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Multiscale Modelling of Two-dimensional Materials for Solar Water Splitting 

and Hydrogen Storage 

Introduction: 

The increasing energy demands due to technology and population growth, along with the 

depletion of traditional non-renewable energy sources, pose a significant hurdle for finding 

alternative fuels, especially for vehicles [1]. Hydrogen fuel shows great promise as an alternative 

due to its abundant availability, eco-friendliness, and high energy density compared to other fuels 

[2,3]. It produces only clean water and heat as by-products. However, the practical use of hydrogen 

fuel faces two main challenges: efficient and cost-effective production, and compact storage [4,5]. 

This thesis proposes addressing these challenges by designing advanced two-dimensional (2D) 

nanomaterials and using them to produce hydrogen through water splitting, as well as exploring 

efficient methods for hydrogen storage [4,5]. 

Water splitting:  

Recently, water splitting has become a promising method for producing hydrogen gas [6,7]. 

It involves two half reactions: the hydrogen evolution reaction (HER) at the cathode, where water 

is reduced to generate H2, and the oxygen evolution reaction (OER) at the anode, where water is 

oxidized to produce O2 [8]. Currently, noble metals like Pt are efficient catalysts for HER but 

limited by high cost and availability [9]. Thus, researchers are exploring earth-abundant materials 

as alternative catalysts to overcome these limitations [10]. Recently, single-atom catalysts (SACs) 

have emerged as an ideal for clean and renewable energy technology [11]. They offer benefits like 

single active sites, strong metal-support interactions, and impressive catalytic activity for HER 

[12]. Additionally, 2D materials show promise as supports for SACs in HER. Pristine graphene 

doesn't interact well with hydrogen, so it's not suitable for HER activity [13]. Hossain et al. 
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conducted density functional theory (DFT) simulations and experiments to study SACs of 

transition metals (TMs) on N-doped graphene. They found that Rh, Cr, Co, V, and Fe showed 

good HER activity, with Co-SAC having the lowest Gibbs free energy (ΔG) (-0.20 to 0.30 eV) 

and potential, making it a highly efficient HER catalyst [14]. Dušan et al. employed DFT study to 

discover effective SACs featuring TMs inserted into the monovacancies of h-BN and graphene. 

Monovacancies prevented aggregation, and 27 SACs were examined, identifying several 

candidates with HER activity close to Pt surfaces [15].  DFT simulations were performed to study 

HER activity on graphyne supported SACs. Among the tested TMs (Cu, Fe, Zn, Ni, and Co), Ni 

SACs displayed the excellent HER activity (0.08 eV) [16]. Xue et al. investigated the use of 

graphdiyne as a support for SACs in HER activity, focusing on Ni and Fe as active metals. DFT 

calculations indicated that Ni and Fe SACs anchored on graphdiyne exhibited favorable HER 

activity [17].  Apart from SACs, non-transition metal doping (B, N, C and etc.) and defects 

engineering are also one of the excellent ways for the improvement in the HER activity of the 2D 

materials [18,19].  In this context, the HER activity of the graphene monolayer was found to 

increase with the B, S, and N dopants [20,21]. Similarly, pristine g-C3N4 is also not suitable for 

HER activity, but the dopants S, Na and O enhance the HER activity as compared to its pristine 

counterpart [22,23].  The study by Wan et al. showed that the porous boron nitride (p-BN) is an 

insulator with a very wide band gap, similar to h-BN monolayer, and is not suitable for catalytic 

activity. However, when p-BN is doped with carbon (C), the band gap is tuned, making it suitable 

as a metal-free photocatalyst for overall water splitting under visible light irradiation [24]. 

Previously, Yixin and collaborators demonstrated that the presence of different defects can modify 

the electronic properties of MoS2 and significantly enhance its HER activity [25]. 



