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2.1 Introduction  
Amorphous solid electrolytes or fast ion conducting glasses have attracted significant 

attention due to their potential applications in various electrochemical devices, such as 

batteries, fuel cells, and sensors. Understanding the ion conduction mechanism in these 

materials is essential for designing and optimizing their performance. Charge transport in 

glasses is primarily governed by the movement of ions, defects, and polarons. The ions can 

either hop between neighbouring sites or move through the free volume of the glass 

network. Defects, such as oxygen vacancies, can act as charge carriers and contribute to the 

conductivity. Polarons, which are electrons bound to a localized distortion in the lattice, can 

also move through the glass and contribute to the conductivity. Several theoretical models 

have been proposed to explain the ion conduction mechanism in glasses. The most 

prominent ones are the random barrier model, the percolation model, and the tunnelling 

model. The random barrier model assumes that the ions move through the glass network by 

overcoming randomly distributed energy barriers. The barrier height distribution is typically 

assumed to follow an exponential or Gaussian distribution. This model can explain the 

temperature dependence of the conductivity and the effect of dopants on the conductivity. 

The percolation model assumes that the ions move through a percolation network of 

conducting sites. The conductivity is determined by the fraction of conducting sites and the 

connectivity of the network. This model can explain the dependence of the conductivity on 

the concentration of dopants and the structural features of the glass. The tunnelling model 

assumes that the ions tunnel through the potential barriers created by the glass network. The 

barrier height distribution is assumed to follow a power-law distribution. This model can 

explain the low-temperature conductivity and the frequency dependence of the 

conductivity. 

 Superionic conduction in glasses 

Glassy or amorphous materials are excellent candidates for studying fast ion conduction 

due to their unique properties. In the amorphous state, these materials lack long-range order, 

which eliminates the presence of grain boundaries that can impede ion transport. This results 

in isotropic charge transfer, allowing for efficient ion conduction. Warburg was one of the 

pioneers in the study of ion conduction in glassy materials, demonstrating the electrolytic 

behaviour of ordinary glass over a century ago. Since then, significant progress has been 

made in understanding the mechanisms of ion conduction in glassy materials, including the 

role of defects, structural relaxation, and chemical composition [1].  
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The framework of the glasses mostly determined by the silicate (glass former) network that 

has been partially broken or altered (by glass modifier). In the glass skeleton, the cations 

are placed in "holes" as shown in Fig. 2.1. The fast-ion conductors like 𝛽 − 𝑎𝑙𝑢𝑚𝑖𝑛𝑎 and 

𝛼 − 𝐴𝑔𝐼, which have a unit cationic transport number, are also important solid electrolytes. 

Additionally, the transportation of the same kind of charge (𝑡ା ≅ 1)is also observed in a 

wide variety of borate, phosphate, silicate, and molybdate glasses with varying 

compositions and stoichiometry [2]–[5]. Numerous studies have been conducted to analyze 

the properties of FIC glasses, including their ionic conductivity, thermal stability, and 

structural properties. Computational modelling has also been used to analyze the fast ion 

transport phenomenon in FIC glasses. Molecular dynamics simulations and other 

techniques have been used to 

study the structure and dynamics 

of ions in FIC glasses, providing 

insights into the mechanisms that 

govern ion transport [6]–[15]. 

Below are the major theoretical 

models of transport and 

conduction mechanisms in glassy 

FICs that are proximately relevant 

to the subject matter of the thesis. 

 

2.2 Ion transport mechanism in solid state material 

Ionic conductivity in solids is indeed connected with the movement of ions between low-

energy sites in the structure, and in crystalline materials, this occurs via vacancies and 

Frenkel defects [16]. However, the lack of three-dimensional periodicity in glasses makes 

it difficult to apply this concept to understand ionic conduction in these materials. As a 

result, researchers have developed new concepts to aid in the understanding of ion transport 

in glasses. One of these concepts is the idea of "fast ion hopping," which suggests that ions 

move rapidly through a disordered network of low-energy sites in glasses. Another concept 

is the "percolation model," which proposes that the movement of ions occurs via a network 

of interconnected pathways in the glass structure.  

Figure 2.1: Warren-Biscoe model for the  formation of glass 
structure in the alkali silicate glass system. 
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In addition to these models, direct current (dc) conductivity has been used to study ion 

transport in glasses. This type of conductivity is due to the movement of electrons in the 

material, rather than the movement of ions. The sum of the conductivities of all the charge 

carriers present in a glass sample equals the total conductivity of the glass. 

𝜎 = ෍ 𝑡௜𝜎௜   … . . (2.1) 

where 𝑡௜ denotes the transport number and 𝜎௜ denotes the conductivity of the ith charge 

carrier species. The conductivity can be given as in the case of a glass when conduction is 

primarily owing to a single ionic species. 

𝜎 = 𝜎௜ = 𝑛(𝑍𝑒)𝜇  … . . (2.2) 

where 𝑛 is the carrier concentration, 𝑍𝑒 is the charge of the carrier and 𝜇 is its mobility. 

When an external field, 𝐸, is supplied, a force called 𝑍𝑒𝐸 causes the ion to diffuse-migrate 

within the glass. The produced motion results in a concentration gradient for the relevant 

ion, which acts as an opposing force. The force (𝑍𝑒𝐸)due to a concentration gradient is 

defined as ቀ
௞்

௡
ቁ ∇𝑛, where 𝑛 and ∇𝑛 denote the concentration and its gradient, respectively, 

𝑇 denotes the temperature, and 𝑘 denotes the Boltzmann constant. Thus, the application of 

the field creates a dynamic equilibrium in which the fluxes produced by the opposing forces 

are balanced. The condition for flux balance can be stated as follows (Eq. 2.3), wherein the 

diffusion coefficient is 𝐷, and the drift velocity is 𝑣ௗ. 

