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                                                               Chapter 6  

        DRCNN – Depth Restricted Convolution  

                                                  Neural Network 

 
The existing popular models do not give good classification accuracy even after fine-

tuning on TGFD. In this chapter, a more effective and efficient model has been proposed. 

Also, the selection of hyperparameters, an optimizer and a learning rate for the 

proposed model is discussed. The chapter ends by comparing the results of proposed 

model with various existing models considering the evaluation parameters accuracy, 

precision, recall and f1 score. 

6.1    INTRODUCTION 

All the pre-built deep convolutional neural networks like VGG16, Inceptionv3, VGG19 

have large no. of layers and, hence contain a huge number of parameters [140]. Such 

networks need hours, days, or even weeks to train. To reduce the time necessary to train 

a model with increased classification accuracy, a lightweight network model with fewer 

parameters and a small convolutional kernel size is required. 

This research work has tried to develop a more accurate and efficient model for TGFD 

with less number of parameters. Also, the highest classification accuracy for TGFD 

achieved by Inceptionv3 is 86.22% after transfer learning and 89.36 % after fine-tuning 

which can be further improved. 

To design a new model from scratch, the very first step is to choose the proper 

hyperparameter for the model. To make the model lightweight, it is necessary to 

understand what are the hyperparameters and what value should be set for the same. 

An empirical study have been done for selection of these parameters for the proposed 

model. 
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6.2    Hyperparameter Selection Using Empirical Analysis 

For any CNN algorithm, it is very necessary to decide the hyperparameters like the 

number of convolutional layers, the number of fully connected layers, batch size, kernel 

size, number of filters in a layer, optimizer, learning rate, etc. By doing an exhaustive 

literature survey, the following observations have been found.  

➢ There are two types of datasets: Deeper and Wider. A deeper dataset has more 

images per class than a wider one. Deeper architecture works best with deeper 

datasets and shallow architecture with wider datasets [145]. The proposed 

dataset, TGFD, is a deeper dataset as it has more number of images per class. 

Hence, deeper network gives better results with it.  

➢ The number of convolutional and fully connected layers directly affects the 

runtime of the model [146]. In order to reduce computational complexity less 

number of convolutional and fully connected layers should be chosen. 

➢ The model results in higher accuracy and lower runtime when convolutional 

layers have fewer filters [148]. Generally, the number of filters varies between 

16,32,64 and 128. A lower number of filters for all the convolutional layers should 

be chosen for the proposed model. 

➢ The number of filters in convolution layers and the size of filters have a significant 

effect on the accuracy of the system [148]. The filters size can be typically 

specified as 3x3 ,5x5,7X7,9X9. The lower filter size should be chosen for making 

model more accurate.  

➢ The max-pooling layer reduces the parameter count, which decreases 

computational complexity [149]. Hence, max-pooling layers should be used in 

order to reduce model complexity of proposed model.  

➢ The accuracy of the model relies more on the quantity of convolution filters 

within a layer and the dimensions of the convolution kernel, rather than the 

depth of the network. [148]. 

➢ When the learning rate is low, a lower batch size gives a better result [147]. A 

lower batch size should be chosen for the proposed model as it helps to improve 

accuracy. 
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➢ The Rectified Linear Unit (ReLU) activation function is commonly used in 

convolutional layers of neural networks for several reasons. It offers advantages 

over other activation functions such as sigmoid or tanh. ReLU is preferred over 

other activation functions in convolutional layers due to the following reasons: 

• Efficiency: ReLU is computationally efficient compared to other activation 

functions like sigmoid or tanh. The ReLU function simply sets negative values 

to zero while leaving positive values unchanged. This simple operation can be 

implemented efficiently using basic mathematical operations. 

• Avoiding the vanishing gradient problem: ReLU helps alleviate the vanishing 

gradient problem, which is a challenge in deep neural networks. The 

vanishing gradient problem occurs when the gradients during 

backpropagation become extremely small, leading to slow convergence and 

difficulty in training the network. ReLU's derivative is either 0 or 1, ensuring 

that the gradients are not diminished through repeated multiplications. 

• Sparse activation: ReLU introduces sparsity in the network. When the input 

to a ReLU unit is negative, the output is zero, effectively deactivating the 

neuron. This sparsity property helps the network focus on the most relevant 

features and reduces the overall computational burden. 

