

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

82

 Chapter 6

 DRCNN – Depth Restricted Convolution

 Neural Network

The existing popular models do not give good classification accuracy even after fine-

tuning on TGFD. In this chapter, a more effective and efficient model has been proposed.

Also, the selection of hyperparameters, an optimizer and a learning rate for the

proposed model is discussed. The chapter ends by comparing the results of proposed

model with various existing models considering the evaluation parameters accuracy,

precision, recall and f1 score.

6.1 INTRODUCTION

All the pre-built deep convolutional neural networks like VGG16, Inceptionv3, VGG19

have large no. of layers and, hence contain a huge number of parameters [140]. Such

networks need hours, days, or even weeks to train. To reduce the time necessary to train

a model with increased classification accuracy, a lightweight network model with fewer

parameters and a small convolutional kernel size is required.

This research work has tried to develop a more accurate and efficient model for TGFD

with less number of parameters. Also, the highest classification accuracy for TGFD

achieved by Inceptionv3 is 86.22% after transfer learning and 89.36 % after fine-tuning

which can be further improved.

To design a new model from scratch, the very first step is to choose the proper

hyperparameter for the model. To make the model lightweight, it is necessary to

understand what are the hyperparameters and what value should be set for the same.

An empirical study have been done for selection of these parameters for the proposed

model.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

83

6.2 Hyperparameter Selection Using Empirical Analysis

For any CNN algorithm, it is very necessary to decide the hyperparameters like the

number of convolutional layers, the number of fully connected layers, batch size, kernel

size, number of filters in a layer, optimizer, learning rate, etc. By doing an exhaustive

literature survey, the following observations have been found.

➢ There are two types of datasets: Deeper and Wider. A deeper dataset has more

images per class than a wider one. Deeper architecture works best with deeper

datasets and shallow architecture with wider datasets [145]. The proposed

dataset, TGFD, is a deeper dataset as it has more number of images per class.

Hence, deeper network gives better results with it.

➢ The number of convolutional and fully connected layers directly affects the

runtime of the model [146]. In order to reduce computational complexity less

number of convolutional and fully connected layers should be chosen.

➢ The model results in higher accuracy and lower runtime when convolutional

layers have fewer filters [148]. Generally, the number of filters varies between

16,32,64 and 128. A lower number of filters for all the convolutional layers should

be chosen for the proposed model.

➢ The number of filters in convolution layers and the size of filters have a significant

effect on the accuracy of the system [148]. The filters size can be typically

specified as 3x3 ,5x5,7X7,9X9. The lower filter size should be chosen for making

model more accurate.

➢ The max-pooling layer reduces the parameter count, which decreases

computational complexity [149]. Hence, max-pooling layers should be used in

order to reduce model complexity of proposed model.

➢ The accuracy of the model relies more on the quantity of convolution filters

within a layer and the dimensions of the convolution kernel, rather than the

depth of the network. [148].

➢ When the learning rate is low, a lower batch size gives a better result [147]. A

lower batch size should be chosen for the proposed model as it helps to improve

accuracy.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

84

➢ The Rectified Linear Unit (ReLU) activation function is commonly used in

convolutional layers of neural networks for several reasons. It offers advantages

over other activation functions such as sigmoid or tanh. ReLU is preferred over

other activation functions in convolutional layers due to the following reasons:

• Efficiency: ReLU is computationally efficient compared to other activation

functions like sigmoid or tanh. The ReLU function simply sets negative values

to zero while leaving positive values unchanged. This simple operation can be

implemented efficiently using basic mathematical operations.

• Avoiding the vanishing gradient problem: ReLU helps alleviate the vanishing

gradient problem, which is a challenge in deep neural networks. The

vanishing gradient problem occurs when the gradients during

backpropagation become extremely small, leading to slow convergence and

difficulty in training the network. ReLU's derivative is either 0 or 1, ensuring

that the gradients are not diminished through repeated multiplications.

• Sparse activation: ReLU introduces sparsity in the network. When the input

to a ReLU unit is negative, the output is zero, effectively deactivating the

neuron. This sparsity property helps the network focus on the most relevant

features and reduces the overall computational burden.

• Non-linearity: ReLU introduces non-linearity, allowing the network to learn

complex relationships between inputs and features. Convolutional layers

without non-linear activation functions would only perform linear

transformations, limiting the network's expressive power. ReLU enables the

network to capture intricate patterns and improve its representation

capabilities.