𝐷𝛻𝑛 = 𝑛𝑣ௗ   … . . (2.3) 

To get the expression for the diffusion coefficient D, the mathematical simplification is 

shown below.     

D

vୢ
=

n

∇n
=

kT

ZeE
  … . . (2.4)   

𝐷 = ൬
𝑘𝑇

𝑍𝑒
൰ 𝜇  … . . (2.5) ቀ∵ 𝜇 =

𝑣ௗ

𝐸
ቁ 

The diffusion co-efficient also can be written in terms of conductivity which is known as 

Nernst-Einstein relation. 

𝐷 = ൬
𝑘𝑇

𝑛(𝑍𝑒)ଶ
൰  𝑛(𝑍𝑒)𝜇 = 𝜎 ൬

𝑘𝑇

𝑛(𝑍𝑒)ଶ
൰  … . . (2.6) 
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In the case of the ionic conductor, a random walk computation is used to determine the 

relationship between the diffusion coefficient 𝐷, and jump frequency Γ, and the distance 

between two adjacent sites 𝜆, is determined by redirecting to the random walk calculation 

[17], [18].  

𝐷 =
1

6
𝜆ଶΓ  … . . (2.7) 

𝜎 = ቈ
𝑛(𝑍𝑒)ଶ𝜆ଶ

6𝑘𝑇
቉ Γ  … . . (2.8) 

Jump frequency, Γ, is related to the cation vibrational frequency 𝑣଴ in thermally activated 

processes. If Δ𝐺௠ = Δ𝐻௠ − 𝑇Δ𝑆௠ is the migration free energy barrier, then the jump 

frequency Γ can be rewritten in terms of entropy (𝑆௠) and enthalpy (𝐻௠) as given in the 

equation. 

Γ = 𝑣଴ exp ൬
𝛥𝑆௠

𝑘
൰ 𝑒𝑥𝑝 ൬−

𝛥𝐻௠

𝑘𝑇
൰  … . . (2.9) 

Hence, the conductivity term can be modified as 

𝜎 = ቈ
𝑛(𝑍𝑒)ଶ𝜆ଶ𝑣଴

6𝑘𝑇
቉ exp ൬

𝛥𝑆௠

𝑘
൰ 𝑒𝑥𝑝 ൬−

𝛥𝐻௠

𝑘𝑇
൰  … . . (2.10) 

Now if we consider the temperature independent term then 𝜎଴
ᇱ  is presented as 

𝜎଴
ᇱ = ቈ

𝑛(𝑍𝑒)ଶ𝜆ଶ𝑣଴

6𝑘
቉ exp ൬

𝛥𝑆௠

𝑘
൰  … . . (2.11) 

By considering the 𝛥𝐻௠ = 𝑃Δ𝑉௠ + Δ𝐸௠ where the component 𝑃Δ𝑉௠ is insignificant and 
Δ𝐸௠(≡  𝐸௔) 

𝜎 =
𝜎଴

ᇱ

𝑇
𝑒𝑥𝑝 ൬−

𝐸௔

𝑘𝑇
൰  … . . (2.12) 

where 𝐸௔ denotes the energy of activation. 𝐸௔ is calculated from logarithmic conductivity 

vs. reciprocal temperature plots. Again, 𝑇 has a much smaller effect on the pre-exponential 

part of Eq. 2.12 than on the exponential part. As a result, Eq. 2.12 is frequently expressed 

in the more familiar Arrhenius form as 

𝜎 = 𝜎଴ 𝑒𝑥𝑝 ൬−
𝐸௔

𝑘𝑇
൰  … . . (2.13) 

The activation energy barrier plays a crucial role in determining the transport properties of 

ions or defects in glasses, and the type of conductivity observed depends on the magnitude 

of the activation energy barrier and the temperature of the system. In the context of glasses, 

the activation barrier, denoted by the letter 𝐸௔, refers to the minimum energy required for 
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an ion or a molecule to overcome a potential energy barrier and move from one site to 

another within the glassy structure [19].  

Some of the models are discussed in greater depth below. 

 DC conductivity, also known as bulk conductivity, refers to the movement of ions 

over long distances in response to an applied electric field. In glasses, the DC 

conductivity is mainly attributed to the migration of mobile ions or defects, such as 

oxygen vacancies or interstitial ions. The DC conductivity is typically observed at 

high temperatures, where the activation energy barrier is relatively low, and the ions 

can move freely in response to the applied electric field. At high temperatures, the 

activation energy barrier is reduced, and the charge carriers have enough thermal 

energy to overcome the barrier and move more freely through the material, resulting 

in a higher conductivity.  

 On the other hand, AC conductivity, also known as localized conductivity or hopping 

conductivity, refers to the movement of ions or defects between equivalent energy 

sites by hopping or jumping mechanisms. The hopping mechanism involves the 

transfer of ions or defects from one site to another by overcoming an energy barrier 

of lower magnitude compared to the DC conductivity. AC conductivity is typically 

observed at low temperatures. 

Table 2.1: List of Theoretical Models for carrier transport for DC and AC conductivity 

Theoretical Models for carrier transport 

D.C. Conductivity 
𝝎𝝉 < 1 

Ions travel long distances 

A.C. Conductivity  
𝝎𝝉 > 1 

Ions hop and relax between equivalent energy sites 

Charles– Polarization/ Diffusion Jonscher - Universal Response 

Anderson & Stuart - Coulomb & Strain 
Energies 

Ngai - Coupling Theory 

Moynihan & Macedo - Debye & Faulkenhagen Moynihan– Modulus 

Ravaine & Souquet - Weak Electrolyte Dyre - Power Law 

Malugani- 𝐴𝑔𝐼 Micro domains Funke - Jump Relaxation 

Ingram - Cluster Pathways Dieterich & Bunde -Coulomb Interaction 

Elliott - Local Structure/ Diffusion Controlled 
Relaxation 

Elliott - Diffusion-Pathways 
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(a) DC Conductivity models  

Numerous theoretical models have been developed to describe the ion conduction pathways 

in such materials. These models were developed using the thermal, structural, and transport 

properties of mobile ions. Nevertheless, no model exists today that fully explains the ion 

which travel long distances resulting into dc conductivity mechanism in glasses. A brief 

discussion of a few of the models follows. 