• Non-linearity: ReLU introduces non-linearity, allowing the network to learn 

complex relationships between inputs and features. Convolutional layers 

without non-linear activation functions would only perform linear 

transformations, limiting the network's expressive power. ReLU enables the 

network to capture intricate patterns and improve its representation 

capabilities. 

➢ By utilizing ReLU in convolutional layers, neural networks become more efficient, 

better at handling deep architectures, and capable of learning complex features.  

➢ It is very important to choose the correct optimizer while compiling the model. 

The optimizer ties together the model parameters like weights, learning rates and 

loss functions.  
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➢ Some of the well-known optimizers are Gradient Descent, Stochastic Gradient 

Descent (SGD), Adam, RMSprop, Momentum and Adagrad [153][155]. The 

comparison of some of the most popular optimizers has been shown in Table 6.1. 

                    Table 6.1 Comparison of Optimizers 

Optimizer Description Advantages Disadvantages 

Adam Combines advantages of RMSprop 

and momentum. 

Suited to a variety of deep 

learning tasks  

Needs more memory because 

there are more moving average  

Uses moving averages of previous 

gradients and squared gradients 

to adapt learning rates per 

parameter. 

Rapid convergence  parameters Choice of learning 

rate sensitive 

  Functions well with sparse 

gradients Strong 

hyperparameter options. 

  

Adagrad Scaling learning rates per 

parameter inversely proportional 

to the sum of past squared 

gradients allows for parameter 

adaptation. 

Effective with sparse data 

and gradients 

Reduces learning rates too 

aggressively, making 

convergence 

  Automatic rate adjustments 

for learning  

Accumulates the total of 

historical gradients 

  Less susceptible to early 

learning rate selection 

possibly causing memory 

problems 

RMSprop Divides the learning rates for each 

parameter by the exponential 

moving average of squared 

gradients to adapt learning rates. 

Solved Adagrad's aggressive 

learning rate decay 

Learning rate must be manually 

adjusted  

 Faster convergence than 

standard SGD  

Accumulates past squared 

gradients 

Suitable for non-stationary 

goals 

potentially causing memory 

difficulties 

SGD Model parameters are updated by 

a simple optimization approach 

based on the gradient of the loss 

function calculated on a mini-

batch. 

Simpleness and a minimal 

memory requirement 

Simpleness and a minimal 

memory requirement 

Simple to implement Simple to implement 

Can escape from poor local 

minima 
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From the comparison shown in Table 6.1, it has been observed that adam is 

beneficial as it is a combination of AdaGrad and RMSProp. It requires less 

memory, computationally efficient and is easy to implement. 

➢ The proposed model is compiled using different optimizers in order to decide 

which optimizer is best suited for the TGFD. This research has considered Adam, 

Adagrad, RMSprop and SGD optimizer [153] and the results are shown in Table 

6.2. 

      Table 6.2 Classification accuracy of DRCNN using different optimizers  

 

Optimizer Name Accuracy 

Adam 95.48 

Adagrad 85.77 

RMSprop 76.11 

SGD 80.29 

 

From Table 6.2, it can be seen that practically also the ‘Adam’ optimizer has given 

the best classification accuracy.  Hence, for the proposed model Adam optimizer 

is used. 

➢ According to Leslie N. Smith, there is a unique term known as "Cyclic Learning 

Rate" in which one needs to fix the minimum and maximum values for the 

learning rate and run the model for several epochs with the learning rate varying 

between the minimum and maximum values [144]. This range test is also known 

as the learning rate (LR) range test. The minimum and maximum values for the 

learning rate have been set to 0.1 and 0.3, respectively and the learning rates 

vary between them [155]. As shown in Table 6.1, after many experiments on 

different learning rates, the learning rate is set to 0.0001 for the Adam optimizer 

on TGFD as it gives the highest accuracy. The categorical cross-entropy loss 

function has been used for error calculation. 
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Table 6.3 Adam optimizer with different learning rates for DRCNN 

Learning Rate Accuracy Loss 

0.1 91.65 5.25 

0.2 85.36 4.56 

0.3 76 4.12 

0.01 80.34 3.89 

0.02 82.35 4.79 

0.03 81.78 3.45 

0.001 93.45 2.21 

0.002 91.66 2.78 

0.003 81.92 2.56 

0.0001 95.48 0.8 

0.0002 89.6 1.45 

0.0003 85.56 1.58 

0.00001 70.65 2.36 

0.00002 65.58 0.58 

0.00003 62.45 1.87 

➢ KerasTuner is a tool that helps to configure model hyperparameters [150-151]. 