➢ By utilizing ReLU in convolutional layers, neural networks become more efficient,

better at handling deep architectures, and capable of learning complex features.

➢ It is very important to choose the correct optimizer while compiling the model.

The optimizer ties together the model parameters like weights, learning rates and

loss functions.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

85

➢ Some of the well-known optimizers are Gradient Descent, Stochastic Gradient

Descent (SGD), Adam, RMSprop, Momentum and Adagrad [153][155]. The

comparison of some of the most popular optimizers has been shown in Table 6.1.

 Table 6.1 Comparison of Optimizers

Optimizer Description Advantages Disadvantages

Adam Combines advantages of RMSprop

and momentum.

Suited to a variety of deep

learning tasks

Needs more memory because

there are more moving average

Uses moving averages of previous

gradients and squared gradients

to adapt learning rates per

parameter.

Rapid convergence parameters Choice of learning

rate sensitive

 Functions well with sparse

gradients Strong

hyperparameter options.

Adagrad Scaling learning rates per

parameter inversely proportional

to the sum of past squared

gradients allows for parameter

adaptation.

Effective with sparse data

and gradients

Reduces learning rates too

aggressively, making

convergence

 Automatic rate adjustments

for learning

Accumulates the total of

historical gradients

 Less susceptible to early

learning rate selection

possibly causing memory

problems

RMSprop Divides the learning rates for each

parameter by the exponential

moving average of squared

gradients to adapt learning rates.

Solved Adagrad's aggressive

learning rate decay

Learning rate must be manually

adjusted

 Faster convergence than

standard SGD

Accumulates past squared

gradients

Suitable for non-stationary

goals

potentially causing memory

difficulties

SGD Model parameters are updated by

a simple optimization approach

based on the gradient of the loss

function calculated on a mini-

batch.

Simpleness and a minimal

memory requirement

Simpleness and a minimal

memory requirement

Simple to implement Simple to implement

Can escape from poor local

minima

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

86

From the comparison shown in Table 6.1, it has been observed that adam is

beneficial as it is a combination of AdaGrad and RMSProp. It requires less

memory, computationally efficient and is easy to implement.

➢ The proposed model is compiled using different optimizers in order to decide

which optimizer is best suited for the TGFD. This research has considered Adam,

Adagrad, RMSprop and SGD optimizer [153] and the results are shown in Table

6.2.

 Table 6.2 Classification accuracy of DRCNN using different optimizers

Optimizer Name Accuracy

Adam 95.48

Adagrad 85.77

RMSprop 76.11

SGD 80.29

From Table 6.2, it can be seen that practically also the ‘Adam’ optimizer has given

the best classification accuracy. Hence, for the proposed model Adam optimizer

is used.

➢ According to Leslie N. Smith, there is a unique term known as "Cyclic Learning

Rate" in which one needs to fix the minimum and maximum values for the

learning rate and run the model for several epochs with the learning rate varying

between the minimum and maximum values [144]. This range test is also known

as the learning rate (LR) range test. The minimum and maximum values for the

learning rate have been set to 0.1 and 0.3, respectively and the learning rates

vary between them [155]. As shown in Table 6.1, after many experiments on

different learning rates, the learning rate is set to 0.0001 for the Adam optimizer

on TGFD as it gives the highest accuracy. The categorical cross-entropy loss

function has been used for error calculation.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

87

Table 6.3 Adam optimizer with different learning rates for DRCNN

Learning Rate Accuracy Loss

0.1 91.65 5.25

0.2 85.36 4.56

0.3 76 4.12

0.01 80.34 3.89

0.02 82.35 4.79

0.03 81.78 3.45

0.001 93.45 2.21

0.002 91.66 2.78

0.003 81.92 2.56

0.0001 95.48 0.8

0.0002 89.6 1.45

0.0003 85.56 1.58

0.00001 70.65 2.36

0.00002 65.58 0.58

0.00003 62.45 1.87

➢ KerasTuner is a tool that helps to configure model hyperparameters [150-151].

KerasTuner has built-in algorithms for random search algorithms, Bayesian

Optimization and Hyperband [152]. It is a useful package of Keras that does the

experiments quickly and helps in tuning the hyperparameters such as the number

of convolutional layers, input neurons in each convolutional layer and filter size.

