into two types [20]:

� Exterior resonances:
In this case, an integer ratio p : q is such that p < q. Here, spacecraft
spends majority of the time outside the vicinity of the second primary
and has larger orbital period or semi-major axis compared to second
primary.

� Interior resonances:
In this case, an integer ration p : q is such that p > q. The spacecraft
spends majority of the time inside the orbit of the second primary
as it has a smaller orbital period or semi-major axis compared to the
second primary.

2 Equations of motion

The motion of the infinitesimal body is affected by the perturbing forces
due to radiation pressure and oblateness of the primaries. The radiation
pressure force changes with the distance in a similar way as the gravi-
tational force but acts in the opposite direction to it. This reduces the
effective mass of the radiating body. The mass reduction factor is defined
as q = 1− (Fp/Fg), where Fp and Fg, respectively, represent the forces due
to radiation pressure and gravitational attraction. To analyze the effect of
radiation pressure on the motion of infinitesimal body, the mass reduction
factor q is introduced into the equations of motion [16, 1, 12, 14]. Oblate-
ness coefficient A, defined as A = (R2

e −R2
p)/(5R

2), is used in equations of
motion for considering the perturbation due to oblateness of the primary
[2, 3, 4]. Here, Re and Rp, respectively, denote the equatorial and polar
radius of the oblate primary and R is the distance between the primaries.
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Then the motion of the infinitesimal body in a dimensionless synodic co-
ordinate system with origin at the barycentre of the primaries in CRTBP
framework is governed by the equations [1]

ẍ− 2nẏ = Ωx,

ÿ + 2nẋ = Ωy,

z̈ = Ωz,

(1)

where

Ω =
n2

2
(x2 + y2) +

(1− µ)q1
r1

+
µq2
r2

+
(1− µ)q1A1

2r31
+

µq2A2

2r32
, (2)

and

n2 = 1 +
3

2
(A1 + A2), (3)

r1 =
√
(x+ µ)2 + y2 + z2,

r2 =
√
(x+ µ− 1)2 + y2 + z2.

(4)

Here, an overhead dot denotes a differentiation with respect to time t.
The quantities qi and Ai, respectively, denote the mass reduction factor
and oblateness coefficient of the ith primary, i = 1, 2 and n is called the
mean motion.

Suppose the primaries are moving in elliptic orbit around their barycen-
tre. Then the equations of motion of infinitesimal body in the synodic
dimensionless coordinate system are given by [17]

x′′ − 2y′ = Ωx,

y′′ + 2x′ = Ωy,

z′′ = Ωz,

(5)

where

Ω =
1√

1− e2

[
1

2
(x2 + y2) +

(1− µ)q1
r1

+
µq2
r2

]
. (6)

Here, a prime denotes a derivative with respect to independent variable
E, the eccentric anomaly, e is the eccentricity of the orbit of the primaries,
qi is mass reduction factor of ith, i = 1, 2, primary and r1 and r2 are as
defined in (4).
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3 Methodology

In this section, different methods used for finding periodic orbits in two
and three dimensions are described. Lindstedt-Poincaré method is an ana-
lytical method which is useful for finding the initial state vector for planar
Lyapunov orbits and three dimensional halo orbits in CRTBP and ERBP
framework. The initial condition obtained using the Lindstedt-Poincaré
method is revised with help of numerical method of Differential Correc-
tions (DC) for getting more accurate solution.

Poincaré Surface of Sections can be used for getting the initial conditions
for various planar periodic orbits. For getting a PSS, system (5) is solved
using the Runge-Kutta-Gill method with fixed step size and the point
(x, x′) corresponding to each solution for which y = 0 and y′ > 0 is plot-
ted. Periodic orbits give rise to fixed points that are the centre of islands
of stability and islands correspond to the quasi–periodic orbits librating
around the stable positions.