KerasTuner has built-in algorithms for random search algorithms, Bayesian 

Optimization and Hyperband [152]. It is a useful package of Keras that does the 

experiments quickly and helps in tuning the hyperparameters such as the number 

of convolutional layers, input neurons in each convolutional layer and filter size. 

An experiment has been implemented using KerasTuner to decide the 

approximate range of a number of convolutional and pooling layers as shown in 

the code below. 
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6.3    Proposed DRCNN Model 

Based on the above observations a model from scratch has been proposed. To make the 

model lightweight it has been constructed with 11 Convolutional layers, 4   Max-pooling 

layers followed by one fully connected layer and a SoftMax layer. It is a deep architecture 

and since it restricts the depth by having less number of convolutional and fully 

connected layers, it named as “The Depth restricted Convolutional neural network 

(DRCNN)”. Table 6.4 shows the parameters selected for the proposed model which helps 

to increase an accuracy and reduce the computational complexity. 

Table 6.4 Hyperparameters for DRCNN 

Parameters 
Chosen Value 

for DRCNN 

Convolutional layers 11 

Max pooling layers 4 

Fully Connected layers 1 

Batch size 32 

No. of filters in convolutional layers 16,32,64,128 

Filter size 3X3, 5X5 

Learning rate 0.0001 
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The architecture of the proposed model DRCNN is shown in Fig. 6.1. 

 

Fig. 6.1 Architecture of the proposed model DRCNN 

 

As seen in Fig. 6.1, DRCNN consists of following steps: 

1. Dataset Creation:  

The Gujarati food images collected in TGFD, has been given as input images to the model. 

2. Preprocessing:  

The images are first preprocessed by the following steps. 

➢ The images are resized to 224x224 before processing.  

➢ Data augmentation techniques have been applied to artificially increase the size 

of the dataset. The total number of images after applying data augmentation 

techniques is 37,044 in TGFD. The dataset is divided into training, validation and 

testing with 70%, 20%, and 10% respectively using the Python library Splitfolders. 

➢  The images are preprocessed using the proposed ISMF algorithm to remove 

noise from images. The denoising images given to the model. 

3. Build the model:  

The model is built with the hyperparameter selected.  
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➢ The proposed model first extracts a data feature by 5 x 5 convolutional with 16 

filters which are followed by one more Convolutional layer of 5 x 5 Convolutional 

and 32 filters, followed by a pair of batch normalization (BN) and Relu. A 2x2 max-

pooling layer with stride 2 has been applied after each BN in the model. 

➢ The next 3 Convolutional layers have been added of Convolutional 3x3, out of 

which the first layer uses 16 filters and the rest two contain 32 filters. After these, 

3 Convolutional layers have been added of Convolutional 3x3, out of which the first 

layer uses 32 filters and the rest two contain 64 filters. 

➢ A more 3 Convolutional layers have been added of convolutional 3x3, out of which 

the first layer uses 64 filters and the rest two contain 128 filters. A flatten layer has 

been added after the last max-pooling layer to make multidimensional output 

linear and to pass it onto a fully connected layer. Lastly, one fully connected layer 

has been added followed by a Softmax output layer. When there are more than 

two classes Softmax is used as it returns probabilities of each class. The total 

trainable parameter in the model is 481,557. The detailed structure of DRCNN has 

been shown in Fig.6.2. 

      Model: Depth Restricted Convolutional Neural Network 

Layer Output Shape Param # 

Conv 1 (None,224,224,16) 1216 

Conv 2 (None,224,224,32) 12832 

batch normalization (None,224,224,32) 128 

Max pool 1 (None,112,112,32) 0 

Conv 3 (None,112,112,16) 4624 

Conv 4 (None,112,112,32) 4640 

Conv 5 (None,112,112,32) 9248 

batch normalization (None,112,112,32) 128 

Max pool 2 (None,56,56,32) 0 

Conv 6 (None,56,56,32) 9248 

Conv 7 (None,56,56,64) 18496 

Conv 8 (None,56,56,64) 36928 

batch normalization (None,56,56,64) 256 

Max pool 3 (None,28,28,64) 0 

Conv 9 (None,28,28,64) 36928 

Conv 10 (None,28,28,128) 73856 

Conv 11 (None,28,28,128) 147584 

batch normalization (None,28,28,128) 512 
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      Model: Depth Restricted Convolutional Neural Network 

Layer Output Shape Param # 

Max pool 4 (None,14,14,128) 0 

Flatten (None,25088) 0 

Dropout (None,25088) 0 

Dense Layer (None,5) 125445 

Total params: 482,069 
Trainable params: 481,557 
Non-trainable params: 512 

           

Fig. 6.2 Structure of the Depth Restricted Convolutional Neural Network 

➢ The model is trained using the training dataset.  