An experiment has been implemented using KerasTuner to decide the

approximate range of a number of convolutional and pooling layers as shown in

the code below.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

88

6.3 Proposed DRCNN Model

Based on the above observations a model from scratch has been proposed. To make the

model lightweight it has been constructed with 11 Convolutional layers, 4 Max-pooling

layers followed by one fully connected layer and a SoftMax layer. It is a deep architecture

and since it restricts the depth by having less number of convolutional and fully

connected layers, it named as “The Depth restricted Convolutional neural network

(DRCNN)”. Table 6.4 shows the parameters selected for the proposed model which helps

to increase an accuracy and reduce the computational complexity.

Table 6.4 Hyperparameters for DRCNN

Parameters
Chosen Value

for DRCNN

Convolutional layers 11

Max pooling layers 4

Fully Connected layers 1

Batch size 32

No. of filters in convolutional layers 16,32,64,128

Filter size 3X3, 5X5

Learning rate 0.0001

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

89

The architecture of the proposed model DRCNN is shown in Fig. 6.1.

Fig. 6.1 Architecture of the proposed model DRCNN

As seen in Fig. 6.1, DRCNN consists of following steps:

1. Dataset Creation:

The Gujarati food images collected in TGFD, has been given as input images to the model.

2. Preprocessing:

The images are first preprocessed by the following steps.

➢ The images are resized to 224x224 before processing.

➢ Data augmentation techniques have been applied to artificially increase the size

of the dataset. The total number of images after applying data augmentation

techniques is 37,044 in TGFD. The dataset is divided into training, validation and

testing with 70%, 20%, and 10% respectively using the Python library Splitfolders.

➢ The images are preprocessed using the proposed ISMF algorithm to remove

noise from images. The denoising images given to the model.

3. Build the model:

The model is built with the hyperparameter selected.

DRCNN CYCLE
Classification of Gujarati Food

Items

In
p

u
t

Fo
o

d
 Im

ag
e

 PREPROCESSING

Pre processing

Resize Input Image

Augmentation

Make
the

DRCNN

Compile
DRCNN

Train
DRCNN

Validate
DRCNN

Test
DRCNN Dhokla Handvo Khakhra

Khandvi Patra

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

90

➢ The proposed model first extracts a data feature by 5 x 5 convolutional with 16

filters which are followed by one more Convolutional layer of 5 x 5 Convolutional

and 32 filters, followed by a pair of batch normalization (BN) and Relu. A 2x2 max-

pooling layer with stride 2 has been applied after each BN in the model.

➢ The next 3 Convolutional layers have been added of Convolutional 3x3, out of

which the first layer uses 16 filters and the rest two contain 32 filters. After these,

3 Convolutional layers have been added of Convolutional 3x3, out of which the first

layer uses 32 filters and the rest two contain 64 filters.

➢ A more 3 Convolutional layers have been added of convolutional 3x3, out of which

the first layer uses 64 filters and the rest two contain 128 filters. A flatten layer has

been added after the last max-pooling layer to make multidimensional output

linear and to pass it onto a fully connected layer. Lastly, one fully connected layer

has been added followed by a Softmax output layer. When there are more than

two classes Softmax is used as it returns probabilities of each class. The total

trainable parameter in the model is 481,557. The detailed structure of DRCNN has

been shown in Fig.6.2.

 Model: Depth Restricted Convolutional Neural Network

Layer Output Shape Param #

Conv 1 (None,224,224,16) 1216

Conv 2 (None,224,224,32) 12832

batch normalization (None,224,224,32) 128

Max pool 1 (None,112,112,32) 0

Conv 3 (None,112,112,16) 4624

Conv 4 (None,112,112,32) 4640

Conv 5 (None,112,112,32) 9248

batch normalization (None,112,112,32) 128

Max pool 2 (None,56,56,32) 0

Conv 6 (None,56,56,32) 9248

Conv 7 (None,56,56,64) 18496

Conv 8 (None,56,56,64) 36928

batch normalization (None,56,56,64) 256

Max pool 3 (None,28,28,64) 0

Conv 9 (None,28,28,64) 36928

Conv 10 (None,28,28,128) 73856

Conv 11 (None,28,28,128) 147584

batch normalization (None,28,28,128) 512

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

91

 Model: Depth Restricted Convolutional Neural Network

Layer Output Shape Param #

Max pool 4 (None,14,14,128) 0

Flatten (None,25088) 0

Dropout (None,25088) 0

Dense Layer (None,5) 125445

Total params: 482,069
Trainable params: 481,557
Non-trainable params: 512

Fig. 6.2 Structure of the Depth Restricted Convolutional Neural Network

➢ The model is trained using the training dataset.

