CONTENTS

Chapter No.	Topic No.	Title of Topic	Page No.
Ι		List of Figures	Ι
II		List of Tables	IX
III		List of Materials	XVII
IV		List of Instruments/Equipments	XX
V		Abstract	XXII
		Chapter-1: Introduction	
	1.1	Osteoporosis	1
	1.1.1	Introduction	1
	1.1.2	Clinical risk factors for Osteoporosis	2
	1.1.3	Diagnosis of Osteoporosis	3
	1.1.4	Treatment and management of Osteoporosis	4
	1.2	Nanocarriers for drug delivery	6
	1.2.1	Glycerosomes	7
1.0	1.2.2	Polyelectrolyte complex nanoparticles	7
	1.3	Drug candidate selection	8
	1.3.1	Risedronate Sodium (Bisphosphonate)	8
	1.3.2	Atorvastatin (statins)	8
	1.4	Aim and Objectives	8
	1.5	Hypothesis	9
	1.6	Plan of work	9
	1.7	References	11
		Chapter- 2: Literature Review	
	2.1	Osteoporosis	14
2.0	2.1.1	Bone organization	14
2.0	2.1.2	Bone matrix	16
	2.1.3	Pathophysiology of Osteoporosis	18

	2.1.4	Risk factors/Causes of Osteoporosis	20
-	2.1.5	Types of osteoporosis	21
_	2.1.6	Bone remodelling Process	22
-	2.1.7	Treatment of osteoporosis	24
-	2.2	Risedronate Sodium (RSNa)	28
-	2.2.1	Risedronate sodium profile	28
-	2.2.2	Pharmacokinetics	29
-	2.2.3	Pharmacodynamics	30
-	2.2.4	Drug Interaction	30
-	2.2.5	Dose	30
-	2.3	Atorvastatin calcium (ATO)	32
	2.3.1	Atorvastatin profile	32
_	2.3.2	Pharmacokinetics	33
_	2.3.3	Food interaction	34
	2.3.4	Dose	34
	2.4	Transdermal Drug Delivery Systems	36
	2.4.1	Drug absorption via the skin	38
	2.4.2	Challenges for transdermal drug delivery	39
	2.4.3	Techniques for enhancing transdermal delivery	40
-	2.5	Transdermal drug delivery for treatment of osteoporosis	42
-	2.6	Nanocarriers	44
-	2.7	References	51

Chapter- 3: Analytical Techniques

	3.1	Equipments	68
	3.2	Analytical techniques	68
	3.3	General methods for validation of analytical methods	68
	3.4	Analytical technique for Atorvastatin (ATO)	70
	3.4.1	Calibration curve of Atorvastatin by UV Visible spectrophotometer	70
3.0	3.4.2	Calibration curve in Saline phosphate buffer (pH 7.4)	71
	3.4.3	Calibration curve in Phosphate buffer (pH 5.5)	74
	3.4.4	Quantification of ATO by RP-HPLC	76
	3.4.5	Quantification of ATO in plasma by RP-HPLC	79
	3.5	Analytical technique for Risedronate sodium	84
	3.5.1	Calibration curve of Risedronate sodium in distilled water	84
	3.5.2	Quantification of RSNa by RP-HPLC	85

3.5.3	Quantification of RSNa in plasma by RP-HPLC	88
3.6	References	93

		Chapter-4: Preformulation Study	
	4.1	Preformulation study	94
	4.1.1	Authentication of drugs	94
	4.1.1.1	Organoleptic properties of drugs	94
	4.1.1.2	Melting point determination	94
	4.1.1.3	Differential Scanning Calorimeter (DSC) analysis	94
	4.1.1.4	Fourier transform infrared (FTIR) analysis	94
	4.1.1.5	Determination of λ max by UV-Vis Spectrophotometer	95
	4.2	Drug-excipients compatibility study	95
4.0	4.3	Results and discussion:	96
	4.3.1	Organoleptic characteristics	96
	4.3.2	Melting point determination	96
	4.3.3	FTIR analysis	96
	4.3.4	DSC analysis	98
	4.3.5	Determination of λ_{max} by UV-Vis Spectrophotometer	99
	4.4	Drug-excipients compatibility study	99
	4.5	References	103