➢ In the next step the model is validated using the validation dataset to monitor the 

model’s performance on unseen data. 

4. Compile the model:  

   Once the training and validation steps are completed the model is compiled for several 

epochs using the Adam optimizer with a learning rate of 0.0001. 

5. Test the model:  

  The final step is to test the model on the test dataset. It gives an unbiased assessment 

of model’s accuracy on unseen data. Model evaluation parameters like accuracy, F1 

Score, precision and recall are used to evaluate the model [150,154]. 

➢ Precision: Measures the accuracy of the model's positive predictions [154]. It 

emphasizes the significance of the positive predictions and illustrates how many of 

the projected positive cases are true positives. In simple terms it defines the actual 

positive results out of the total positive results predicted by the model. The 

precision can be calculated using below formula: 

      Precision = True Positives / (True Positives + False Positives)              (6.1) 

     High accuracy shows that the model has a low rate of false positives, implying that 

it properly identifies positive occurrences while minimizing the number of 

examples labelled as positive mistakenly. 



 

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network 

92 

 

➢ Recall:  Also known as sensitivity, defines the classifier’s completeness [154]. In 

other words, recall measures how well a model can "recall" positive examples from 

the entire collection of positive examples in the dataset. The recall can be 

calculated using below formula: 

      Recall = True Positives / (True Positives + False Negatives)               (6.2) 

      A high recall value suggests that the model is properly classifying the majority of 

positive cases and effectively identifying a large proportion of positive instances. 

➢ F1 Score:  The F1 score combines both precision and recall into a single value 

[154]. The F1 score can be calculated using below formula: 

F1 score = 2 * (Precision*Recall) / (Precision + Recall)    (6.3) 

The F1 score ranges from 0 to 1, with a higher value indicating better performance. 

When the dataset is unbalanced or when recall and precision are equally crucial, it 

is a helpful metric. The F1 score recognizes models with a good combination of 

precision and recall. 

      The algorithm of DRCNN has been shown in Fig.6.3 

Algorithm Steps: 

Input: 

Training, Validation and Testing instance set ‘T’, an Image set and a label value  

Image Set I(i) = {I1(i), I2(i),…..,In(i)}  

Label Set L(i) = {Class1, Class2, ------, Class n}  

Initialization: 

Step 1: Collect the images from mobile, Internet and Real images clicked by visiting 

restaurants to prepare the dataset. 

Pre-processing Phase: 

Step 2: For each instance of input data, 

Remove Background Noise 

Resize the image into the specified range 
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Step 3: Apply augmentation techniques to increase the size of data artificially 

Define the model:  

Step 4: Define the model Depth Restricted convolutional neural network  

Step 5: Extract the input, output and intermediate properties of layers in the model 

Step 6: Configure the model and load the data in the model DRCNN 

Feature Extraction Phase: 

Step 7: Apply activation functions to get features dataset from selected or configure layer 

of the model 

Step 8: Prepare feature dataset and its equivalent target label for hyper-parameter tuning, 

training, and testing of model 

Parameter Hyper tuning Phase: 

Step 9: Select the optimizer and learning rate for the model 

Step 10: Compile the model 

Training Phase: 

Step 11: Initialize the parameter tuned for a model of DRCNN 

Step 12: Initialize the feature data and label data for the training dataset. 

Step 13: Train the model for DRCNN algorithms. 

Validation Phase: 

Step 14: Initialize the feature data for the validation dataset. 

Step 15: Validate the model DRCNN 

Testing Phase: 

Step 16: Initialize the feature data for the testing dataset. 

Step 17: Load the trained model of DRCNN algorithms. 

     Step 18: Check the Testing accuracy of the model to check the model’s efficiency. 

 

Fig. 6.3 Algorithm of DRCNN 
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6.4    Features of DRCNN 

DRCNN, a unique architecture, incorporates distinctive features that contribute to its 

effectiveness in image classification tasks: 

➢ Recursive Convolutional Layers: DRCNN utilizes a recursive approach by 

incorporating recursive convolutional layers. These specialized layers enable the 

network to iteratively learn and refine features from the input data. By recursively 

applying convolutional operations, DRCNN can capture hierarchical information and 

extract complex patterns more comprehensively. 