➢ In the next step the model is validated using the validation dataset to monitor the

model’s performance on unseen data.

4. Compile the model:

 Once the training and validation steps are completed the model is compiled for several

epochs using the Adam optimizer with a learning rate of 0.0001.

5. Test the model:

 The final step is to test the model on the test dataset. It gives an unbiased assessment

of model’s accuracy on unseen data. Model evaluation parameters like accuracy, F1

Score, precision and recall are used to evaluate the model [150,154].

➢ Precision: Measures the accuracy of the model's positive predictions [154]. It

emphasizes the significance of the positive predictions and illustrates how many of

the projected positive cases are true positives. In simple terms it defines the actual

positive results out of the total positive results predicted by the model. The

precision can be calculated using below formula:

 Precision = True Positives / (True Positives + False Positives) (6.1)

 High accuracy shows that the model has a low rate of false positives, implying that

it properly identifies positive occurrences while minimizing the number of

examples labelled as positive mistakenly.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

92

➢ Recall: Also known as sensitivity, defines the classifier’s completeness [154]. In

other words, recall measures how well a model can "recall" positive examples from

the entire collection of positive examples in the dataset. The recall can be

calculated using below formula:

 Recall = True Positives / (True Positives + False Negatives) (6.2)

 A high recall value suggests that the model is properly classifying the majority of

positive cases and effectively identifying a large proportion of positive instances.

➢ F1 Score: The F1 score combines both precision and recall into a single value

[154]. The F1 score can be calculated using below formula:

F1 score = 2 * (Precision*Recall) / (Precision + Recall) (6.3)

The F1 score ranges from 0 to 1, with a higher value indicating better performance.

When the dataset is unbalanced or when recall and precision are equally crucial, it

is a helpful metric. The F1 score recognizes models with a good combination of

precision and recall.

 The algorithm of DRCNN has been shown in Fig.6.3

Algorithm Steps:

Input:

Training, Validation and Testing instance set ‘T’, an Image set and a label value

Image Set I(i) = {I1(i), I2(i),…..,In(i)}

Label Set L(i) = {Class1, Class2, ------, Class n}

Initialization:

Step 1: Collect the images from mobile, Internet and Real images clicked by visiting

restaurants to prepare the dataset.

Pre-processing Phase:

Step 2: For each instance of input data,

Remove Background Noise

Resize the image into the specified range

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

93

Step 3: Apply augmentation techniques to increase the size of data artificially

Define the model:

Step 4: Define the model Depth Restricted convolutional neural network

Step 5: Extract the input, output and intermediate properties of layers in the model

Step 6: Configure the model and load the data in the model DRCNN

Feature Extraction Phase:

Step 7: Apply activation functions to get features dataset from selected or configure layer

of the model

Step 8: Prepare feature dataset and its equivalent target label for hyper-parameter tuning,

training, and testing of model

Parameter Hyper tuning Phase:

Step 9: Select the optimizer and learning rate for the model

Step 10: Compile the model

Training Phase:

Step 11: Initialize the parameter tuned for a model of DRCNN

Step 12: Initialize the feature data and label data for the training dataset.

Step 13: Train the model for DRCNN algorithms.

Validation Phase:

Step 14: Initialize the feature data for the validation dataset.

Step 15: Validate the model DRCNN

Testing Phase:

Step 16: Initialize the feature data for the testing dataset.

Step 17: Load the trained model of DRCNN algorithms.

 Step 18: Check the Testing accuracy of the model to check the model’s efficiency.

Fig. 6.3 Algorithm of DRCNN

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

94

6.4 Features of DRCNN

DRCNN, a unique architecture, incorporates distinctive features that contribute to its

effectiveness in image classification tasks:

➢ Recursive Convolutional Layers: DRCNN utilizes a recursive approach by

incorporating recursive convolutional layers. These specialized layers enable the

network to iteratively learn and refine features from the input data. By recursively

applying convolutional operations, DRCNN can capture hierarchical information and

extract complex patterns more comprehensively.