Chapter-5: Formulation development of ATO Loaded Glycerosomes

	5.1	Glycerosomes	104
	5.2	Selection of method for preparation of glycerosomes	104
	5.3	Selection of lipids	105
	5.4	Drug-Excipients interaction studies by FTIR	106
	5.5	Identification of independent variables and qualitative risk assessment using Ishikawa diagram	106
	5.6	Optimization	106
	5.6.1	Optimization of variables	106
5.0	5.6.2	Optimization of ATO loaded glycerosomes by Definitive Screening Design	107
	5.6.3	Validation of Check Point Batch	108
	5.7	Characterization of glycerosomes	108
	5.8	Optimization and impact of glycerol concentration on ATO loaded glycerosomes	110
	5.8.1	Deformability Index	110
	5.8.2	Rheological study	110
	5.8.3	In vitro drug release study	111
	5.8.4	Ex vivo skin permeation study	112

Faculty of Pharmacy, The MS University of Baroda. Pravin Yadav Patil / 2023.

5.8.5	In vitro cell line study	114
5.9	Stability study	116
5.10	Results and discussion:	117
5.11	Preliminary screening for ATO loaded glycerosomes	117
5.11.1	Risk analysis and mitigation	117
5.11.2	Selection of method of preparation and lipid	118
5.11.3	Screening and optimization of process parameters of lipid film formation	120
5.11.4	Screening and optimization of process parameters for preparation of glycerosomes	122
5.11.5	Screening and optimization of formulation parameters for glycerosomes preparation	125
5.12	Design of experiment: Definitive screening design for optimization of glycerosomes	128
5.12.1	Design matrix	128
5.13	Effect of independent variables on vesicle size	130
5.14	Effect of independent variables on % EE	137
5.15	Desirability plot and overlay plot for optimization	143
5.16	Graphical optimization to generate control space	146
5.17	Analysis of design space	146
5.18	Point prediction and confirmation	147
5.19	Physicochemical characterization of optimized batch	148
5.19.1	Vesicle size, PDI and zeta potential determination	148
5.19.2	Entrapment efficiency and % DLC	149
5.19.3	Surface morphological study	150
5.19.4	FTIR Study	150
5.19.5	Residual solvent study	151
5.20	Optimization and impact of glycerol concentration on physicochemical characterization of ATO loaded glycerosomes	151
5.21	Rheological studies	153
5.22	In vitro drug release study	154
5.23	Ex vivo skin permeation study	158
5.24	Optimization of glycerol concentration in ATO loaded glycerosomes	161
5.25	In vitro cell viability study	161
5.26	In vitro cell permeability study	162
5.27	Stability study	164
5.28	References	167

apter-6: H	Formulation development of RSNa Loaded Glycerosome	es
6.1	Selection of method for preparation of glycerosomes	173
6.2	Selection of lipids	174
6.3	Drug-Excipients interaction studies by FTIR	174
6.4	Identification of independent variables and qualitative risk assessment using Ishikawa diagram	174
6.5	Optimization	174
6.6	Screening and optimization of process variables	175
6.7	Screening and optimization of formulation variables	175
6.8	Optimization of RSNa loaded glycerosomes by Definitive Screening Design (DSD)	175
6.9	Characterization of RSNa loaded glycerosomes	176
6.10	Effect of glycerol concentration on RSNa loaded glycerosomes	177
6.11	In vitro drug release study	178
6.12	Ex vivo skin permeation study	178
6.13	In vitro cell line study:	179
6.14	Stability study	180
6.15	Results and discussion:	181
6.16	Preliminary screening for RSNa loaded glycerosomes	181
6.16.1	Risk analysis and mitigation	181
6.16.2	Selection of method of preparation and lipid	182
6.16.3	Screening and optimization of process parameters of lipid film formation	184
6.16.4	Screening and optimization of process parameter for preparation of glycerosomes	184
6.16.5	Screening and optimization of formulation parameters on glycerosomes preparation	188
6.17	Definitive screening design for optimization of glycerosomes	190
6.18	Design Matrix	190
6.18.1	Effect of independent variables on vesicle size	192
6.18.2	Effect of independent variables on % EE	198
6.19	Desirability plot and overlay plot for optimization	204
6.20	Graphical optimization to generate control space	207
6.21	Analysis of design space	208
6.22	Point prediction and confirmation	209
6.23	Physicochemical characterization of optimized batch	209
6.23.1	Vesicle size, PDI and zeta potential determination	209
6.23.2	Entrapment efficiency and % DLC	210