3.1 Lindstedt-Poincaré Method

Systems (1) and (5) contain non-linear terms which change the frequency
of the linearized system and give rise to secular terms. The terms whose
amplitude grow with time are called secular terms. Lindstedt-Poincaré
method is an analytical method which uses the method of perturbations
for removing the secular terms appearing in the solution. For this, a
new independent variable τ = ωt, where t is current/existing independent
variable and ω, called the frequency connection term, is considered. Then
the systems (1) and (5) are expressed in terms of new independent variable
τ and the solutions of these systems are assumed in the perturbation form
as

X(τ) = ϵX1(τ) + ϵ2X2(τ) + ϵ3X3(τ) + ... , (7)

Y (τ) = ϵY1(τ) + ϵ2Y2(τ) + ϵ3Y3(τ) + ... , (8)

Z(τ) = ϵZ1(τ) + ϵ2Z2(τ) + ϵ3Z3(τ) + ... , (9)

and
ω = 1 + ϵω1 + ϵ2ω2 + ϵ3ω3 + ... . (10)

Here, the aim is to select the values of ωi, i = 1, 2, 3, . . . in such a manner
that terms giving rise to secular terms are avoided from the equations of
motion. To accomplish this aim, the solutions (7)-(10) are substituted in
the systems (1) and (5) and the coefficients of nth powers of ϵ are equated
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to get the nth order approximate solution, n = 1, 2, 3, . . . . Usually, the
series in equations (7)-(10) are terminated after four or five terms giving
the fourth or fifth order approximate solution.

3.2 Differential Corrections Method

The numerical method of differential corrections (DC) or multi-dimensional
Newton-Raphson’s method is useful for modifying the state vectors of tra-
jectories having certain constraints. Halo orbits are three dimensional pe-
riodic orbits which are symmetric about xz plane and intersect this plane
perpendicularly. This characteristic makes the computation of halo orbits
similar to solving a two point boundary value problem. In DC method,
design variables are modified in such a manner that all given constraints
are satisfied simultaneously. Suppose

X =


X1

X2
...
Xn


is a free variable vector with n independent design variablesX1, X2, . . . , Xn.
In most of the cases, X contains the elements of state vector and inte-
gration time. The design variables can be modified subject to m scalar
constraint equations

F(X) =


F1(X)
F2(X)

...
Fm(X)

 = 0.

In most of the cases, constraints are position, time of flight and velocity.
Consider an initial guess X0 for determining a free variable vector X∗ such
that F(X∗) = 0. Expanding the constraint vector in a Taylor series about
initial guess X0,

F(X) = F(X0) +
∂F(X0)

∂X0
(X−X0) + . . . .

Now, denoting ∂F(X0)/∂X0, an m× n Jacobian matrix of partial deriva-
tives of constraint vector as DF(X0) and truncating the Taylor series to
first order gives

F(X) = F(X0) +DF(X0)(X−X0). (11)

6



Since for a solution F(X) = 0, equation (11) in an iterative update form
can be written as

F(Xj) +DF(Xj)(Xj+1 −Xj) = 0 (12)

whereXj is the current iteration of the free variable vector,Xj+1 is the next
iteration of the free variable vector, and F(Xj) is the value of the current
constraint vector as evaluated after propagating the equations of motion
from the initial condition Xj. The value of DF(Xj) can be obtained with
the help of Xj and F(Xj). Equation (12) represented in the form

Xj+1 = Xj −DF(Xj)
−1
F(Xj) (13)

is used as an update equation until
∥∥F(Xj+1)

∥∥
2
< 10−12. In most of the

cases, desired accuracy is reached within 10 iterations.

The initial state vector of halo orbit obtained using the Lindstedt-Poincaré
method is modified using the DC method. Since halo orbits are symmetric
about xz plane, we must have y = 0 at half period and also, these orbits
intersect xz plane perpendicularly so at half period, we must have ẋ =
ż = 0. Then the free variable vector for revising the state vector of halo
orbit is

X =

 x
ẏ

T/2


and the constraint vector is

F(X) =

yẋ
ż

 = 0

with the Jacobian matrix

DF(X) =

[
O I3
U K

]
,

where

U =

Ωxx Ωxy Ωxz

Ωyx Ωyy Ωyz

Ωzx Ωzy Ωzz

 , K =

 0 2 0
−2 0 0
0 0 0

 , (14)

and the matrix O is 3×3 null matrix and I3 is 3×3 identity matrix. Here,
(x, y, z) is position vector, (ẋ, ẏ, ż) is velocity vector and T is period of halo
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orbit. In this case, the z coordinate of the position vector is not considered
in the free variable vector so its value will remain unchanged throughout
the correction scheme. Further, it is possible to keep x coordinate of
position vector fixed by removing it from the free variable vector and
inserting z coordinate instead.

3.3 Runge-Kutta-Gill Method

Runge-Kutta-Gill (RKG) method is a numerical method useful for solving
first order Initial Value Problems (IVPs) numerically. The algorithm for
solving an autonomous IVP using RKG method with fixed step size is
given below:
Consider the Initial Value Problem

dy

dx
= y′ = f(y), y(x0) = y0.