(i) The Anderson-Stuart model (A-S model) 

The Anderson-Stuart (A-S) model, developed in 1954, is a model used to calculate the 

activation energy required for cationic transport in glasses, specifically silicate glasses like 

𝑁𝑎ଶ𝑂 − 𝑆𝑖𝑂ଶ and 𝑃𝑏𝑂 − 𝑆𝑖𝑂ଶ [20]. This model breaks down the activation energy for 

conduction into two components: the electrostatic binding energy of the initial site (𝐸஻) and 

the strain energy (𝐸௦). The first component, 𝐸஻, represents the Coulombic forces acting on 

the ion as it moves away from the charge-compensating site. This component is related to 

the strength of the bond between the ion and the neighbouring atoms in the glass structure. 

The second component, 𝐸௦, represents the mechanical forces acting on the ion as the 

structure expands to allow the ion to move between sites. This component is related to the 

strain energy of the glass structure.  

The basic concept is that an ion simply jumps from one site to the another and transits by 

an "opening doorway" that only opens as ion passes through it. For this to occur, the 

presence of non-bridging oxygen at cation sites is required. As a result, the model calculates 

the activation barrier (𝐸௔) as the total of the two variables in the equation. 

𝐸௔ = 𝐸஻ + 𝐸ௌ   … . . (2.14) 

The activation energy 𝐸௔ corresponds to the energy barrier for cation migration. Whereas,  

𝐸஻ is the electrostatic binding energy between the mobile ion and the host network as given 

as Eq. (2.15) and 𝐸ௌ represents the elastic component of mechanical strain energy. 

𝐸஻ = − ൬1 −
1

𝑚
൰ 𝑀𝐸௖   … . . (2.15) 

The binding energy 𝐸஻ is assigned to the difference in the columbic energy, 

𝐸௖(𝑥) =  ቆ
𝑍ଵ𝑍ଶ𝑒ଶ

𝜀ஶ𝑥
ቇ  … . . (2.16) 

Which acts at a distance 𝑥 between two point charges, 𝑍ଵ𝑒 and 𝑍ଶ𝑒, across a dielectric 

medium with the permittivity of dielectric medium, 𝜀ஶ, while it is at an equilibrium site 

and when it is midway between equilibrium sites for all ion pairs. 𝑀 in Eq. 2.15 is referred 
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to as the Madelung constant for the specific glass structure and represents the sum of the 

impacts of other charges (ions) in the network. By taking ቀ1 −
ଵ

௠
ቁ 𝑀 ≈  1, the Eq. 2.15 can 

be simplified [21].  

The mathematically the A-S model can be represented as: 

𝐸௔ =
𝛽ெ

𝛾
ቈ

𝑧𝑧଴𝑒ଶ

𝛿 + 𝛿଴
−

𝑧𝑧଴𝑒ଶ

𝑎/2
቉ + 4𝜋𝐺𝛿஽(𝛿 − 𝛿஽)ଶ   … . . (2.17) 

When the jump distance 𝑎tends to the limit ∞, the Eq. 2.17 can be simplified as 

𝐸௔ =
𝛽ெ

𝛾
ቆ

𝑧𝑧଴𝑒ଶ

𝛿 + 𝛿଴
ቇ + 4𝜋𝐺𝛿஽(𝛿 − 𝛿஽)ଶ   … . . (2.18) 

The terms 𝛿 and 𝛿஽ are corresponding radius of the cation and the “opening doorway” 

respectively. Anderson and Stuart assert that the covalence parameter, 𝛾, indicates the 

deformability of the electron 

cloud on oxygen atoms, 

which is arbitrarily chosen in 

the equation corresponding 

to the relative permittivity 𝜀௥ 

of the atoms. Depending 

upon the spatial arrangement 

of ions in the matrix, the 

Madelung constant 𝛽ெ can 

be defined.  

 

The charge and the radius of the 𝑂ଶି are denoted as 𝑧଴ and 𝛿଴ respectively and the charge 

of the cation is given by 𝑧. The modulus of elasticity is described by the parameter 𝐺. The 

doorway radius 𝛿஽ is estimated using the diffusion data of uncharged noble gases such as 

𝐻𝑒, 𝑁𝑒, and 𝐴𝑟. During its motion, the ion must first overcome the coulombic interactions 

that bind it to its site. Following that, it must cross a narrow passage known as a doorway. 

The term "doorway" refers to the opening between two anions that are normally linked with 

one another. When three ions are mutually connected, the doorway can be a triangular 

opening. It is observed in alkali silicate-like oxide glasses, where the doorway is formed by 

the bridging (BO) and non-bridging oxygens (NBO).  

Figure 2.2: A-S model for Alkali Oxide glasses: Schematic 
potential energy landscape of an alkali ion. 
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The A-S model (also known as the “two-site model”) refers to the process of ion conduction 

in solid electrolytes. The model proposes that the ion conduction occurs through a series of 

well-defined sites, or “doorways,” that are separated by regions that are impermeable to 

ions. According to the A-S model, each doorway consists of two equivalent and well-

separated ion sites, which can accommodate one ion each. To allow ion passage, the 

doorway must be opened, which requires pushing oxygen atoms outward. This process 

causes atom compression, which also contributes to the activation energy required for ion 

conduction.  The activation barrier 𝐸௔ is consequently estimated as the sum of two factors 

in this model as shown in Fig. 2.2. 