➢ Deep Architecture: DRCNN adopts a deep architecture, featuring multiple layers.

The depth of the network allows for the learning of hierarchical representations at

various levels of abstraction. This depth facilitates the extraction of intricate and

detailed features from the input images.

➢ Convolutional Operations: Central to DRCNN are the convolutional operations.

These operations involve the application of filters or kernels to the input data,

facilitating local feature extraction. By convolving these filters across the input,

DRCNN can effectively capture spatial dependencies and extract meaningful

features.

➢ Non-linear Activation Functions: DRCNN employs non-linear activation functions,

such as ReLU, which introduce non-linearity into the network. This non-linearity

enables DRCNN to learn complex relationships between the input data and their

corresponding labels, enhancing its capability to model intricate patterns.

➢ Recursive Learning and Refinement: A key feature of DRCNN is its recursive

learning and refinement mechanism. Through recursive convolutional layers, the

network iteratively refines its feature representations. This iterative process

enables DRCNN to capture increasingly detailed and fine-grained features from the

input data.

These unique features collectively contribute to the effectiveness of DRCNN in

image classification. The recursive convolutional layers, deep architecture,

convolutional operations, non-linear activation functions, skip connections, and

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

95

recursive learning and refinement enable DRCNN to extract intricate features and

model complex patterns, leading to improved classification accuracy.

6.5 Experiments and Results

To see the performance analysis of DRCNN on TGFD, the DRCNN model has been

implemented on an Intel i7-9750H Lenovo Legion Y540 CPU @ 2.60GHz processor, which

supports a multicore processor equipped with a GeForce GTX 1650 NVIDIA GPU with 8GB

of memory. Python 3.8.8 was used in the Deep Learning Framework with Keras 2.7 and

TensorFlow 2.7.

DRCNN has been tested with preprocessed images and without preprocessed images on

TGFD. The comparison has been done using the accuracy of the model before applying

pre-processing techniques and after preprocessed using ISMF.DRCNN runs starting from

10 epochs to 500 epochs. It has been observed that after 100 epochs the performance of

the model is not improving, hence for comparison accuracy of 100 epochs has been

considered. The accuracy obtained on TGFD by considering images with and without

preprocessing has been shown in Table 6.5.

Table 6.5 Accuracy of DRCNN on TGFD

Fig. 6.4(a) and Fig. 6.4(b) show the graphical representation of accuracy obtained on

TGFD by considering images with and without preprocessing.

Fig.6.4 (a): Training vs. Validation accuracy Fig.6.4 (b): Training vs. Validation accuracy

before pre-processing after pre-processing using ISMF

DRCNN

 Epoch (Accuracy (%))

20 40 60 80 100 200 300 400 500
Before ISMF 56.25 60.02 61.25 65.58 68.89 67.23 67.55 68.25 67.58

After ISMF 86.78

87.30 89.30 91.38 95.48 95.12 95.07 94.23 95.47

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

96

From the result shown in the Table 6.5, it has been observed that applying ISMF on the

images before processing results in good training accuracy of 95.48% for the model.

Before pre-processing the images, the proposed model achieves only an accuracy of

68.89%.

The results achieved by the experiments conducted in sections 4 and 5 in chapter 5

shows that by implementing transfer learning and fine-tuning, the testing accuracy has

been increased by at least 5% and 8%, respectively, proving that transfer learning along

with fine-tuning significantly improves classification accuracy.

It has been observed from Table 6.5 that after 100 epochs, accuracy is not improving.

Hence for comparison accuracy of 100 epochs has been considered. Table 6.6 shows the

results for the DRCNN and fine-tuned models run for 100 epochs with classification

accuracy along with the number of parameters, time required to train a model and

number of convolutional layers and fully connected layers used.