3 
 

In the present thesis, we investigated the HER activity of various unexplored materials, 

including α-SiX (X = N, P, As, Sb, and Bi) [26], holey graphyne [27], and o-B2N2 monolayers 

[28]. It was observed that the pristine forms of α-SiX, holey graphyne, and o-B2N2 were not 

suitable for HER activity without any tuning [26–28]. The HER activity improved when decorated 

with TMs on α-SiX (X = N, P, As, Sb, Bi) and holey graphyne. The Ni@ α-SiX (X = N, P, As, Sb, 

Bi) SACs exhibited significantly improved HER activity, with enhancements of 95.00%, 29.24%, 

67.97%, 69.71%, and 39.53%, respectively, compared to their pristine counterparts. Notably, the 

Ni@α-SiN single-atom catalysts showed promising potential as an ideal HER catalyst due to a 

near-zero ΔG (~0 eV) [26]. For holey graphyne, we predicted that Co, Fe, and Cr anchored on 

holey graphyne exhibited high HER activity, with ΔG values as low as -0.21, -0.14, and -0.05 eV, 

respectively. These values are comparable to those of the best-known HER catalyst, Pt metal [27]. 

To enhance the HER activity of the o-B2N2 monolayer, we implemented several strategies such as 

introducing vacancy defects and doping the C atom into the structure. The incorporation of a BN 

vacancy defect and C doping at B and N sites in the monolayer resulted in a substantial 

improvement in the HER activity, with enhancements of 77.34%, 86.71%, and 83.59%, 

respectively, compared to the pristine monolayer [28]. 

Hydrogen storage: 

Designing advanced materials for high-capacity, recyclable hydrogen storage devices 

present a significant challenge due to limitations with current hydrogen storage technologies 

[29,30]. Conventional methods such as high-pressure tanks and liquid storage have drawbacks, 

including large size and weight of the tank, as well as high energy costs associated with 

liquefaction [31]. Solid-state storage holds promise as a more efficient and desirable alternative, 

provided the storage medium can effectively absorb a substantial amount of hydrogen and release 
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it easily without altering its structure [31]. The US Department of Energy (DoE) has established 

guidelines for efficient hydrogen storage devices. According to these guidelines, a system should 

be capable of storing a minimum of 6.5 wt.% of hydrogen by weight, while the binding energy of 

hydrogen (H2) molecules should fall within the range of 0.2 – 0.8 eV [32]. Various 2D 

nanomaterials such as graphene, 𝛙-graphene, graphyne, h-BN, and g-C3N4 have been extensively 

investigated as potential hydrogen storage devices, primarily due to their large surface area and 

lightweight nature [33–38]. However, hydrogen storage on these pristine materials is typically 

negligible under ambient conditions. Recent studies have highlighted the potential of alkali metals 

(Li, Na, K and etc.), alkaline earth metals (Be, Mg, Ca and etc.), and transition metals (Ti, Sc, Y, 

V and etc.) decorated graphene, 𝛙-graphene, graphyne, h-BN, and g-C3N4 as promising candidates 

for ambient hydrogen storage [33–38]. These metals can form strong bonds with the nanostructures 

and have demonstrated the ability to bind H2 molecules even at room temperature [33–38]. This 

discovery opens up new possibilities for efficient hydrogen storage using metal-decorated 2D 

nanomaterials.  

In this thesis, we have also investigated the hydrogen storage capacity of the newly 

predicted o-B2N2 monolayer. It was found that the pristine o-B2N2 monolayer is not suitable for 

hydrogen storage application. To enhance its hydrogen storage capacity, we introduced defects 

and decorated the monolayer with various metals, including Na, K, Be, Mg, Ca, Sc, Ti, Y, and Zr. 

Among these approaches, the defected and metal-decorated o-B2N2 monolayers with Na, K, Be, 

Mg, Ca, Sc, Y, and Zr did not demonstrate improvements in hydrogen storage properties. 

However, the o-B2N2 monolayer decorated with Ti showed promising results as a hydrogen storage 

medium, satisfying all the criteria established by the DOE. Therefore, based on our findings, Ti-



5 
 

decorated o-B2N2 monolayers hold potential as efficient hydrogen storage materials, showcasing 

their suitability for future applications.  

Thesis Outline: 

The present thesis is organized as follows.  