 (ii) The weak electrolyte model 

The weak electrolyte model is a theoretical framework used to describe the behaviour of 

electrolyte solutions that contain a low concentration of ions. In such solutions, only a 

fraction of the solute molecules dissociates into ions, resulting in a low conductivity. This 

model is applicable to liquids and glasses where the actual stoichiometric concentration of 

ions is greater than the concentration of mobile ions in solution [22]. When a foreign ion is 

added to a weak electrolyte solution, its effect on the conductivity depends on whether it 

increases or decreases the concentration of mobile ions in solution. If the foreign ion 

increases the concentration of mobile ions, then the conductivity of the electrolyte will 

increase. On the other hand, if the foreign ion decreases the concentration of mobile ions, 

then the conductivity of the electrolyte will decrease [23].  Ravaine and Souquet have found 

out that the square root of the 

𝑀ଶ𝑂 interaction in glasses such 

as 𝑁𝑎ଶ0 − 𝑆𝑖𝑂ଶ and 𝐾ଶ0 −

𝑆𝑖𝑂ଶ is related to the ionic 

conductivity by using the 

measurement of 𝑂ଶ to 𝑂ଶିratio. 

According to the theory the 

charge carriers, 𝑀ା, come from 

a dissociation equilibrium like 

𝑀ଶ0 =  𝑀ା +  𝑂𝑀ି.  

 

Figure 2.3: The dissociated ions are available for conduction: Schematic of weak electrolyte model. 
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The statement that the concentration of “free” 𝑀ା ions, not the mobility, causes the strong 

dependence of conductivity on the mole fraction of 𝑀ଶ𝑂 suggests that the presence of these 

ions in the material is crucial for efficient conduction. The “weak electrolyte” idea states 

that only dissociated cations are easy to get to for conduction further supports this notion, 

as it implies that the ions need to be in a certain state (dissociated) in order to contribute to 

conductivity. The concept of “interstitial pair – non bridging oxygen compounds” may be 

related to the structure of the material, and they may play a role in the formation or presence 

of the M+ ions [24], [25]. Following this concept, the ionic conductivity can be stated 

mathematically as the following expression: 

𝜎 = 𝑛 (𝑧𝑞) 𝜇  … . . (2.19) 

𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑥 [𝑁𝑎ା] … . . (2.20) 

𝑁𝑎ଶ𝑂 ↔  𝑁𝑎ା +  𝑁𝑎𝑂ି   … . . (2.21) 

Where, n is the mobile ion concentration with the charge (𝑧𝑞) and (𝜇) is the mobility of 

this ion type. 

This model can be used to describe the conductivity of 𝑁𝑎ଶ𝑂 − 𝑆𝑖𝑂ଶ glass [7], [22], [26], 

[27], where 𝑆𝑖𝑂ଶ acts as the solvent and 𝑁𝑎ଶ𝑂 acts as the solute. In the weak electrolyte 

idea, the solvent is seen as a dielectric continuum. The ionic conductivity and 

thermodynamic activity of the 𝑁𝑎ା (from 𝑁𝑎ଶ𝑂) cation are shown to be correlated in the 

following equilibrium reaction Eq. 2.21. Choosing a glass network with highly polarizable 

atoms increases the dielectric constant and thus the conductivity. 

(iii) The cluster bypass model 

Ingram's hypothesis proposes that the ionic conductivity in glasses arises from small regions 

that remain in the liquid phase even when the temperature is below the glass transition 

temperature (𝑇௚) [28], [29]. These regions create pathways that allow the diffusion of 

cations through the glass via a percolation process. As the residual liquid phase solidifies, 

the number of pathways decreases, resulting in a decrease in glass conductivity with 

increasing temperature. The cluster bypass model demonstrates the increase in activation 

energy due to the presence of “mixed mobile ions”. Foreign cations accumulate in the liquid 

phase regions and restrict the most favourable pathways, leading the mobile host cations to 

take less favourable paths through the glass clusters. This effect is known as the “mixed ion 

effect”. Burton et al,; [30], [31] defined glass as having a cluster-tissue texture, and 

vitrification was thought to be the congelation of orderly micro domains or clusters 

contained in a really amorphous, low density "tissue" material. It is known that the 
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Goodman model [32] was used by Ingram et al. [28] to explain the behaviour of inter-cluster 

spaces in a particular system. The Goodman model proposes that the spaces between 

clusters are filled with a 

residual liquid that 

solidifies into a 

"connective tissue" when 

cooled below 𝑇௚. This 

connective tissue acts as a 

pathway for ion migration 

in the system. Fig. 2.4 

likely shows a visual 

representation of this 

concept.  

 

The Goodman model is a theoretical model that describes the electrical conductivity of 

glasses, specifically those containing ionic conductors. It is based on the idea that the ionic 

conductivity in glasses is primarily determined by the diffusion of ions through a network 

of channels formed by the glass structure. These channels are not completely open, but 

instead are partially closed by other ions or structural defects. 

The Arrhenius trend refers to the relationship between the temperature and the electrical 

conductivity of glasses. According to the Arrhenius equation, the electrical conductivity of 

a material increases exponentially with temperature. In some 𝐴𝑔𝐼-rich glasses, this trend 

can be explained by the continuous exchange of matter between the “tissue” and “cluster” 

regions in the glass. The tissue region is where the glass structure is more open, allowing 

for the movement of ions, while the cluster region is where the structure is more ordered 

and the movement of ions is restricted. The exchange of matter between these regions can 

enhance the mobility of ions and increase the electrical conductivity of the glass.  

In alkali silicate glasses, the Goodman model can be used to explain the significant 

dielectric loss observed in these materials. The mobility of ions in the partially closed 

channels of the glass structure can result in significant dielectric loss, as the ions interact 

with the electric field and dissipate energy as heat. The addition of halide dopants to glasses 

can also affect the conductivity of the material. Halide ions can occupy some of the partially 

Figure 2.4: Clustering in glass shows ion migration pathways. 
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closed channels in the glass structure, which can increase the mobility of ions and enhance 

the electrical conductivity of the material. The Goodman model can be used to explain these 

effects and provide insights into the behavior of ionic conductors in glasses. 