Chapter-6: Formulation development of RSNa Loaded Glycerosomes

6.0

6.23.3	Morphological investigation	211
6.23.4	FTIR Study	211
6.23.5	Residual solvent study	212
6.24	Optimization and impact of glycerol concentration on physicochemical characterization of RSNa loaded glycerosomes	212
6.25	Rheological studies	213
6.26	In vitro drug release study	215
6.27	Ex vivo skin permeation study	218
6.28	Optimization of glycerol concentration in RSNa loaded glycerosomes	221
6.29	In vitro cell viability study	221
6.30	In vitro cell permeability study	223
6.31	Stability study	224
6.32	References	227

Chapter-7: Formulation development of ATO Loaded PECN

	7.1	Introduction	231
	7.2	Preparation of ATO loaded PECN	231
	7.3	Selection of polyelectrolytes	231
	7.4	Optimization	231
	7.5	Screening and optimization of process and formulation parameters	232
	7.6	Experimental design	232
	7.7	Physicochemical characterization of ATO loaded PECN	233
	7.8	In vitro drug release study	235
	7.9	Ex vivo skin permeation study	235
7.0	7.10	In vitro cell line study	236
7.0	7.11	Stability study	237
	7.12	Results and discussion	238
	7.13	Preliminary screening for ATO loaded PECN	238
	7.13.1	Selection of polyelectrolytes	238
	7.13.2	Risk analysis and mitigation	239
	7.13.3	Screening and optimization of process parameters for preparation of PECN	241
	7.13.4	Screening and optimization of formulation parameters for PECN preparation	242
	7.14	Experimental design and analysis of results	246
	7.14.1	Effects of independent variables on particle size	247
	7.14.2	Effects of variables on % EE	254

7.15	Desirable plot and overlay plot for optimization	259
7.16	Assessment of the optimized ATO loaded PECN	261
7.17	Graphical optimization to generate control space	262
7.18	Analysis of design space	263
7.19	Point prediction and confirmation	264
7.20	Physicochemical characteristics of ATO loaded PECN	265
7.20.1	Particle size, % EE, % drug loading capacity and surface charge analysis	265
7.20.2	Surface morphological analysis	266
7.20.3	FTIR analysis	267
7.20.4	DSC analysis	268
7.20.5	X-ray diffraction study	269
7.21	In vitro drug release study	269
7.22	Ex vivo skin permeation study	272
7.23	In vitro cell viability study	274
7.24	In vitro cell permeability study	275
7.25	Stability study	277
7.26	References	279

Chapter-8: Formulation development of RSNa Loaded PECN

	8.1	Preparation of RSNa loaded PECN	284
	8.2	Selection of polyelectrolytes	284
	8.3	Optimization	284
	8.4	Screening and optimization of process and formulation parameters	284
	8.5	Experimental design	285
	8.6	Physicochemical characterization of RSNa loaded PECN	286
	8.7	In vitro drug release study	286
	8.8	Ex vivo skin permeation study	287
)	8.9	In vitro cell line study	287
	8.10	Stability study	289
	8.11	Results and discussion	290
	8.12	Preliminary screening for RSNa loaded PECN	290
	8.12.1	Selection of polyelectrolytes	290
	8.12.2	Risk analysis and mitigation	291
	8.12.3	Screening and optimization of process parameters for preparation of PECN	293
	8.12.4	Screening and optimization of formulation parameters for PECN preparation	294
	8.13	Experimental design and analysis of results	297

8.0	
0.0	

	8.13.1	Effects of independent variables on particle size	298
-	8.13.2	Effects of variables on % EE	304
_	8.14	Desirable plot and overlay plot for optimization	310
-	8.15	Assessment of the optimized RSNa loaded PECN	312
_	8.16	Graphical optimization to generate control space	312
-	8.17	Analysis of design space	313
-	8.18	Point prediction and confirmation	314
-	8.19	Physicochemical characteristics of RSNa loaded PECN	314
-	8.19.1	Particle size, % EE, % drug loading capacity and surface charge analysis	314
-	8.19.2	Surface morphological analysis	316
	8.19.3	FTIR analysis	316
_	8.19.4	DSC analysis	317
-	8.19.5	X-ray diffraction study	318
-	8.20	In vitro drug release study	318
_	8.21	Ex vivo skin permeation study	321
-	8.22	In vitro cell viability study	323
-	8.23	In vitro cell permeability study	324
-	8.24	Stability study	326
-	8.25	References	328

