

Chapter 7: Time Complexity of CNN Models

106

Chapter 7

Time Complexity of CNN Models

Deep CNN models take too much time to train. Sometimes it takes hours, days, or even

weeks to train, depending on the hyperparameters taken. It is very crucial to estimate

the amount of time it will take to run in order to train the model. This chapter work

focuses on estimating the time complexity of the CNN model. The initial part focuses on

finding the factors that directly affect the time complexity of the model and ends with

implementation and result discussion.

7.1 INTRODUCTION

The CNN is gaining a lot of popularity in image classification problems nowadays. It has

been used in many different classification problems, like medical imaging, handwritten

digits, image classification, etc. It is very critical to estimate the time required by the

model to achieve the desired task [23]. The proposed work involves computational

studies to find the factors that affect the model’s performance, the time taken by each

layer to run and how it affects the model’s overall performance.

7.2 FACTORS AFFECTING TIME COMPLEXITY

 The success of any CNN model depends on many hyperparameters like the type of

dataset used, input parameters, number of dense layers, number of convolutional

layers, number of neurons in dense layers, batch size, type of pooling strategy, type of

optimizer, size of filter and number of filters in each convolution layer, type of activation

function, and learning rate [23]. It is very important to find the critical hyperparameters

and how one parameter relates to another, affecting the model’s overall success. For

that, an experiment has been done on eight different CNN architectures, which vary by

the number of convolutional layers, number of dense layers, filter size, number of filters

used and neurons in each dense layer.

Chapter 7: Time Complexity of CNN Models

107

The prime objective of this work is to investigate the computational complexity of the

model. As it is not feasible computationally to try every possible combination of all input

parameters, crucial parameters have been chosen which might have the maximum

impact on the computational complexity of the system. The chosen hyperparameters for

the work are the number of convolution layers, number of dense layers, pool size, size

of filters, size of neurons, number of filters and size of the convolution kernel.

Among all the layers, convolutional layers, pooling layers and dense layers are the

important ones as they perform essential operations and contribute to the overall

model complexity . The number of parameters at any layer is the count of "learnable"

elements. The input layer provides the shape, but it has no learnable parameters. The

pooling layer does not have learnable parameters but it helps in reducing the dimension

of the feature map and the parameter count which results in reduced computational

complexity. According to Kaiming He et al., fully connected layers and pooling layers

take only 5 to 10% of the computational time and 90% of the time is taken by

convolutional layers [156]. The time complexity can be reduced by wisely choosing the

number of convolutions and fully connected layers. Kaiming et al. have proposed a

formula for only the convolution layer which does not consider many factors like batch

size and learning rate. After Extensive research and scientific methods, this research

work proposed a formula to find the time complexity of a whole CNN model. Though

dense layers affect only 5–10% of the complexity of the model [156], this research work

has considered convolution layers and fully connected layers(dense layers) in order to

find the computational complexity of the model accurately.

7.3 COMPLEXITY OF CNN

Each convolutional layer contains filters that have a depth, number of kernels and filter

size and it vary for each convolutional layer. The computational complexity of a

convolution layer is a multiplication of these parameters. The total computational

complexity of convolution layers is obtained by doing a summation of the complexity of

the individual convolution layer.

Chapter 7: Time Complexity of CNN Models

108

By considering the learning rate and batch size, the total time complexity of the

convolution layer can be calculated as:

 (∑ 𝑘𝑛−1
𝑑
𝑛=1 ⋅ 𝑠𝑛

2 ⋅ 𝑓𝑛 ⋅ 𝑙𝑛
2) ⋅ 𝑟1 ⋅ 𝑏1 (7.1)

Here d is the depth of the convolutional layer, ln is the length of the output feature map,

fn is the number of filters in the nth layer, Sn is the length of the filter, kn-1 defines the

number of input channels in the lth layer, r1 is the learning rate, b1 is the batch size.