(b) AC Conductivity models  

Models of conductivity that have been presented previously by researchers all over the 

world are essentially random potential energy models [33],[34]. As a result of the presence 

of a random structure, the ions in this model are assumed to have a randomly varying 

potential energy. 

In ac conductivity measurements, the dc conductivity is signified by the 𝜎ௗ௖ or 𝜎(0). While 

the value of 𝜎(0) typically varies by several orders of magnitude between different solid 

substances, the value of𝜎(𝜔) fluctuates substantially less when the value of 𝜔 is relatively 

high.This can be interpreted in terms of Dyre's (1993) formula for alternating current 

conductivity, which is as follows: 

𝜎(𝜔) = 𝜎(0) ൬
𝑖𝜔𝜏

ln(1 + 𝑖𝜔𝜏)
൰  … . . (2.22) 

At a higher frequency when 𝜔 tends to ∞, then the conductivity comparison for two 

different solids can be given as, 

𝜎ଵ(𝜔)

𝜎ଶ(𝜔)
=

𝜎ଵ(0)𝜏ଵ

𝜎ଶ(0)𝜏ଶ
=

∆𝜀ଵ

∆𝜀ଶ
  … . . (2.23) 

Because the relation for the dielectric strength can be given as, 

∆𝜀 =
𝜎(0)𝜏

2𝜀଴
 … . . (2.24) 

Due to the very minute difference in ∆𝜀 amongst solids, the ac conductivities of the majority 

of materials fluctuate very little at high frequencies. 

Jonscher formulates the first attempt to develop a general model for ac conductivity in 

glasses. The equation 𝜎(𝜔) = 𝜎(0) + 𝐴𝜔௡, where 0 < 𝑛 < 1, represents the variation of 

ac conductivity with frequency. The log-log plot of conductivity vs. frequency permits 

visualisation of a variety of well-known phenomena, ranging from long-range displacement 

to resonant vibration. From 𝑛 = 0 to 𝑛 = 0.6 to 1, the power law area and law behaviours 

(plot trend) can be identified as the frequency increases. The power law area and the dc 

plateau should be viewed as a single unit. According to Funke, both regions collectively 

represent ‘successful’ and ‘unsuccessful’ mobile ion hopping [35]. 

51



Chapter 2 Model for Ion Transport in Glasses   

In dc conduction, the charge carrier must overcome the largest barrier to hop to another site, 

but in ac conduction, the charge carrier must hop across a much smaller barrier, resulting in 

a very little distance travelled. Because charge carrier jump probabilities are believed to be 

time-independent, whenever the process re-enters state, the Markovian property forces it to 

resume, as explained in hopping models. As a result, rate theory provides an adequate 

description of hopping conductivity. The following are some of the fundamental theories 

that describe charge carriers hopping across a small and random potential barrier. Here are 

a few of them: 

1. Mott's Variable Range Hopping: This theory applies to materials where the hopping 

occurs through localized states. According to this theory, the probability of a charge 

carrier hopping to a nearby site depends on the distance between the sites and the 

energy required to overcome the potential barrier.  

2. Efros-Shklovskii Hopping: This theory applies to materials where the hopping 

occurs through Coulombic states. According to Efros-Shklovskii variable range 

hopping (ES-VRH) 𝑅 ∼ 𝑒𝑥𝑝[(𝑇ாௌ/𝑇)ଵ/ଶ]  , the hopping rate depends on the density 

of states, the distance between the sites, and the energy required to overcome the 

potential barrier.  

3. Marcus Theory of Electron Transfer: This theory applies to materials where the 

hopping occurs through molecules or ions. According to this theory, the hopping 

rate depends on the reorganization energy, the electronic coupling between the sites, 

and the energy required to overcome the potential barrier.  

Numerous theories have been presented to explain ac conduction in amorphous systems. 

The pair approximation is frequently assumed to hold true, implying that dielectric loss 

happens as a result of carrier motion being regarded to be concentrated inside pairs of sites 

[36].  

(i) The Random site model 

The random site model proposed by Nassau [37] is a model that can be applied to binary 

glass systems, specifically those that contain lithium ions and network modifier dopant salts 

such as 𝐿𝑖ଶ𝑂 − 𝐵ଶ𝑂ଷ, 𝐿𝑖ଶ𝑂 − 𝐺𝑎ଶ𝑂, 𝐿𝑖ଶ𝑂 − 𝐴𝑙ଶ𝑂ଷ. In this model, the dopant salt is 

uniformly distributed throughout the glass, which helps to enhance ion conduction by 

reducing the potential barrier height within the glass structure. The model considers all ions 

of a particular type as potential carriers, and assumes that their activation energy is 

distributed according to a Gaussian distribution.  
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Figure 2.5: Random barrier/site model. Typical potential for a system described by the RBM, 
shown here in one dimension. The barriers are assumed to vary randomly according to some 
probability distribution. The arrows indicate the two possible jumps for the charge. 

The mobility of the charge carrier changes with the distribution of activation energy and 

thus with the glass composition. The variation in conductivity with composition is mainly 

determined by the variation in mobility because the variation in carrier concentration is 

often small. Fig. 2.5 shows how the mobility changes with the distribution of activation 

energy and hence with the glass composition. The random site model provides a useful 

framework for understanding the ion transport behavior in binary glass systems containing 

lithium ions and dopant salts, and can be used to predict the conductivity of these materials 

under different conditions. Thus, the glass composition is the critical parameter for 

determining the average ion mobility, which changes with the activation energy distribution 

[38]. This model is distinct from the weak electrolyte model in that it assumes that the 

mobility of cation increase as the modifier or dopant salt concentration increases, whereas 

in the weak electrolyte model, only a fraction of the cations is mobile and their mobility is 

assumed to be constant. 