1. Select the step size h.

2. Find the quantity: k1 = hf(yi).

3. Update yi as yi,1 = yi + 0.5k.

4. Calculate k2 as k2 = hf(yi,1).

5. Further update yi as yi,2 = yi,1 + 0.5k1(−1 +
√
2) + k2(−1− 0.5

√
2).

6. Compute the quantity: k3 = hf(yi,2).

7. Update yi as yi,3 = yi,2 −
[

k2√
2
+
(
1 + 1√

2

)
k3

]
.

8. Evaluate the quantity: k4 = hf(yi,3).

9. Then, the new iterate of yi, yi+1, can be obtained as

yi+1 = yi,3 +
1

6
[k1 + (2−

√
2)k2 + (2 +

√
2)k3 + k4], i ≥ 0.

This process is repeated till the desired accuracy is obtained. Since sys-
tem (5) contains second order differential equations, it is converted into
equivalent first order system and then RKG method is applied to a system
of six first order equations with step size h = 0.001.
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3.4 Poincaré Surface of Sections

The study of a complex dynamical system can be simplified by reducing
its dimension. Poincaré map is one such useful tool which effectively re-
duces the dimension of the dynamical system and converts a continuous
system into a corresponding discrete system. The technique of Poincaré
map was introduced by Henri Poincaré in 1981 in which the crossing of a
trajectory to a particular hyperplane is recorded. First, a particular value
of Jacobi constant or energy constant is selected for the numerical propa-
gation. RKG method with fixed step size is used commonly for numerical
propagation of system (5). Jacobi constant is given by

C =
1√

1− e2

[
x2 + y2 +

2(1− µ)q

r1
+

2µ

r2

]
− x′2 − y′2. (15)

Equation (15) shows selecting a particular value of C reduces the degree
of freedom and hence the orbits will lie in three dimensional subspace
C(x, y, x′, y′) = C embedded in a four dimensional phase space. Further,
by specifying a hyperplane, three dimensional subspace is projected onto
a two dimensional (x, x′) plane [7]. In most of the cases, the plane y = 0
is considered as hyperplane and it is further assumed that at initial time,
the infinitesimal body lies on the x axis and there is no velocity in the x
direction. Then the velocity in the y direction can be obtained from

y′ =

√
1√

1− e2

(
x2 + y2 +

2(1− µ)q

r1
+

2µ

r2

)
− C − x′2. (16)

The equations (15) and (16) corresponding to CRTBP can be obtained by
putting e = 0.

4 Layout of Thesis

This Thesis is divided into eight chapters. Chapter 1 is introduction in
which the motivation for the study and different mathematical tools and
techniques used in the study of CRTBP and ERTBP are presented. At
the end, summary of subsequent chapters is given.

In Chapter 2, computation of halo orbits around L1, L2 and L3 using the
analytic and numerical method in CRTBP framework is given. By con-
sidering the perturbation due to radiation pressure and oblateness of both
the primaries, analytic solution for computing halo orbits upto fifth order
approximation using Lindstedt-Poincaré technique is obtained. Using this
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analytic solution as a first guess in DC scheme, halo orbits around L1 and
L2 of the Sun-Earth system are computed numerically for different solar
radiation pressure and oblateness of Earth. Also, the third and fourth
order analytical solutions were used for finding halo orbits for analyzing
the accuracy of the solutions. It was observed that the separation between
halo orbit decreases as the order of solution increases. So, fifth order ini-
tial solution provides more precise initial guess than third or fourth order
solution.

Further, the effects of perturbing forces due to radiation pressure and
oblateness on location, size, period, frequency correction term and other
parameters of halo orbits around L1, L2 and L3 were studied. [19] com-
puted fourth order analytic solution for halo orbits in the photogravita-
tional Sun-Earth CRTBP with oblateness. Variation in parameters of halo
orbits around L1 and L2 due to variation in q1 and A2 was similar to ob-
servations of [19]. Due to increase in solar radiation pressure, halo orbits
around L3 shrink and move towards the more massive primary. Further,
period of these orbits decrease. Oblateness of second primary shifts or-
bits around L3 towards the more massive primary and decreases period.
To study the effect of oblateness of more massive primary on halo orbits
around L1 and L2, the Earth-Moon system with actual oblateness of the
Earth was considered. It was observed that due to increase in A1, halo
orbits around L1 and L2 both elongate and move towards the second pri-
mary, and period decreases. Radiation pressure of second primary shrinks
halo orbits around L1 and enlarges halo orbits around L2. A decrease in
q2 shifts orbits around L1 towards m2 and orbits around L2 towards m1,
and period of orbits around L1 increase while around L2 decreases.