Table 6.6 Comparison of the DRCNN with Fine-tune existing Models

 Model
Name

Classification
Accuracy (%)

No. of
Parameters

Conv/FC
Time (In
seconds)

VGG16 85.23 13,83,57,544 13-Mar 4000

VGG19 87.3 14,36,67,240 16-Mar 4300

ResNet50 62.32 2,56,36,712 >17/1 14000

Inceptionv3 89.36 2,38,51,784 >60/3 22500

Alexnet 68.73 6,23,78,344 05-Mar 5500

DRCNN 95.48 4,82,069 11-Jan 3700

It can be seen from the Table 6.6 that the DRCNN model achieves a remarkable

classification accuracy of 95.48%, which is more than all the fine-tuned models. It is more

than the highest classification accuracy 89.36% which is achieved by inceptionv3 after

fine-tuning. The DRCNN model contains 482069 parameters, which is 48 times less than

the Inceptionv3 model. As a result, the DRCNN model takes only 30 minutes to run on

the NVIDIA GPU GeForce GTX 1650, which is very low as compared to other pre-built

models, which take 50 to 60 minutes to run. The validation loss of DRCNN is only 0.8041.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

97

The graphical representation of accuracy, number of parameters and time taken by each

model to run for all the fine-tuned models with the DRCNN is shown in Fig. 6.5,6.6 and

6.7 respectively.

Fig 6.5 Comparison of Fine-tune Models accuracy with the DRCNN

Fig 6.6 Comparison of Fine-tune Models parameters with the DRCNN

138 144

26 24

62

0.48
 -

 20

 40

 60

 80

 100

 120

 140

 160

VGG16 VGG19 ResNet50 Inceptionv3 Alexnet DRCNN

N
o

 o
f

P
ar

am
et

er
 in

 M
ill

io
n

Model

Model v/s No of Paramter In Million

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

98

Fig 6.7 Time Comparison of Fine-tune Models with the DRCNN

Table 6.7 shows the performance evaluation metrics for all five prebuilt models with

DRCNN.

 Table 6.7 Performance of evaluation metrics for prebuilt models and DRCNN

Model Accuracy (%) Precision Recall
F1

Score

VGG16 85.23 0.82 0.93 0.87

VGG19 87.3 0.75 0.86 0.8

Alexnet 68.73 0.81 0.76 0.78

GoogleNet 89.36 0.82 0.88 0.83

Resnet50 62.32 0.92 0.67 0.77

DRCNN 95.48 0.95 0.9 0.92

 From Table 6.7 the following observation can be made:

➢ VGG16 achieves an accuracy of 85.23% and demonstrates a balanced precision of

0.82 and recall of 0.93. This indicates its ability to correctly identify positive

samples while minimizing false positives, resulting in an overall F1 score of 0.87.

➢ VGG19 performs slightly better than VGG16, with an accuracy of 87.3%. However,

it shows a lower precision of 0.75 and an F1 score of 0.80, indicating a relatively

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

99

higher rate of false positives. The recall of 0.86 suggests its effectiveness in

capturing a high proportion of positive samples.

➢ Alexnet achieves an accuracy of 68.73%, the lowest among the listed models. It

exhibits a relatively high precision of 0.81 but a lower recall of 0.76, indicating a

higher rate of false negatives. The F1 score of 0.78 reflects its moderate overall

performance.

➢ Inceptionv3 stands out with the highest accuracy of 89.36%. It demonstrates

balanced precision (0.82) and recall (0.88), indicating its ability to correctly identify

positive samples and avoid false negatives. The overall F1 score of 0.83 reflects its

high performance.

➢ Resnet50 exhibits the lowest accuracy of 62.32% among the listed models. It

shows high precision (0.92) but a lower recall (0.67), indicating a relatively higher

rate of false negatives. The F1 score of 0.77 suggests a moderate overall

performance.

➢ DRCNN showcases the highest accuracy of 95.48%. It demonstrates both high

precision (0.95) and recall (0.90), indicating its proficiency in correctly identifying

positive samples while minimizing false positives and negatives. The F1 score of

0.92 signifies its excellent overall performance.

In conclusion, the observations reveal that DRCNN exhibit the best performance among

the listed models.

The training and testing accuracy for DRCNN is shown in Fig. 6.8 for 100 epochs.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

100

 Fig. 6.8 Accuracy curves for DRCNN with Training epoch set to 100

6.6 Testing DRCNN

The DRCNN is tested in two ways to check its effectiveness and performance. In the first

test case, the DRCNN is run for a higher number of Gujarati food classes. The DRCNN is

run for different food datasets in the second test case to see its effect on other types of

datasets.

 6.6.1 Performance Evaluation of DRCNN on Extended TGFD

Initially, TGFD consists of five food items. Later the TGFD has been extended to include

more Gujarati food items from 5 food items to 7,10,12,15 and up to 20 food items.