(ii) The Diffusion Pathway model 

T. Minami (1985) proposed the diffusion pathway model, which considers both the 

mobility and concentration of mobile ions in 𝐴𝑔𝐼 − 𝐴𝑔ଶ𝑂 − 𝑀௫𝑂௬ ; (𝑀௫𝑂௬ = 𝑃ଶ𝑂ହ, 𝐵ଶ𝑂ଷ 

and 𝑉ଶ𝑂ହ) glasses [38].  According to this hypothesis, the metal halide (dopant) is present 

in small clusters or micro domains in the vitreous glassy network, which are connected 

pathways that enable the ions to diffuse through the glass easily and effectively. A 

significant potential energy difference caused by the co-existence of two different types of 

anions, iodide and oxide, may explain the facts that all silver ions in a glass do not 

contribute to conduction and that the mobility factor varies depending on the composition 

of the glass.  
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There are three types of potential energy combinations present in the glass structure:  

1. The first type of interaction occurs between iodide ions themselves, which leads to 

shallow-shallow potential wells. This means that the energy required for the ions to 

move is relatively low, resulting in a high level of ion mobility. 

2. The second type of interaction occurs between iodide and oxide ions, resulting in 

deep-shallow potential wells. In this case, the iodide ions are more strongly attracted 

to the oxide ions, which creates a deeper potential well for the iodide ions. This 

makes it more difficult for the iodide ions to move, leading to lower ion mobility. 

3. The third type of interaction occurs between oxide ions themselves, resulting in 

deep-deep potential wells. In this case, both the oxide ions are strongly attracted to 

each other, creating a deep potential well. This makes it extremely difficult for ions 

to move, resulting in very low ion mobility. 

The formation of potential wells can be described when 𝐴𝑔ା interact with different types 

of ions, such as iodide ions and oxide ions. A broad shallow potential well is formed when 

silver ions interact with iodide 

ions, while a narrow deep 

potential well is formed when 

silver ions interact with oxide 

ions. The framework oxyanion 

also interacts with iodide ions, 

leading to a significant potential 

energy difference. Silver (𝐴𝑔) 

ions trapped in deep potential 

wells have less mobility than 

those trapped in shallow 

potential wells.  

 

The carrier concentration, or the number of mobile ions available for conduction, is 

proportional to the amount of silver ions in the shallow wells, while their mobility is 

proportional to the time the shallow wells are connected. When shallow wells are connected 

for an extended period of time, they form a diffusion channel that is favourable for ion 

transport. This suggests that the shallow wells may play a critical role in facilitating the 

movement of ions, while the deep wells may hinder ion transport. 

Figure 2.6:   Modified continuous random network (MCRN) model. 
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In random structures, such as amorphous materials or disordered alloys, the lack of long-

range order and symmetry can create a large number of low-energy pathways for ions to 

move through. This can facilitate diffusion and ion migration, allowing for faster transport 

of charged species. In particular, halide ions such as iodide or bromide can promote ion 

migration in random structures by forming low-energy barrier pathways through their 

interactions with the surrounding host matrix. This behavior has been observed in a range 

of materials, including perovskite solar cells and solid-state electrolytes.  This model can 

be described using the modified continuous random network (MCRN) model [39] which is 

depicted in Fig. 2.6. The percolation pathways in the metal oxide modified network glasses 

are created through the inter-network channels of network modifiers and NBOs, and they 

serve the same purpose that the halide ions do in the doped glasses in terms of forming 

percolation pathways. 

The diffusion pathway model is similar to the cluster bypass model, except that the 

interconnected sections in the diffusion pathway model are formed of the dopant site or 

network modifiers, whereas in the cluster bypass model, they are comprised of residual 

liquid. 

(iii) The Jump Relaxation model 

The phenomenon of jump relaxation pathways in solid ionic conductors is characterized by 

the movement of defects in the material due to repulsive interactions. According to Elliot's 

model [40], individual defects exhibit correlated forward and backward hopping, as 

illustrated in Fig. 2.7. The frequency spectrum of the hopping motion can be described by 

this simple model, which captures the microscopic relaxation dynamics. This function is 

useful in empirically demonstrating the “universal dynamics response,” which is observed 

in the complex behavior of conductivity, permittivity, and ionic conductivity as a function 

of frequency. Funke's prediction that all hops are prone to failure is related to the fact that 

the defects tend to return to their original locations due to attractive interactions. This can 

result in a phenomenon called “trapping,” where defects become immobilized in certain 

regions of the material. The dynamics of defect motion and trapping have important 

implications for the performance of solid ionic conductors in applications such as batteries 

and fuel cells. 
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If the back-hope process is delayed, the target site relaxes, finally resulting in the successful 

hop [35]. Non-Debye-like relaxation processes are common in glasses. These systems 

exhibit a non-exponential behaviour, which can be attributed to the inhomogeneous 

structure of glasses and the numerous body influences on relaxation. In high ion conducting 

glasses, the many body interactions between mobile ions is strong.  