Chapter 3 analyzes the effects of mass ratio µ = m2/(m1+m2) on param-
eters of halo orbits around L1, L2 and L3 in CRTBP framework. Different
random values of µ in the interval [10−8, 0.5] were considered. Starting
with 10−8, value of µ was increased with a fixed step size of 10−6 until
µ = 0.5. It was observed that as the value of µ increases, Lagrangian
point L1 and halo orbits around it shift towards the more massive primary
while Lagrangian point L2 and corresponding halo orbits recede from sec-
ond primary till µ0 = 0.17894 and for µ > µ0, orbits move towards the
second primary. For verifying these results, Sun-Mars, Sun-Earth, Sun-
Earth+Moon, Sun-Saturn and Sun-Jupiter systems were considered and
halo orbits around all three collinear Lagrangian points were computed.
It was observed that as the value of µ increases, Lagrangian point L3 and
corresponding orbits move towards the more massive primary. Suppose
Ax, Ay and Az represent the amplitudes of halo orbits in the x, y and z
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direction, respectively. For a halo orbit, Ay is a multiple of Ax, and Ax and
Az are related by amplitude constraint, it is enough to study the variation
in either Ax or Az. For Az = 3.25 × 10−4, corresponding value of Ax was
obtained using amplitude constraint relation for µ ∈ [10−8, 0.5]. It was
found that µ and Ax are inversely proportional for orbits around L1 while
they are directly proportional for orbits around L2. For analyzing the vari-
ation in amplitude of halo orbits around L3, Ax = 0.045 was considered
for finding corresponding Az value. Study shows that Az increases with
the increase in µ. Period of halo orbits around L1 and L3 decreases while
it increases for orbits around L2 with the increase in µ. The size, initial
distance from origin and initial velocity of orbits are also affected by the
value of µ. The analysis shows orbits around L1 and L2 both elongate
as µ increases. Further, with the increase in the value of µ, halo orbits
around L1 come close to the origin and orbits around L2 move away from
the origin. The initial velocity of spacecraft in orbits around L1 as well as
L2 increase with the increase in mass ratio.

In Chapter 4, computation of halo orbits around L1, L2 and L3 in the
photogravitational Sun-Mars ERTBP is given. [18] has discussed the mo-
tion of an infinitesimal body in a dimensionless synodic pulsating coordi-
nate system in a ERTBP framework which is a non-autonomous system
with true anomaly as independent variable. This non-autonomous system
has been converted into an autonomous system by averaging the system
with respect to new independent variable as the eccentric anomaly E of the
second primary. Computation of locations of collinear equilibrium points
in this system shows due to solar radiation pressure, location of equilib-
rium points vary. The location of Lagrangian points do not change with
the change in the eccentricity of the orbit of the primaries. Computation of
the third order approximate solution using Lindstedt-Poincaré method is
described and the procedure of finding halo orbits using differential correc-
tion method is given. Monodromy matrix is the State Transition Matrix
(STM) evaluated at one period of halo orbit. The eigenvalues of mon-
odromy matrix are used for analyzing the stability of periodic orbits and
finding bifurcations. If λi (i = 1, 2, . . . , 6) are eigenvalues of monodromy
matrix, then the stability index is defined as νi = (λi + 1/λi)/2. Since
eigenvalues of monodromy matrix are always in reciprocal pairs, there are
three stability indices corresponding to a periodic orbit. Further, two eigen
values of monodromy matrix are always unity and hence the stability in-
dex, say ν2, corresponding to this pair is always unity [21]. Halo orbits
are obtained as tangent bifurcation from planar Lyapunov orbits when the
out-of-plane stability index ν3 crosses the line ν3 = 1. A periodic oribt is
stable if all stability indices have value between -1 and 1 [20]. Due to solar
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radiation pressure of the Sun, the separation between the halo and axial
bifurcation increases. This holds true for orbits around L1 and L2 both.
Halo orbits around L1 shrink, move towards the Sun and period of orbits
increases due to increase in solar radiation pressure. But orbits around
L2 enlarge, move towards the Sun and period decreases due to increases
in solar radiation pressure. The effect of solar radiation pressure on halo
orbits around L1 and L3 were found to be similar. A graphical comparison
of size of halo orbits show that due to non-zero eccentricity of the orbit of
the primaries, halo orbits shrink.