➢ Deep Architecture: DRCNN adopts a deep architecture, featuring multiple layers. 

The depth of the network allows for the learning of hierarchical representations at 

various levels of abstraction. This depth facilitates the extraction of intricate and 

detailed features from the input images. 

➢ Convolutional Operations: Central to DRCNN are the convolutional operations. 

These operations involve the application of filters or kernels to the input data, 

facilitating local feature extraction. By convolving these filters across the input, 

DRCNN can effectively capture spatial dependencies and extract meaningful 

features. 

➢ Non-linear Activation Functions: DRCNN employs non-linear activation functions, 

such as ReLU, which introduce non-linearity into the network. This non-linearity 

enables DRCNN to learn complex relationships between the input data and their 

corresponding labels, enhancing its capability to model intricate patterns. 

➢ Recursive Learning and Refinement: A key feature of DRCNN is its recursive 

learning and refinement mechanism. Through recursive convolutional layers, the 

network iteratively refines its feature representations. This iterative process 

enables DRCNN to capture increasingly detailed and fine-grained features from the 

input data. 

These unique features collectively contribute to the effectiveness of DRCNN in 

image classification. The recursive convolutional layers, deep architecture, 

convolutional operations, non-linear activation functions, skip connections, and 
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recursive learning and refinement enable DRCNN to extract intricate features and 

model complex patterns, leading to improved classification accuracy. 

6.5    Experiments and Results 

To see the performance analysis of DRCNN on TGFD, the DRCNN model has been 

implemented on an Intel i7-9750H Lenovo Legion Y540 CPU @ 2.60GHz processor, which 

supports a multicore processor equipped with a GeForce GTX 1650 NVIDIA GPU with 8GB 

of memory. Python 3.8.8 was used in the Deep Learning Framework with Keras 2.7 and 

TensorFlow 2.7.  

DRCNN has been tested with preprocessed images and without preprocessed images on 

TGFD. The comparison has been done using the accuracy of the model before applying 

pre-processing techniques and after preprocessed using ISMF.DRCNN runs starting from 

10 epochs to 500 epochs. It has been observed that after 100 epochs the performance of 

the model is not improving, hence for comparison accuracy of 100 epochs has been 

considered. The accuracy obtained on TGFD by considering images with and without 

preprocessing has been shown in Table 6.5. 

Table 6.5 Accuracy of DRCNN on TGFD 

Fig. 6.4(a) and Fig. 6.4(b) show the graphical representation of accuracy obtained on 

TGFD by considering images with and without preprocessing. 

                  

Fig.6.4 (a): Training vs. Validation accuracy Fig.6.4 (b): Training vs. Validation accuracy      

before pre-processing                       after pre-processing using ISMF 

DRCNN 
 

                                                              Epoch (Accuracy (%)) 

20 40 60 80 100 200 300 400 500 
Before ISMF 56.25 60.02 61.25 65.58 68.89 67.23 67.55 68.25 67.58 

After ISMF 86.78 
 

87.30 89.30 91.38 95.48 95.12 95.07 94.23 95.47 
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From the result shown in the Table 6.5, it has been observed  that applying ISMF on the 

images before processing results in good training accuracy of 95.48% for the model. 

Before pre-processing the images, the proposed model achieves only an accuracy of 

68.89%. 

The results achieved by the experiments conducted in sections 4 and 5 in chapter 5 

shows that by implementing transfer learning and fine-tuning, the testing accuracy has 

been increased by at least 5% and 8%, respectively, proving that transfer learning along 

with fine-tuning significantly improves classification accuracy.  

It has been observed from Table 6.5 that after 100 epochs, accuracy is not improving. 

Hence for comparison accuracy of 100 epochs has been considered. Table 6.6 shows the 

results for the DRCNN and fine-tuned models run for 100 epochs with classification 

accuracy along with the number of parameters, time required to train a model and 

number of convolutional layers and fully connected layers used. 