Kohlrausch, William, and Watt (KWW) were among the first researchers to study the 

behavior of electrical conductivity relaxation in electrolytes. They observed that the 

relaxation process did not follow a simple exponential decay but instead exhibited a 

stretched exponential behavior. As you mentioned, this stretched exponential behavior can 

be quantified using the Kohlrausch constant, 𝛽. When  𝛽 = 1, the relaxation behavior is 

known as Debye relaxation, and it occurs when all the ions in the electrolyte have the same 

relaxation time. However, when 𝛽 < 1, it suggests that the relaxation behavior is due to a 

distribution of relaxation times, which could arise from the different structural parts of the 

system. Alternatively, the stretched exponential behavior could also be attributed to the 

cooperative motion of charge carriers in the electrolyte. In this case, a lower 𝛽 value could 

indicate that there are different structural parts of the system that contribute to the relaxation 

process, leading to a slower and more complex relaxation behavior. Overall, the stretched 

exponential behavior of conductivity relaxation in electrolytes is a complex phenomenon 

that can be attributed to various factors, including the distribution of relaxation times and 

cooperative motion of charge carriers.  Numerous attempts have been made to link 𝛽 with 

a variety of factors such as inter-cationic distance and conduction activation barriers. The 

temperature dependence of the frequency exponent, 𝑛(𝑇), is often used to understand the 

Figure 2.7: Model for jump relaxation, (a) Ions on a sub lattice, (b) potential cage effect (--), and 
single-particle potential (solid line) after a hop from A to B at time t=0, (c) building up potential 
for 𝑡 > 0. 
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conduction mechanism of a material. The value of 𝑛(𝑇) can vary with temperature and 

frequency, and it is typically obtained from fitting experimental data of the complex 

impedance or admittance of a material. The value of 𝑛(𝑇) is related to the distribution of 

relaxation times in the material, which is related to the mobility of charge carriers and the 

density of states in the material. Different theoretical models have been proposed to explain 

the behavior of 𝑛(𝑇) for different conduction mechanisms. By analyzing the temperature 

dependence of 𝑛(𝑇) and comparing it with theoretical models, we can recommend an 

acceptable model for the conduction mechanism to determine the primary conduction 

mechanism of the sample.  

(iv) Correlated Barrier Hopping model (CBH) 

The Correlated Barrier Hopping (CBH) model is a theoretical framework used to describe 

the electrical conductivity of materials with localized states in their bandgap. The model 

proposes that the conduction mechanism occurs via hopping of charge carriers between 

localized states separated by a Coulombic barrier. In this model, the charge carriers are 

either polarons or bi-polarons, which are ‘quasiparticles’ formed by the interaction of an 

electron with the surrounding lattice.  

 

 

 

 

 

 

 

 

 

 

The CBH model also assumes that the Coulombic barrier between the localized states 

decreases with increasing temperature, leading to an increase in the hopping probability 

and, consequently, an increase in the conductivity. The frequency dependence of the 

Figure 2.8:  Correlated barrier hopping (CBH) model for charge carrier transfer. 
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conductivity is described by a power-law relationship, where the frequency exponent 𝑛(𝑇) 

decreases as the temperature increases. This behavior is attributed to the temperature 

dependence of the Coulombic barrier and the correlation between the charge carriers. Pike 

(1972) [41] used the CBH model to calculate the frequency-dependent conductivity of 

Scandium oxide films, while Elliott (1978) [42] extended the model to study chalcogenide 

glasses.  

Theoretically, this model is based on the assumption that charge carrier hopping is 

frequency independent, as indicated by the fact that the relaxation variable  𝑈ெ is found to 

be independent of the distance between two sites separated by 𝑅. The mathematical 

expressions that will be used to demonstrate the model are listed below. 

𝑛(𝑇) = 1 −
6𝑘𝑇

𝑈ெ + 𝑘𝑇 ln(𝜔𝜏଴)
 … . . (2.25) 

If the maximum barrier height at a certain temperature is specified as 𝑈ெ ≫ 𝑘𝑇, 𝜔𝜏଴~1 

where 𝜏଴ is the time constant for downhill jump. When the field is applied, the revised 

values of the frequency dependent power exponent 𝑛(𝑇) and frequency dependent hopping 

distance (𝑅௠௜௡ in Å ) can be written as follows: 

𝑛(𝑇) = 1 −
6𝑘𝑇

𝑈ெ
 … . . (2.26), 𝑎𝑛𝑑   𝑅௠௜௡ =

𝑒ଶ

𝜋𝜀ᇱ𝜀଴𝑈ெ
  … . . (2.27) 

Charge carriers (e.g. electrons or ions) are moving between two sites, and the energy 

required for them to move from one site to the other depends on the Coulombic potential of 

each site and the distance between them. When the two sites are close together, the 

Coulombic potentials overlap, which reduces the effective energy barrier that the charge 

carriers have to overcome to move from one site to the other i.e., from (infinitely separated) 

𝑈ெ to 𝑈ு. The higher the barrier, the less likely it is for the charge carriers to move, and the 

lower the temperature, the less thermal energy the charge carriers have, which also reduces 

the likelihood of movement. This can be expressed as the following equation.  

𝑈ு = 𝑈ெ −
𝑒ଶ

4𝜋𝜀ᇱ𝜀଴𝑅
  … . . (2.28) 

where 𝑒 denotes the charge of the carrier, 𝜀ᇱdenotes the dielectric constant of a material, 

and 𝜀଴ denotes the free space permittivity. The distance between two adjacent hopping sites 

(𝑅 𝑖𝑛 Å) and 𝜏଴ is the characteristic relaxation time; its usual value 𝜏଴ (= 10ିଵଷ𝑠)  is of 

the order of vibrational period of an atom. k𝑈ெ is the energy necessary to entirely remove 
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an electron from a site. While 𝑁 indicates the concentration of a pair of sites and 𝑅ఠ refers 

the hopping distance between them at a certain frequency (𝜔)  can be written as, 

𝜎௔௖ =
𝜋ଷ

12
𝑁ଶ𝜀ᇱ𝜀଴𝜔𝑅ఠ

଺   … . . (2.29), 𝑎𝑛𝑑 𝑅ఠ =
2𝑒ଶ

𝜋𝜀ᇱ𝜀଴{𝑈ெ + 𝑘𝑇 ln(𝜔𝜏଴)}
  … . . (2.30) 

The models seen in Fig. 2.8, is well explained in bismuth silicate glasses with titanium 

[43],lithium-bismuth-borate glasses [44], lithium iodide lithium tungsten [45] and 

𝑉ଶ𝑂ହ– 𝑀𝑛𝑂– 𝑇𝑒𝑂ଶ glass systems [46].  