Chapter 5 contains evolution of f -family orbits in the photogravitational
Sun-Saturn ERTBP framework. The technique of PSS is extended from
CRTBP to ERTBP for exploring periodic orbits. Variations in param-
eters of f -family orbits due to variation in eccentricity of the orbit of
the primaries, solar radiation pressure and Jacobi constant are observed.
The existence of energy integral puts a constraint on the value of Jacobi
constant. So, it is necessary to find the maximum value of C, say CM , cor-
responding to each pair (q, e) such that for C ≤ CM , v2 ≥ 0, where v is the
velocity of the infinitesimal body. For e ∈ [0, 0.1] and q = 0.98, 0.99 and 1
computation of CM shows that a quadratic polynomial in e provides the
curve of best fit for approximating CM for q = 0.98, 0.99 and 1. Further,
it has been observed that the excluded region shifts towards the second
primary due to increase in eccentricity of orbit of the primaries. Analysis
shows f -family orbits shift towards the more massive primary and their
diameter and period increases with increase in the value of e. An increase
in solar radiation pressure decreases the value of CM and expands the ex-
cluded region of motion for a satellite. Regression analysis shows that the
functional relation between the length of excluded region and e depends
on solar radiation pressure of the Sun as well. Since solar radiation pres-
sure is a repulsive force, orbits move towards the second primary and their
diameter decreases. Due to perturbing force of solar radiation pressure,
the value of C and the difference of energy levels at separatrices decreases
and variation in size and shape of islands and f -family orbits is also ob-
served. By considering different values of Jacobi constant C in the interval
[2.77, 3.017], variations in parameters of f -family orbits were analyzed and
the results agree with [13] for CRTBP framework.

Chapter 6 is devoted to the study of first order exterior resonant periodic
orbits in the photogravitational Sun-Saturn ERTBP framework. Using
the numerical technique of PSS, 1:2, 2:3, 3:4, 4:5 and 5:6 resonant peri-
odic orbits were obtained and the effects of eccentricity of the orbit of the
primaries (ep), solar radiation pressure (q) and Jacobi constant (C) on lo-
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cation, period, eccentricity (es) and semi-major axis (as) of these periodic
orbits were studied. For an exterior resonance, in the ratio p : p + q, p
denotes number of loops in the orbit of a spacecraft and q denotes the
order of resonance. It was observed that the first order exterior resonant
orbits lie on the right side of f -family orbits. For observing the effects of
variation in ep on parameters of resonant periodic orbits, ep was varied in
the interval [0, 0.1]. The observations show that the orbits move towards
the Sun due to increase in the value of ep. Further, an increase in period
and a decrease in semi-major axis of orbits is observed due to non-zero
value of ep. The variation in es is not similar for all orbits. The eccen-
tricity es of 1 : 2 resonant orbits decreases with the increase in ep while
es increases with the increase in ep for p : p + 1, p ∈ {2, 3, 4, 5} resonant
orbits. Effects of solar radiation pressure and Jacobi constant are similar
in CRTBP and ERTBP framework.

In Chapter 7, analysis of first order interior resonant orbits is performed.
These orbits lie on the left side of f -family orbits. In this case, the reso-
nance ratio is of the form p+q : p in which q denotes the order of resonance
and p+q denotes the number of loops in the orbit of spacecraft. The num-
ber of islands corresponding to a p+ q : p resonant orbit denotes the order
of resonance. For distinct values of ep ∈ [0, 0.09], 2:1, 3:2, 4:3 and 5:4
resonant periodic orbits were computed. The study shows that these or-
bits recede from the Saturn and advance towards the Sun. Further, with
the increase in ep, the period, semi-major axis (as) and eccentricity (es)
of these orbits increase. The analysis of size and shape of these orbits
revels that orbits shrink while their loops enlarge due to increment in the
value of ep. Due to solar radiation pressure, orbits advance towards the
Saturn and period, semi-major axis (as) and eccentricity (es) decrease.
Further, orbits enlarge while the loops of these orbits shrink due to solar
radiation pressure. By considering five different values of Jacobi constant
in the interval [2.88, 2.92], the effects of Jacobi constant C on parameters
of resonant orbits are analyzed. Using the non linear multiple regression
analysis, an estimator function for computing approximate locations of
resonant periodic orbits is obtained.

Chapter 8 contains conclusions and a brief overview of future scopes for
research in this field and is followed by list of publications and bibliogra-
phy.
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