Chapter I : Introduction 

This chapter provides an overview of the interconnected issues surrounding the energy crisis and 

pollution, highlighting their far-reaching consequences. In the following sections, we explore 

potential solutions to the energy crisis, focusing on the production of hydrogen through water 

splitting and its subsequent storage. We also examine the positive and negative aspects of various 

techniques used in water splitting and hydrogen storage. Furthermore, we investigate the 

advancements made in 2D nanomaterials for water splitting and hydrogen storage since the 

synthesis of graphene. We describe the selected materials for our study, including their properties, 

and explain the motivation behind conducting this research. Additionally, we present a literature 

survey that encompasses past experimental and theoretical work conducted on these materials. 

Chapter II : Methodology 

Chapter 2 provides a comprehensive overview of the computational methodology employed in this 

study. The chapter explores the theoretical foundations of density functional theory (DFT), which 

serves as the fundamental framework for calculating various properties of 2D materials. Key 

concepts including the Born-Oppenheimer approximation, Hartree approximation, Hartree-Fock 

approximation, and density-based methods are discussed in detail. Furthermore, Chapter 2 

examines the importance of the Kohn-Sham equation in DFT applications. The chapter also 

explains the use of plane waves to represent electron wave functions and discusses the density 
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calculation techniques required for addressing valence and core electrons. Special emphasis is 

given to the implementation of these methods in the Quantum Espresso simulation code [39].  

Chapter III : Single Atom Catalysts Supported on 2D α-SiX (X = N, P, As, Sb, Bi) and 

Holey Graphyne for HER activity 

 In this chapter, we present our work on TMs supported by α-SiX (X = N, P, As, Sb, Bi) 

and holey graphyne (HGY) monolayers as SACs to enhance the HER activity [26,27]. We 

systematically discuss the structural and electronic properties of both pristine and TMs-anchored 

monolayers as SACs using DFT simulations. Additionally, we analyze the effects of TMs on the 

supports by studying the partial density of states (PDOS), electronic band structure, charge 

transfer, and other relevant factors. To evaluate the suitability of the HER activity, we examine the 

changes in ΔG of the adsorbed hydrogen systems and compare them with previous reports. 

Furthermore, we discuss the room temperature stability of the predicted best HER catalyst using 

ab initio molecular dynamics (AIMD). Figure 1 below illustrates the results of ΔG for our studied 

systems. 

 

Figure 1: The change in the Gibbs free energy (ΔG) of H adsorbed α-SiX (a), HGY (b) and 

TMs decorated both monolayers.  
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Chapter IV: Defects and Doping Engineered 2D o-B2N2 for HER Activity 

In this chapter, we discuss the structural and electronic properties, HER activity, and stability of 

the pristine, vacancy, and C-doped o-B2N2 monolayer [28]. The chapter includes a comparative 

analysis of the structural and electronic properties before and after introducing defects and C 

doping. For the HER analysis, we present the obtained ΔG values of the H-adsorbed pristine, 

defected, and C-doped monolayers and compare them with previous reports. In this study, we have 

discovered that C doping renders o-B2N2 metallic, making it suitable as an "electrocatalyst," while 

the BN vacancy-defected o-B2N2 monolayer exhibits semiconducting behavior with a band gap of 

approximately 1 eV, qualifying it as a "photocatalyst" for HER activity. 

Chapter V : Hydrogen Storage in Defected and Metals Decorated 2D o-B2N2 

This chapter focuss on studying the hydrogen storage application of the newly predicted o-B2N2 

monolayer. We discuss the suitability of defected o-B2N2 monolayers, as well as o-B2N2 

monolayers decorated with metals (Na, K, Be, Mg, Ca, Sc, Ti, Y, and Zr), for hydrogen storage. 

Our discussion in this chapter involves the calculation of various properties such as average 

adsorption energy, desorption temperature, hydrogen gravimetric density, and other electronic 

parameters using dispersion-corrected DFT simulations. We also validate the room temperature 

stability of the best case through AIMD simulations. 

Chapter VI : Summary and Future Prospects 

The last chapter concludes and summarizes the most important findings and potential applications of 

this thesis work. Additionally, it explores future research directions and the scope of 2D materials in 

the field of water splitting and hydrogen storage, incorporating an improved strategy and testimonials. 
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