List of Figures

1.1	Kepler's planetary model for outer planets (Adapted from Murray and	
	Dermott (1999))	2
1.2	Schematic diagram of RTBP in a dimensionless synodic coordinate system	5
1.3	Lagrangian points in classical RTBP	12
1.4	Notation for computation of L_1	14
1.5	Notation for computation of L_2	14
1.6	Notation for computation of L_3	15
2.1	The third, fourth and fifth order Analytic solutions around L_1 with	
	$q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	40
2.2	xy projections of the third, fourth and fifth order analytic solutions	
	around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	41
2.3	xz projections of the third, fourth and fifth order analytic solutions	
	around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	41
2.4	yz projections of the third, fourth and fifth order analytic solutions	
	around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	42
2.5	The third, fourth and fifth order Analytic solutions around L_2 with	
	$q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	44
2.6	xy projections of the third, fourth and fifth order analytic solutions	
	around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	44
2.7	xz projections of the third, fourth and fifth order analytic solutions	
	around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	45
2.8	yz projections of the third, fourth and fifth order analytic solutions	
	around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	45
2.9	The third, fourth and fifth order Numerical solutions around L_1 with	
	$q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	46
2.10	xy projections of the third, fourth and fifth order numerical solutions	
	around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	47
2.11	xz projections of the third, fourth and fifth order numerical solutions	
	around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	47

2.12	yz projections of the third, fourth and fifth order numerical solutions	
	around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	48
2.13	The third, fourth and fifth order Numerical solutions around L_2 with	
	$q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	49
2.14	xy projections of the third, fourth and fifth order numerical solutions	10
	around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	49
2.15	xz projections of the third, fourth and fifth order numerical solutions	10
2.10	around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	50
2.16	yz projections of the third, fourth and fifth order numerical solutions	00
2.10	around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$	50
2.17	Effect of radiation pressure on the position of halo orbits around L_1 and	00
	L_2	51
2.18	Effect of radiation pressure on the period of halo orbits around L_1 and L_2	52
	Effect of radiation pressure on the size of halo orbits around L_1 and L_2	53
	Sun-Earth system \ldots	54
	Effect of oblateness on the size of halo orbits around L_1 and L_2	55
	Effect of oblateness on the position of L_1 and L_2	56
	Effect of oblateness on the period of halo orbits around L_1 and L_2	56
	Effect of oblateness on the size of halo orbits around L_1 in the Earth-	00
	Moon system	57
2.25	Effect of oblateness on the size of halo orbits around L_2 in the Earth-	•••
	$Moon system \dots \dots$	57
		•••
3.1	Variation in location of Lagrangian points against variation in mass factor	68
3.2	Variation in x -amplitude for halo orbits around Lagrangian points against	
	variation in mass factor	71
3.3	Variation in period of halo orbits around Lagrangian points against	
	variation in mass ratio	72
3.4	Change in size of halo orbits against mass ratio	72
3.5	Halo orbits around L_1 and L_2 for Sun-Planet systems $\ldots \ldots \ldots$	72
3.6	Variation in initial distance and velocity of spacecraft for halo orbits	
	around L_1 against variation in mass ratio	73
3.7	Variation in initial distance and velocity of spacecraft for halo orbits	
	around L_2 against variation in mass ratio	73
3.8	Halo orbits around L_1 and L_2 for Sun-Earth and Sun-Earth+Moon sys-	
	tems	73
4.1	Out of plane stability index ν_3	93
4.2	L_1 Halo family stability indices ν_1 and ν_3	93
_		

4.3	Variation in size of halo orbits around L_1 against variation in radiation pressure	94
4.4	Variation in size of halo orbits around L_2 against variation in radiation pressure	95
4.5	Variation in size of halo orbits around L_3 against variation in radiation	
4.6	pressure	96
4.7	pressure	97 98
4.8	Variation in period of orbits against variation in radiation pressure	99
4.9 4.10	Variation in size of orbits around L_1 in CRTBP and ERTBP Variation in size of orbits around L_2 in CRTBP and ERTBP	100 101
4.11	Variation in amplitude of halo orbits around L_1 and L_2	101
5.15.25.3	Maximum permissible value of energy constant against eccentricity Length of excluded region against eccentricity	106 107
5.4	pressure	109
5.5	pressure	
5.6	C = 3.017 and $q = 1$	112 113
5.7	Variation in shape and size of islands due to variation in C for $e = 0.09$ and $q = 1$	115
$5.8 \\ 5.9$	Variation in period of orbits due to variation in radiation pressure \ldots . Variation in shape and size of orbits due to variation in radiation pres-	
5.10	sure for $C = 2.97$ Variation in shape and size of islands due to variation in radiation pres- sure for $C = 2.97$	
5.11	Variation in shape and size of islands due to variation in energy constant C for $q = 1$	
5.12	Variation in shape and size of orbits due to variation in energy constant for $q = 1$	
6.1	PSS for $e = 0.052$, $q = 0.99$ and $C = 2.8$	
6.2 6.3	Periodic orbits corresponding to islands of Fig. 6.1 Variation in location of $1:2$ resonant orbits against variation in e for	126
	$C = 2.77 \ldots $	128

6.4	Variation in semi-major axis of 5 : 6 resonant orbits against variation
	in <i>e</i> for $C = 2.85$
6.5	Variation in e_s against variation in e for $C = 2.85$
6.6	Variation in location of $5:6$ resonant orbits against variation in e for
	$C = 2.85 \dots \dots$
6.7	Variation in size of $1:2$ resonant orbits due to variation in q for $C = 2.77131$
6.8	Variation in size of orbits against variation in Jacobi constant 132
6.9	Exterior first order resonant PSS and orbits for $C = 2.85$
7.1	PSS of Sun-Saturn system for $e = 0.052$, $q = 0.98$ and $C = 2.88$ 142
7.2	First order interior resonant orbits corresponding to Fig. 7.1
7.3	Variation in location of 3 : 2 resonant orbits for $C = 2.90$
7.4	Variation in a_s and e_s against variation in e for $5:4$ resonant orbits for
	$C = 2.92 \dots \dots$
7.5	Variation in size and shape of $3:2$ resonant orbits with $q = 1$ and
	$C = 2.88 \dots $
7.6	Variation in size and shape of $2:1$ resonant orbits with $e = 0.03$ and
	$C = 2.88 \dots $
7.7	Variation in size and shape of $4:3$ resonant orbits with $e = 0.09$ and
	$q = 0.99 \dots \dots \dots \dots \dots \dots \dots \dots \dots $