List of Figures

Chapter I

Figure number	Page No.
Figure 1.1 : Some important texts of Indian herbal medicine	3
Figure 1.2: Classification of primary metabolites	7
Figure 1.3: Classification of carbohydrates	9
Figure 1.4: Classification of Phytochemicals	10
Figure 1.5: Classification of phenolic compounds	12
Figure 1.6: Flavonoid Classes, Subclasses and natural Sources	14
Figure 1.7: Classification of Tannins	16
Figure 1.8: Classification of saponins	18
Figure 1.9: Classification of Terpenoids	19
Figure 1.10: Schematic diagram for characterization of a bioactive compound from natural sources	20
Figure 1.11: A brief summary in Extraction, Isolation and characterisation of Natural products from medicinal plant.	21
Figure 1.12: Venn diagram elucidate the overlapping of compounds belonging to different identified chemical groups between different extraction solvents 22	22
Figure 1.13: Types of Extraction methodology used	23
Figure 1.14: parameters influencing extract quality	28
Figure 1.15: Types of Chromatography	31
Figure 1.16: Schematic procedure for HPTLC method development	32
Figure 1.17: Schematic diagram of a typical HPLC instrument setup	33
Figure 1.18: Selection of column chemistry depending on sample solubility	34
Figure 1.19: Schematic block diagram of LC-MS instrument	36
Figure 1.20: Applications of different LC/MS ionisation methods	37
Figure 1.21: Global licorice extract trade flow chart in 2019	47
Figure 1.22 A & B: National Scenario Figure	48
Figure 1.23A & B: top import flows of Licorice Root in 2021	49

Chapter II

Figure number	Page No.
Figure 2.1: Distribution of <i>Taverniera</i> genus in world map	
58	58
Figure 2.2: T. cuneifolia in different states of India	59
Figure 2.3: T. cuneifolia in different places of Gujarat	59
Figure 2.4: Sumarized chart of pharmacological activities reported on <i>Taverniera</i>	
species 78	78

Chapter IV

Figure number	Page No.
Figure 4.1: Collection of <i>T. cuneifolia</i> in different places of Gujarat	108
Figure 4.2: Taverniera cuneifolia collect from Bagodara	109
Figure 4.3: <i>Taverniera cuneifolia</i> collection from Kutch (Bhuj)	109
Figure 4.4: <i>Taverniera cuneifolia</i> collection from Rajkot (Munjka)	110
Figure 4.5: <i>Taverniera cuneifolia</i> collection from Jamnagar (Khijadiya)	110
Figure 4.6: Habit of <i>Taverniera cuneifolia</i> showing various morphological parts	111
Figure 4.7: Roots collected from Bagodara, Kutch and Rajkot	112
Figure 4.8: Seasonal fluctuations in macronutrients of soil samples	115
Figure 4.9: Seasonal fluctuations in micronutrients of soil samples	115
Figure 4.10: Seasonal fluctuations in pH and EC of soil samples	116
Figure 4.11: IC number provided by NBPGR, Pusa campus, Delhi	116
Figure 4.12: Herbarium of <i>T. cuneifolia</i> submitted to BARO herbarium	117
Figure 4.13: Authentication certificate of <i>Taverniera cuneifolia</i> from BARO	
herbarium, Department of Botany, Vadodara	118
Figure 4.14: Graph showing percentage yield extract value of <i>T. cuneifolia</i> plant	
extract in four different solvents	122
Figure 4.15: After development before derivatization at (A) 254nm and (B)	
366nm	124
Figure 4.16: Schematic diagram of chromatographic fingerprint Rf	124
Figure 4.17: After derivatization with 10% methanolic sulphuric acid at (A) 254nm and (B) 366nm	125
Figure 4.18: Schematic diagram of chromatographic fingerprint Rf after	
derivatization (A) at Visible light (B) at 366nm	126
Figure 4.19: After derivatization with anisaldehyde sulphuric acid reagent at (A) 254nm and (B) 366nm	126
Figure 4.20: Schematic diagram of chromatographic fingerprint Rf after	120
derivatization	127
Figure 4.21: HPTLC chromatogram for the separation of standards of	
sugars(after derivatization)	129
Figure 4.22: HPTLC chromatogram for the for the identification of sugars in the	
samples (A) Visible (B) at 366nm	130
Figure 4.23: HPTLC chromatogram for the for the identification of sugars in the samples (A) Visible (B) at 366nm	130
Figure 4.24: HPTLC chromatogram for the for the identification of glucose in the	130
samples in visible light	
1	131
Figure 4.25: Calibration curve of (a) Glucose (b) Fructose (c) Sucrose	136
Figure 4.26: Identification plate of amino acid detected in <i>T. cuneifolia</i> and <i>G</i> .	
glabra. (TLC plate) (B) 3D overlay	140
Figure 4.27: Linearity graph of (A) Proline and (B) Arginine	143
Figure 4.28: TLC of glycyrrhizin in plant samples	148