(v) Quantum Mechanical Tunnelling model (QMT) 

In a system with oscillating electric fields, ions will experience a potential energy that varies 

with time. If the frequency of the oscillating field is high enough, the ions will not have 

enough time to move significantly before the field changes direction. As a result, the ions 

are unable to diffuse and become trapped in their potential well. This phenomenon is known 

as ion trapping. The extent to which ions are trapped depends on several factors, including 

the strength and frequency of the electric field, the mass and charge of the ion, and the 

temperature. In general, lighter ions with higher charge-to-mass ratios are more easily 

trapped than heavier ions with lower charge-to-mass ratios. Additionally, it has been 

discovered experimentally that when the frequency of a system increases, the conductivity 

increases as well. Based on this theory, Pollak and Geballe (1961) [47] initially explained 

electron tunnelling in glassy materials; later, Caldeira and Leggett (1981) [48] extended this 

idea to explain macroscopic tunnelling. QMT, conductivity is often described in terms of 

the tunnelling of charge carriers, such as electrons or ions, through potential barriers. In 

materials with frequency-dependent conductivity, the charge carriers can tunnel between 

unoccupied sites, which leads to a complex response to applied electric fields that depends 

on the frequency of the field. There are two main mechanisms proposed to explain the 

relaxation behaviour of such materials: quantum-mechanical tunnelling and classical 

hopping over a barrier. In many cases, the two mechanisms may coexist, and the carriers 

may be a combination of electrons, polarons, or ions [36]. The precise mechanism(s) 

responsible for the frequency-dependent conductivity of a particular material depends on 

the specific properties of the material. The following Eq. 2.31 gives the characteristic 

tunnelling distance 𝑅ఠ at a given frequency 𝜔, where 𝜔𝜏଴ = 1. 
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The exponent 𝑛 describes the quantum mechanical tunnelling through the potential barrier. 

𝑅ఠ =
1

2𝛼
ln ൬

1

𝜔𝜏଴
൰  … . . (2.31) 

In this model the exponent n is predicted to be independent or weakly dependent of 

temperature[49].Thus, for the QMT model, the frequency exponent 𝑛 is temperature 

independent but frequency dependent, and a value of 𝑛 = 0.81 is determined from Eq. 2.32 

for typical values of the parameters, namely 𝜏௢ ≅ 10ିଵଷ 𝑠 and 𝜔 = 10ସ 𝑠ିଵ [36]. 

n = 1 −
4

ln ቀ
ଵ

னதబ
ቁ

… . . (2.32)

For the QMT, the real part of the ac conductivity can be written as follows. 

𝜎(𝜔) =
𝐶𝑒ଶ𝑘𝑇

𝛼
𝑁ଶ൫𝐸௙൯𝜔𝑅ఠ

ସ   … . . (2.33) 

where 𝑁൫𝐸௙൯ is the density of states at the fermi energy level, the constant 𝐶 =
ଵ

ଶସ
𝜋ଶ. This 

model is being used by many researchers for the systems like in silver vanadate glass by 

Bhattacharya & Ghosh [50] and amorphous semiconducting material, tetrahedral and group 

V and chalcogenides are reviewed by Long (1982) [51]. 

(vi) Non-overlapping Small Polaron Theory (NSPT) 

A charge carrier (such as an electron or a hole) can interact strongly with the surrounding 

lattice, leading to the formation of a localized distortion or “polaron cloud” around the 

charge carrier. This distortion can be significant enough that the total energy of the system 

(including both electronic and lattice contributions) is lowered by an amount 𝑊௉, resulting 

in the formation of a ‘quasi-particle’ called a polaron. If the polaron is “small” (i.e., the 

distortion cloud is localized to a single lattice site), it behaves like a free particle with an 

effective mass that is increased due to the interaction with the lattice. At low temperatures, 

the small polaron can move coherently through the lattice by tunnelling between adjacent 

sites, resulting in a mobility that is typically lower than that of a free particle. At higher 

temperatures, thermal fluctuations can activate the polaron to hop between sites, resulting 

in an activated transport mechanism. 

As a result, the activation energy for polaron transfer, 𝑊ு ≈
ଵ

ଶ
𝑊௉, is independent of the

inter-site spacing. The Non-overlapping small polaron tunnelling (NSPT) model [52] is a 

theoretical framework used to describe charge transport in disordered systems.  
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In this model, the charge carriers are assumed to be small polarons that hop between 

localized states in the material. The NSPT model predicts that the frequency exponent ′𝑛′ 

for charge transport in such systems depends on the temperature and the characteristic 

frequency of the hopping process. The expression for ′𝑛′ in the NSPT model is given by: 

𝑛 = 1 −
4

𝑙𝑛 ቀ
ଵ

ఠఛబ
ቁ −

ௐಹ

௞ಳ்

… . . (2.34)

where 𝜔 is the characteristic frequency of the hopping process, 𝜏଴ is the characteristic 

hopping time, 𝑊ு is the polaron binding energy, 𝑘஻ is the Boltzmann constant, and 𝑇 is the 

temperature. According to the NSPT model, the value of 𝑛 decreases with increasing 

temperature. This means that the characteristic hopping time τ0 decreases with increasing 

temperature, which in turn leads to an increase in the frequency exponent 𝑛(𝑇).  

The increase in ′𝑛′ with temperature is due to the fact that at higher temperatures, the 

hopping process becomes more thermally activated, and the charge carriers are able to 

access states that are further away from their initial position. It should be noted that the 

NSPT model is a simplified description of charge transport in disordered systems, and there 

are other models that may be more appropriate in certain situations.  

However, the NSPT model has been used successfully to explain the behavior of a wide 

range of materials, and it remains a useful tool for understanding charge transport in 

disordered systems. This approach is shown to apply to transition metal oxide doped 

semiconducting glassy systems [53] and bismuth zinc vanadate glass system by R. Punia et 

al,; [54]. 
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