Extended TGFD food classes with a number of images in the dataset are as shown in

Table 6.8:

 Table 6.8 Number of images per Food Class in Extended TGFD

Sr. No. Food Class
Number of

images

1 Muthiya 99

2 Khichu 100

3 Poha 110

4 Thepla 104

5 Chapati 400

6 Puri 400

7 White Rice 400

8 Idly 400

9 Dabeli 108

10 Biryani 400

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

101

Sr. No. Food Class
Number of

images

11 Gulab Jamun 170

12 Samosa 400

13 Salad 400

14 Upma 400

15 Gujarati Dal 400

16 Dhokla 377

17 Handvo 367

18 Khakhra 295

19 Khandvi 419

20 Patra 306

The total number of images in Extended TGFD are 6055. Data augmentation techniques

have been applied to TGFD to artificially increase the size of the dataset. The total

number of images in extended TGFD after applying data augmentation techniques is

1,27,155. The dataset is then divided into training, validation and testing with 70%, 20%,

and 10% respectively using the Python library Splitfolders.

The images from extended TGFD are preprocessed using the proposed ISMF algorithm to

remove noise from images. The denoising images are given as an input to the model.

All the prebuilt models and DRCNN are tested on Extended TGFD. The DRCNN is run in

the same environment, compiled with Adam optimizer at a learning rate of 0.0001 for

starting from 10 epochs to 500 epochs, but it has been observed that after 100 epochs,

accuracy is not improving. Hence, for comparison, the accuracy for 100 epochs has been

considered in Table 6.9. The same experiments were conducted on all fine-tuned

models to compare the results. The results obtained using prebuilt models and DRCNN

on extended TGFD are shown in Table 6.9.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

102

Table 6.9 Comparison of Fine-tuned Prebuilt models and DRCNN for extended TGFD

No. of
Gujarati

food
class

No. of
Gujarati food
images after

Augmentation

VGG16

(%)

VGG19

(%)

Inceptionv3

(%)

Alexnet

(%)

Resnet50

(%)

DRCNN

(%)

5 36687 85.23 87.3 89.36 68.73 62.32 95.48

7 42336 76.21 73.79 81.65 70.23 58.54 91.12

10 48531 70.59 73.95 75.76 71.24 55.54 93.36

12 65310 70.44 72.01 77.61 72.45 54.85 92.98

15 90510 72.37 66.64 85.7 65.54 52.21 93.76

20 127155 75.49 70.23 67.5 69.32 50.25 96.10

From the results seen in Table 6.9, the following observations are made:

➢ VGG16 and VGG19 show consistent performance across different number of

classes of food, however their accuracy is not satisfactory.

➢ Alexnet, ResNet50 and Inceptionv3 show variable performance with increasing

number of classes. The model may struggle with more complex classification.

➢ DRCNN outperforms the fine-tuned Inceptionv3 model for more number of food

classes in terms of accuracy.

➢ The accuracy of DRCNN has been increased as the number of food classes are

increased shows model’s capabilities to handle complex tasks.

➢ DRCNN shows superior performance, even with a smaller number of classes,

indicating its effectiveness in the Gujarati food classification task.

 6.6.2 The Performance of DRCNN with Different Food Datasets

Five different existing datasets having different types of food items have been

considered. DRCNN along with all five fine tune models runs for selected five datasets

namely Food20, Indian-100, Food-101, FFML and UECFOOD-100 to check DRCNN’s

versatility. Details of chosen dataset has already been described in section 2.4.

Table 6.10 shows the result of DRCNN and prebuilt models for different datasets.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

103

Table 6.10 Result of DRCNN for Different Datasets

Name of
Dataset

Type of
Food item

in the
dataset

No.
of

food
class

No. of
food

images

Accuracy
of

VGG16
(%)

Accuracy
of

VGG19
(%)

Accuracy
of

Inceptionv3
(%)

Accuracy
of

Alexnet
(%)

Accuracy
of

Resnet50
(%)

Accuracy
of

DRCNN
(%)

Food202 Indian 20 2000 56.62 70.78 70.56 19.32 45.58 95.5

Indian-1003 Indian 50 5000 57.23 58.12 65.47 27.4 17.12 97.7

Food-101
[157]

All Mix
types of

Food

101 101000 67.34 69.34 53.38 35.25 35.89 98.98

FFML Dataset
[158]

Romanian
food

dishes

424 1281 47.12 54.23 48.01 23.45 17.26 99.79

UECFOOD100
[159][174]

Japanese
food

100 14461 54.67 57.89 60.21 50.12 57.12 99.10

From the results, it has been observed that:

➢ Existing pre-built models do not give good results on all datasets, but DRCNN gives

remarkable accuracy on all types of datasets, especially on FFML and UECFOOD10.