Table 6.6 Comparison of the DRCNN with Fine-tune existing Models 

  Model 
Name 

Classification 
Accuracy (%) 

No. of 
Parameters 

Conv/FC 
Time (In 
seconds) 

VGG16 85.23 13,83,57,544 13-Mar 4000 

VGG19 87.3 14,36,67,240 16-Mar 4300 

ResNet50 62.32 2,56,36,712 >17/1 14000 

Inceptionv3 89.36 2,38,51,784 >60/3 22500 

Alexnet 68.73 6,23,78,344 05-Mar 5500 

DRCNN 95.48 4,82,069 11-Jan 3700 

 

It can be seen from the Table 6.6 that the DRCNN model achieves a remarkable 

classification accuracy of 95.48%, which is more than all the fine-tuned models. It is more 

than the highest classification accuracy 89.36% which is achieved by inceptionv3 after 

fine-tuning. The DRCNN model contains 482069 parameters, which is 48 times less than 

the Inceptionv3 model. As a result, the DRCNN model takes only 30 minutes to run on 

the NVIDIA GPU GeForce GTX 1650, which is very low as compared to other pre-built 

models, which take 50 to 60 minutes to run. The validation loss of DRCNN is only 0.8041. 
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The graphical representation of accuracy, number of parameters and time taken by each 

model to run for all the fine-tuned models with the DRCNN is shown in Fig. 6.5,6.6 and 

6.7 respectively. 

 

 

 

Fig 6.5 Comparison of Fine-tune Models accuracy with the DRCNN 

 

   

 

Fig 6.6 Comparison of Fine-tune Models parameters with the DRCNN 
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Fig 6.7 Time Comparison of Fine-tune Models with the DRCNN 

Table 6.7 shows the performance evaluation metrics for all five prebuilt models with 

DRCNN. 

                           Table 6.7 Performance of evaluation metrics for prebuilt models and DRCNN 

Model Accuracy (%) Precision Recall 
F1 

Score 

VGG16 85.23 0.82 0.93 0.87 

VGG19 87.3 0.75 0.86 0.8 

Alexnet 68.73 0.81 0.76 0.78 

GoogleNet 89.36 0.82 0.88 0.83 

Resnet50 62.32 0.92 0.67 0.77 

DRCNN 95.48 0.95 0.9 0.92 

 

         From Table 6.7 the following observation can be made:         

 

➢ VGG16 achieves an accuracy of 85.23% and demonstrates a balanced precision of 

0.82 and recall of 0.93. This indicates its ability to correctly identify positive 

samples while minimizing false positives, resulting in an overall F1 score of 0.87. 

➢ VGG19 performs slightly better than VGG16, with an accuracy of 87.3%. However, 

it shows a lower precision of 0.75 and an F1 score of 0.80, indicating a relatively 
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higher rate of false positives. The recall of 0.86 suggests its effectiveness in 

capturing a high proportion of positive samples. 

➢ Alexnet achieves an accuracy of 68.73%, the lowest among the listed models. It 

exhibits a relatively high precision of 0.81 but a lower recall of 0.76, indicating a 

higher rate of false negatives. The F1 score of 0.78 reflects its moderate overall 

performance. 

➢ Inceptionv3 stands out with the highest accuracy of 89.36%. It demonstrates 

balanced precision (0.82) and recall (0.88), indicating its ability to correctly identify 

positive samples and avoid false negatives. The overall F1 score of 0.83 reflects its 

high performance. 

➢ Resnet50 exhibits the lowest accuracy of 62.32% among the listed models. It 

shows high precision (0.92) but a lower recall (0.67), indicating a relatively higher 

rate of false negatives. The F1 score of 0.77 suggests a moderate overall 

performance. 

➢ DRCNN showcases the highest accuracy of 95.48%. It demonstrates both high 

precision (0.95) and recall (0.90), indicating its proficiency in correctly identifying 

positive samples while minimizing false positives and negatives. The F1 score of 

0.92 signifies its excellent overall performance. 

In conclusion, the observations reveal that DRCNN exhibit the best performance among 

the listed models. 

The training and testing accuracy for DRCNN is shown in Fig. 6.8 for 100 epochs. 
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                    Fig. 6.8 Accuracy curves for DRCNN with Training epoch set to 100 

    

6.6   Testing DRCNN 

The DRCNN is tested in two ways to check its effectiveness and performance. In the first 

test case, the DRCNN is run for a higher number of Gujarati food classes. The DRCNN is 

run for different food datasets in the second test case to see its effect on other types of 

datasets. 

 6.6.1    Performance Evaluation of DRCNN on Extended TGFD 

Initially, TGFD consists of five food items. Later the TGFD has been extended to include 

more Gujarati food items from 5 food items to 7,10,12,15 and up to 20 food items. 