Figure 4.29: Structure and product ion mass of glycyrrhizin in positive and negative mode	148
Figure 4.30: Calibration curve of glycyrrhizin	140
Figure 4.31: Representative graph for Glycyrrhizin standard in 5ppb and 500ppb	151
Figure 4.32: Representative graph for Glycyrrhizin sample in <i>G. glabra</i> & <i>T.</i>	101
cuneifolia	151
Figure 4.33: Simultaneous Method development for separation and estimation of	
standards using HPLC technique	158
Figure 4.34: Simultaneous Method development for separation and estimation of	
standards using HPLC technique	159
Figure 4.35: Simultaneous Method development for separation and estimation of	150
stigmasterol and β -sitosterol using HPLC technique	159
Figure 4.36: Standard chromatogram & UV spectra of liquiritigenin	160
Figure 4.37: Standard chromatogram & UV spectra of Genistein	160
Figure 4.38: Standard chromatogram & UV spectra of apigenin	160
Figure 4.39: Standard chromatogram & UV spectra of glycyrrhizin	160
Figure 4.40: Standard chromatogram & UV spectra of glabridin	160
Figure 4.41: Standard chromatogram & UV spectra of β -sitosterol	161
Figure 4.42: Standard chromatogram & UV spectra of stigmasterol	161
Figure 4.43: HPLC chromatograms of <i>T. cuneifolia</i> and <i>G. glabra</i> root extract	161
Figure 4.44: HPLC chromatograms of <i>T. cuneifolia</i> and <i>G. glabra</i> root extract	
showing the presence of Stigmasterol and β -sitosterol	162
Figure 4.45: calibration curves obtained by HPLC techniques	166
Figure 4.46: Total ion chromatogram and (TIC) its spectra from diode array detector of the standard compounds	175
Figure 4.47: Chromatogram of the samples	
Figure 4.48: GCMS chromatogram of Dodecane, 2,6,11-trimethyl-	176
Figure 4.48: GCMS chromatogram of Nonane, 4,5-dimethyl-	186 186
Figure 4.50: GCMS chromatogram of 2,6-Dimethyldecane	186
Figure 4.51: GCMS chromatogram of Eicosane	186
Figure 4.52: GCMS chromatogram of Decane, 4-ethyl-	186
Figure 4.53: GCMS chromatogram of Succinic acid, 2-ethoxyethyl octadecyl	107
ester	187
Figure 4.54: GCMS chromatogram of n-Hexadecenoic acid	187
Figure 4.55: GCMS chromatogram of 1-Dodecene	187
Figure 4.56: GCMS chromatogram of 1-Heptadecene	187
Figure 4.57: GCMS chromatogram of <i>T. cuneifolia</i> leaf oil	187
Figure 4.58: GCMS chromatogram of <i>T. cuneifolia</i> leaf residue	188
Figure 4.59: GCMS chromatogram of <i>T. cuneifolia</i> seed oil	188
Figure 4.60: GCMS chromatogram of <i>T. cuneifolia</i> seed oil residue	188
Figure 4.61: Steroidal compounds identified by GCMS analysis	189
Figure 4.62: Chromatogram of the sample	191
Figure 4.63: Total ion chromatogram and (TIC) its spectra from diode array	
detector of the standard compounds Apigenin	192

Figure 4.64: Total ion chromatogram and (TIC) its spectra from diode array	
detector of the standard compounds Glabridin	192
Figure 4.65: Total ion chromatogram and (TIC) its spectra from diode array	
detector of the standard compounds Glycyrrhizin	192
Figure 4.66: Total ion chromatogram and (TIC) its spectra from diode array	
detector of the standard compounds Stigmasterol	193
Figure 4.67: Lipids identified in LC-MS-Q-ToF analysis	195
Figure 4.68: Phenolic compounds identified in LC-MS-Q-ToF analysis	196
Figure 4.69: Terpenoidal glycosides identified in LC-MS-Q-ToF analysis	197
Figure 4.70: Terpenes identified in LC-MS-Q-ToF analysis	198
Figure 4.71: Sterols identified in LC-MS-Q-ToF analysis	201
Figure 4.72: Chromatogram of LC-MS-Q-Tof of untargeted metabolite of crude	
extract of roots of <i>T. cuneifolia</i>	206
Figure 4.73: Chromatogram of LC-MS-Q-Tof oF untargeted metabolite of 5th	
fraction of ethyl acetate:methanol (80:20) from column chromatography of roots	
of T. cuneifolia	207
Figure 4.74: Image depicting the possible metabolic pathways of various	
phytocomponents found in Taverniera cuneifolia	209
Figure 4.75: Image depicting the possible metabolic pathways of various	
phytocomponents found in Taverniera cuneifolia	210