Considering a Fully connected layer, each layer consists dimension of the input/output

channel, the width of the input, the height of the input and the number of outputs.

These parameters are linked to one another. It is a layer that connects higher layers with

the output layer. This layer contains a number of neurons which will vary for each fully

connected layer and the output size depends on these neurons. To calculate the time

complexity of each fully connected layer it is require to multiply the parameters of each

fully connected layer and finally add all the layer’s complexity in order to find the total

complexity of all fully connected layers of the model

The time complexity of the fully connected layer can be defined as:

 (𝛴𝑙=1
𝑓

𝐷 ⋅ 𝑊 ⋅ 𝐻 ⋅ 𝑁) (7.2)

Here f is the d epth of the fully connected layer; D, W, H and N define the Dimension of

the input/output channel, the width of the input, the height of the input and the

number of outputs respectively.

The total time complexity of a CNN model is summarization of eq. 7.1 and eq. 7.2 which

is calculated as:

(∑ 𝑘𝑛−1
𝑑
𝑛=1 ⋅ 𝑠𝑛

2 ⋅ 𝑓𝑛 ⋅ 𝑙𝑛
2) ⋅ 𝑟1 ⋅ 𝑏1 + (𝛴𝑙=1

𝑓
𝐷 ⋅ 𝑊 ⋅ 𝐻 ⋅ 𝑁) (7.3)

To prove it practically, experiments has been done on eight different CNN models to

examine the effect of each layer according to eq 7.1 and eq 7.2 and the overall time

required to run the model according to eq. 7.3.

Chapter 7: Time Complexity of CNN Models

109

7.4 COMPLEXITY ANALYSIS

The eight models are implemented by varying the number of convolutional layers, the

size of filters, the size of the kernel, the number of filters, the size of the neuron, and the

number of dense layers. The images of size 224X224 are fed to the CNN model and the

Relu activation function has been used in all layers except the output layer where

SoftMax activation function has been used. As discussed in previous chapter, the

learning rate of 0.0001 has been chosen. The batch size has been fixed at 16 and the

Adam optimizer has been used.

The CNN models are chosen based on the systematic arrangement of increasing or

decreasing the convolution and fully connected layers along with filter size, pooling and

kernel size to scale the practical results with the theoretical results proposed by

equations 7.1 and 7.2. The proposed equations will be the baseline for the work as the

actual running time is hardware dependent.

Eight CNN models and DRCNN has been used for practical analysis of time complexity.

All model’s architecture along with parameters is shown in Table 7.1.

Table 7.1 CNN Architectures with Parameters

Model Number of
Convolutional

Layers

Number
of Filters

Pooling
size

Filter
size

Number
of Dense

layers

Neurons in
each Dense

layer
A 2 64,32 2X2, 1X1 5X5, 3X3 1 5

B 2 32,16 2X2, 1X1 7X7,5X5 1 5

C 2 16,8 2X2, 2X2 3X3, 3X3 1 5

D 2 16,8 2X2, 2X2 5X5, 3X3 2 64,5

E 3 64,32,

16

2X2,

2X2,

1X1

3X3,3X3,3X

3

3 128,64,5

F 2 64,32 2X2, 2X2 5X5, 5X5 3 128,64,5

G 2 64,32 2X2, 1X1 3X3, 3X3 2 64,5

H 3 64,32,

16

2X2,2X2,1X1 3X3,3X3,3X

3

2 128,5

DRCNN 11 16,32,64,1

28

2X2, 2X2,

2X2, 2X2

3X3, 5X5 1 5

Chapter 7: Time Complexity of CNN Models

110

The implementation has been done on Intel i7-9750H Lenovo Legion Y540 CPU @

2.60GHz processor, which supports a multicore processor equipped with a GeForce GTX

1650 NVIDIA GPU with 8GB of memory.

Table 7.2 demonstrates the actual time (in seconds) taken by different models on the

TGFD dataset. All the models run for 20,40,60,80 and 100 epochs.