➢ Alexnet gives poor performance on all types of datasets because it is a shallow

architecture.

➢ Resnet50 model begins to overfit after 60 epochs as it as it has been trained on

very large-scale dataset

➢ VGG16 and VGG19 give good performance for FOOD20 but for the rest of the

dataset, the performance is not good.

➢ Inceptionv3 fails to give good accuracy in almost all other types of datasets.

It can be concluded from the above observations that the pre-built models are not

sufficiently generalized. It is also difficult to adapt them practically because of poor

speed and contain more layers which require more time in execution. Most of the pre-

built models are complex in nature and suffer from an overfitting problem with different

food classes, while DRCNN runs or generalize well on small as well as large datasets with

less or more number of classes.

 __

 2https://www.kaggle.com/datasets/cdart99/food20dataset

 3https://www.kaggle.com/datasets/iamsouravbanerjee/indian-food-images-dataset

https://www.kaggle.com/datasets/cdart99/food20dataset

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

104

 6.6.3 The Performance Comparison of DRCNN with Other Models on Food-101 Dataset

Food-101 dataset is a widely recognized and commonly used benchmark dataset for

image classification tasks in the field of computer vision. The Food-101 dataset contains

a large number of images (101,000 images) belonging to 101 different food categories.

This diversity makes it suitable for training and evaluating models that need to recognize

a wide range of food items.

Many authors have proposed different CNN models to classify food images on the Food-

101 dataset. Gozde et al. [160] proposed a Deep CNN (DCNN) model to classify food

items for the Food-101 dataset. For this purpose, three different models were proposed

and performance was compared. The highest accuracy achieved by DCNN for Food-101 is

77.56%. VijayaKumari et. al. [161] use transfer learning on the existing pre trained model

Efficientnet and achieved an accuracy of 80% on the Food-101 dataset. Eduard et al.

[162] has proposed a combination of multiple classifiers based on different CNN model

that uses different classifiers fusion. The highest classification accuracy achieved for

Food-101 is 90.27%. Abdulkadir et al. [163] have fine-tuned the pre-trained Alexnet and

VGG16 to classify Food-101 using the SVM classifier. The highest accuracy achieved for

Food-101 is 79.86%.

The classification accuracy obtained by the different models proposed for the Food-101

Dataset is shown in Table 6.11.

Table 6.11 Comparative Analysis of DRCNN with other models with Food-101 Dataset

Methods Accuracy (%)
Proposed DCRNN 98.98

DCNN [160] 77.56

Efficient-Net B0 [161] 80.00

CNN [162] 90.27

CNN [163] 79.86

DRCNN has improved its accuracy by at least 8.71% than the existing DCNN [160],

Efficient-Net [161], CNN [162] and CNN [163] models. This indicates that the proposed

DCRNN achieved faster and easier training of the network and improved its accuracy

than the other methods.

Chapter 6 DRCNN – Depth Restricted Convolution Neural Network

105

Hence, the analysis concludes that the DRCNN is more efficient and accurate in

classifying Gujarati as well as other food images.

Concluding Remarks: A new model from scratch has been developed named DRCNN.

The hyperparameters for the model have been chosen using empirical analysis and using

Keras Tuner. It achieves a remarkable classification accuracy of 95.48% and a loss rate of

0.8041 for TGFD. The DRCNN size in terms of parameters is 48 times smaller than the

prebuilt highest accuracy achiever Inception v3 model.

 The accuracy, number of parameters and training time of DRCNN has been compared

with all fine-tuned pre-built models. The DRCNN has been tested with a higher number

of Gujarati Food items and with different food datasets and it gives remarkable results.

The performance of DRCNN for the Food 101 dataset has also been compared with other

proposed models by different authors.

The next chapter discusses the time complexity of the CNN model. It will help to decide

the crucial parameters for determining the time complexity of the model.