Chapter-9: Nanocarriers Incorporated Transdermal Patch

	9.1	Transdermal Patch	334
	9.2	Preparation of transdermal patch	334
	9.3	Selection of polymer	334
	9.4	Screening and optimization of process and formulation parameters for preparation of transdermal patch	334
	9.5	Incorporation of glycerosomes into transdermal patch	335
	9.5.1	Incorporation of PECN into transdermal patch	335
0	9.5.1.1	Selection and optimization of penetration enhancer	335
	9.5.1.2	Optimization of concentration of permeation enhancer	336
	9.6	Physicochemical characteristics of transdermal patch	336
	9.6.1	Physical Attributes	336
	9.6.2	Percentage moisture uptake and moisture content	337
	9.6.3	Tensile strength	337
	9.6.4	Drug content	338
	9.7	Ex vivo skin permeation and deposition study	338
	9.8	Evaluation of skin structure by FTIR study	339

9.9	Ex vivo skin permeation analysis by using fluorescence microscopy	339
9.10	Histopathological studies	340
9.11	Stability study	340
9.12	Results and discussion	341
9.13	Selection of polymers for transdermal patch preparation	341
9.14	Screening and optimization of process and formulation parameters	343
9.14.1	Screening and optimization of process parameters for transdermal patch	343
9.14.1.1	Selection of drying condition	343
9.14.1.2	Selection of drying time	343
9.14.2	Screening and optimization of formulation parameters for transdermal patch	344
9.14.2.1	Screening and optimization of HPMC K4M concentration	345
9.14.2.2	Selection of plasticizer	345
9.14.2.3	PEG-400 concentration	346
9.15	Incorporation of nanocarriers into transdermal patches	349
9.15.1	Glycerosomes incorporated transdermal patches	349
9.15.1.1	ATO loaded glycerosomal transdermal patch - Formulation development	349
9.15.1.2	RSNa loaded glycerosomal transdermal patch - Formulation development	351
9.15.2	PECN incorporated transdermal patches	353
9.15.2.1	Screening and optimization of permeation enhancer	353
9.15.2.2	Screening and optimization of concentration of permeation enhancer	353
9.15.2.3	ATO-PECN transdermal patch - Formulation development	354
9.15.2.4	RSNa-PECN transdermal patch - Formulation development	355
9.16	Ex-vivo skin permeation study	358
9.16.1	For ATO loaded glycerosomal transdermal patch	358
9.16.2	For RSNa loaded glycerosomal transdermal patch	360
9.16.3	ATO-PECN transdermal patch	362
9.16.4	RSNa-PECN incorporated transdermal patch	365
9.17	Evaluation of skin structure integrity by FTIR-ATR study	367
9.18	Ex vivo analysis of drug permeation through skin using fluorescence microscopy	369

9.19	Histopathology of Skin	372
9.20	Stability study	374
9.21	References	379

		Chapter-10: In vivo Studies	
	10.1	Introduction	385
	10.2	Materials and methods	385
	10.2.1	Materials	385
	10.2.2	Animal study protocol approval	385
	10.2.3	Animal Procurement	385
	10.3	In vivo pharmacokinetic studies	386
	10.3.1	Sample administered	387
	10.3.2	Blood sample collection	387
	10.3.3	Preparation of sample for analysis	387
	10.3.4	Analysis of pharmacokinetic parameters	388
10.0	10.4	In vivo pharmacodynamic studies	388
10.0	10.4.1	Induction of osteoporosis	389
	10.5	Antiosteoporotic treatment	390
	10.6	Evaluation of Antiosteoporotic activity	391
	10.7	Results and discussion	394
	10.7.1	In vivo pharmacokinetic study	394
	10.7.2	In vivo pharmacodynamic studies	401
	10.7.2.1	Radiological analysis	401
	10.7.2.2	Bone weight, bone volume and bone density	405
	10.7.2.3	Biochemical assay	407
	10.7.2.4	Histopathology of bones	410
	10.9	References	416

Chapter-11: Summary and conclusions

	11.1	Summary	422
	11.1.1	Introduction	422
	11.1.2	Analytical techniques	424
	11.1.3	Preformulation studies	424
	11.1.4	ATO loaded glycerosomes	425
11.0	11.1.5	RSNa loaded glycerosomes	426
	11.1.6	ATO loaded PECN	427
	11.1.7	RSNa loaded PECN	428
	11.1.8	Nanocarriers incorporated transdermal patches	429
	11.1.9	In vivo pharmacokinetic and pharmacodynamic study	432
	11.2	Conclusions	433

Appendix	Ι	List of Publications	435
Appendix	Π	Plagiarism Certificate	437