Extended TGFD food classes with a number of images in the dataset are as shown in 

Table 6.8:  

            Table 6.8 Number of images per Food Class in Extended TGFD 

Sr. No. Food Class 
Number of 

images 

1 Muthiya 99 

2 Khichu 100 

3 Poha 110 

4 Thepla 104 

5 Chapati 400 

6 Puri 400 

7 White Rice 400 

8 Idly 400 

9 Dabeli 108 

10 Biryani 400 
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Sr. No. Food Class 
Number of 

images 

11 Gulab Jamun 170 

12 Samosa 400 

13 Salad 400 

14 Upma 400 

15 Gujarati Dal 400 

16 Dhokla 377 

17 Handvo 367 

18 Khakhra 295 

19 Khandvi 419 

20 Patra 306 

 

The total number of images in Extended TGFD are 6055. Data augmentation techniques 

have been applied to TGFD to artificially increase the size of the dataset. The total 

number of images in extended TGFD after applying data augmentation techniques is 

1,27,155. The dataset is then divided into training, validation and testing with 70%, 20%, 

and 10% respectively using the Python library Splitfolders.  

The images from extended TGFD are preprocessed using the proposed ISMF algorithm to 

remove noise from images. The denoising images are given as an input to the model. 

All the prebuilt models and DRCNN are tested on Extended TGFD. The DRCNN is run in 

the same environment, compiled with Adam optimizer at a learning rate of 0.0001 for 

starting from 10 epochs to 500 epochs, but it has been observed that after 100 epochs, 

accuracy is not improving. Hence, for comparison, the accuracy for 100 epochs has been 

considered in Table 6.9. The same experiments were conducted on all fine-tuned 

models to compare the results. The results obtained using prebuilt models and DRCNN 

on extended TGFD are shown in Table 6.9.  
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Table 6.9 Comparison of Fine-tuned Prebuilt models and DRCNN for extended TGFD 

No. of 
Gujarati 

food 
class 

 

No. of 
Gujarati food 
images after 

Augmentation 
 

 
VGG16 

(%) 

 
VGG19 

(%) 

 
Inceptionv3 

(%) 

 
Alexnet 

(%) 

 
Resnet50 

(%) 

 
DRCNN 

(%) 

5 36687 85.23 87.3 89.36 68.73 62.32 95.48 

7 42336 76.21 73.79 81.65 70.23 58.54 91.12 

10 48531 70.59 73.95 75.76 71.24 55.54 93.36 

12 65310 70.44 72.01 77.61 72.45 54.85 92.98 

15 90510 72.37 66.64 85.7 65.54 52.21 93.76 

20 127155 75.49 70.23 67.5 69.32 50.25 96.10 

 

From the results seen in Table 6.9, the  following observations are made: 

➢ VGG16 and VGG19 show consistent performance across different number of 

classes of food, however their accuracy is not satisfactory. 

➢ Alexnet, ResNet50 and Inceptionv3 show variable performance with increasing 

number of classes. The model may struggle with more complex classification. 

➢ DRCNN outperforms the fine-tuned Inceptionv3 model for more number of food 

classes in terms of accuracy.  

➢ The accuracy of DRCNN has been increased as the number of food classes are 

increased shows model’s capabilities to handle complex tasks. 

➢ DRCNN shows superior performance, even with a smaller number of classes, 

indicating its effectiveness in the Gujarati food classification task. 

 6.6.2    The Performance of DRCNN with Different Food Datasets 

Five different existing datasets having different types of food items have been 

considered. DRCNN along with all five fine tune models runs for selected five datasets 

namely Food20, Indian-100, Food-101, FFML and UECFOOD-100 to check DRCNN’s 

versatility. Details of chosen dataset has already been described in section 2.4. 

Table 6.10 shows the result of DRCNN and prebuilt models for different datasets. 
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Table 6.10 Result of DRCNN for Different Datasets 

Name of 
Dataset 

 

Type of 
Food item 

in the 
dataset 

No. 
of 

food 
class 

No. of 
food 

images 

Accuracy 
of 

VGG16 
(%) 

Accuracy 
of 

VGG19 
(%) 

Accuracy  
of 

Inceptionv3 
(%) 

Accuracy 
of  

Alexnet 
(%) 

Accuracy 
of 

Resnet50 
(%) 

Accuracy 
of 

DRCNN 
(%) 

Food202  Indian 20 2000 56.62 70.78 70.56 19.32 45.58 95.5 

Indian-1003 Indian 50 5000 57.23 58.12 65.47 27.4 17.12 97.7 

Food-101 
[157] 

All Mix 
types of 

Food 

101 101000 67.34 69.34 53.38 35.25 35.89 98.98 

FFML Dataset 
[158] 

Romanian 
food 

dishes 

424 1281 47.12 54.23 48.01 23.45 17.26 99.79 

UECFOOD100 
[159][174] 

Japanese 
food 

100 14461 54.67 57.89 60.21 50.12 57.12 99.10 

 

From the results, it has been observed that: 

➢ Existing pre-built models do not give good results on all datasets, but DRCNN gives 

remarkable accuracy on all types of datasets, especially on FFML and UECFOOD10. 