 Table 7.2 Time Taken by CNN Architecture on Dataset

Model

Number of
Convolution &

Fully Connected
layers

Epochs (Time taken In Seconds)

20 40 60 80 100

A 2C+1F 240 490 743 962 1200

B 2C+1F 230 472 694 945 1150

C 2C+1F 220 450 670 910 1115

D 2C+2F 280 558 832 1115 1386

E 3C+3F 480 935 1438 1915 2385

F 2C+3F 220 450 650 855 1050

G 2C+2F 260 525 765 1035 1300

H 3C+2F 460 910 1400 1885 2315

DRCNN 11C+1F 740 1490 2240 2960 3700

Fig. 7.1 shows the time complexity of each of the model.

Fig. 7.1: Time Complexity of each model based on chosen parameters

Chapter 7: Time Complexity of CNN Models

111

After detailed analysis of the experiments and results from the Table 7.2, following are

the research observation which will be helpful to a new researcher to design a CNN

model.

➢ Models A, B and C have the same number of convolutional and fully connected

layers, but they take different amounts of time to run as the parameters of the

model vary with the number of filters and size of filters. Hence, it proved that the

time complexity of the model also depends on the number of filters and size of

filters along with the number of convolution layers.

➢ Model A and B have the same number of convolutional and fully connected layers,

the same pooling size but they vary by the number of filters and filter size. The

time taken by model A is greater than B, proving that the number of filters and

size of filters has a significant effect on the time complexity of the model.

➢ Model E has 3 convolution and 3 fully connected layers, so it took the highest time

compared to all other models.

➢ Model E and F have same number of dense layers but E has one more

convolutional layer than F. as the convolutional layer takes 90% of the

computational time there is a huge difference in the time taken by both models to

run.

➢ Model C and D has same number of convolutional layers, but D has one more

dense layer than C. As the dense layer only takes 5 to 10% of the computational

time there is not much difference in the time taken by the model D.

➢ Models A and F have the same number of convolution layers, but F has more fully

connected layers and more filter size as compared to model A. Hence model F took

less time to run compared to model A. This shows that keeping the filter size higher

can reduce the accuracy of the model but decrease the computational cost of the

model. It concludes that the filter size is inversely proportional to the accuracy of

the model.

➢ Models E and H have the same number of convolution layers and all other

parameters except fully connected layers.

Chapter 7: Time Complexity of CNN Models

112

➢ Model H has 2 fully connected layers hence it takes less time than model E, which

has 3 fully connected layers.

➢ DRCNN has 11 convolutional layers and 1 fully connected layer. It has highest

number of convolutional layers with more number of filters and hence, it takes

maximum time to run compared to all the other models.

➢ The number of operations for a convolution layer is much larger than the number of

operations for a dense layer.

➢ The per epoch time for a dense layer is greater than the per epoch time of the

convolution layer.

➢ It is also not necessary that a greater number of parameters require higher

operations.

➢ It is not necessary that if the model has a higher number of layers, it also has a

higher computational complexity.

➢ An optimizer, batch size, filter and neurons greatly impact the time taken by the

model.

➢ The convolutional layers, max pool and fully connected layers directly affect the

performance of the model.

These empirical findings provide evidence that the proposed formulas, namely Eq. 7.1,

Eq. 7.2, and Eq. 7.3, accurately reflect the derived time complexity and exhibit a

consistent correspondence with the observed practical performance of the system.

Concluding Remarks: The time complexity of any CNN model is a practical issue that all

researchers find nowadays. Finding time complexity helps the researchers decide the

impact of each hyperparameter they choose for building a model. This research work

tried to find the time complexity of the model and decide which are the crucial

parameters for determining the time complexity of the model. The research observation

also helps a new researcher to design a CNN model based on these parameters.

The next chapter concludes the work and shows some directions of the future work.