➢ Alexnet gives poor performance on all types of datasets because it is a shallow 

architecture. 

➢ Resnet50 model begins to overfit after 60 epochs as it as it has been trained on 

very large-scale dataset 

➢ VGG16 and VGG19 give good performance for FOOD20 but for the rest of the 

dataset, the performance is not good. 

➢ Inceptionv3 fails to give good accuracy in almost all other types of datasets. 

It can be concluded from the above observations that the pre-built models are not 

sufficiently generalized. It is also difficult to adapt them practically because of poor 

speed and contain more layers which require more time in execution. Most of the pre-

built models are complex in nature and suffer from an overfitting problem with different 

food classes, while DRCNN runs or generalize well on small as well as large datasets with 

less or more number of classes.  

 ____________________________________________________________________                 

             2https://www.kaggle.com/datasets/cdart99/food20dataset 

          3https://www.kaggle.com/datasets/iamsouravbanerjee/indian-food-images-dataset 

https://www.kaggle.com/datasets/cdart99/food20dataset
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        6.6.3    The Performance Comparison of DRCNN with Other Models on Food-101 Dataset 

Food-101 dataset is a widely recognized and commonly used benchmark dataset for 

image classification tasks in the field of computer vision. The Food-101 dataset contains 

a large number of images (101,000 images) belonging to 101 different food categories. 

This diversity makes it suitable for training and evaluating models that need to recognize 

a wide range of food items. 

Many authors have proposed different CNN models to classify food images on the Food-

101 dataset. Gozde et al. [160] proposed a Deep CNN (DCNN) model to classify food 

items for the Food-101 dataset. For this purpose, three different models were proposed 

and performance was compared. The highest accuracy achieved by DCNN for Food-101 is 

77.56%. VijayaKumari et. al. [161] use transfer learning on the existing pre trained model 

Efficientnet and achieved an accuracy of 80% on the Food-101 dataset. Eduard et al. 

[162] has proposed a combination of multiple classifiers based on different CNN model 

that uses different classifiers fusion. The highest classification accuracy achieved for 

Food-101 is 90.27%. Abdulkadir et al. [163] have fine-tuned the pre-trained Alexnet and 

VGG16 to classify Food-101 using the SVM classifier. The highest accuracy achieved for 

Food-101 is 79.86%.  

The classification accuracy obtained by the different models proposed for the Food-101 

Dataset is shown in Table 6.11. 

Table 6.11 Comparative Analysis of DRCNN with other models with Food-101 Dataset 

Methods Accuracy (%) 
Proposed DCRNN 98.98 

DCNN [160] 77.56 

Efficient-Net B0 [161] 80.00 

CNN [162] 90.27 

CNN [163] 79.86 

 

DRCNN has improved its accuracy by at least 8.71% than the existing DCNN [160], 

Efficient-Net [161], CNN [162] and CNN [163] models. This indicates that the proposed 

DCRNN achieved faster and easier training of the network and improved its accuracy 

than the other methods.  
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Hence, the analysis concludes that the DRCNN is more efficient and accurate in 

classifying Gujarati as well as other food images. 

 

Concluding Remarks: A new model from scratch has been developed named DRCNN. 

The hyperparameters for the model have been chosen using empirical analysis and using 

Keras Tuner. It achieves a remarkable classification accuracy of 95.48% and a loss rate of 

0.8041 for TGFD. The DRCNN size in terms of parameters is 48 times smaller than the 

prebuilt highest accuracy achiever Inception v3 model.  

 The accuracy, number of parameters and training time of DRCNN has been compared 

with all fine-tuned pre-built models. The DRCNN has been tested with a higher number 

of Gujarati Food items and with different food datasets and it gives remarkable results. 

The performance of DRCNN for the Food 101 dataset has also been compared with other 

proposed models by different authors.  

The next chapter discusses the time complexity of the CNN model. It will help to decide 

the crucial parameters for determining the time complexity of the model.


