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Chapter 6 

Transcriptomics analysis of Escaper and Multi-Omics analysis 

of -mouse, golden retriever models and DMD patient data 

points to glycolytic defect  
 

INTRODUCTION 

As seen in previous chapters, DMD disease progression includes many aberrations of 

metabolism, signaling pathways, calcium imbalance, oxidative stress, inflammatory overdrive, 

and immune cell infiltration, making it irreversible. Without clear cause-effect relations 

between the pathological processes associated with DMD disease, multi-omics studies can be 

a source of essential pathways targeted for therapy. The multi-omics on the mdx model recently 

found pathways of metabolism, and it was revealed that ECM composition has been most 

affected (Van Pelt et al., 2021). The weighted gene co-expression analysis of transcriptomics 

data found immune pathways enriched in DMD patients (Wei et al., 2022). This approach has 

found that pyruvate accumulation is the primary cause of Amyotrophic Lateral Sclerosis (ALS) 

(Sai Swaroop et al., 2022) which was not previously thought to be a pathology initiator. 

We tried to compare the transcriptomics data for “Escaper” GRMD available online (Vieira et 

al., 2015), to find new mitigated pathways helpful in understanding the rescue mechanism. The 

proteomics or metabolomic data for “Escaper” GRMD is not available. Hence, the multi-omics 

approach was used on other publicly available mdx, GRMD, and DMD patients’ databases to 

find commonly enriched pathways across these three organisms. 

MATERIALS AND METHODS 

The GEO ID for the data analyzed is as follows. The Escaper is transcriptomic GSE69040. 

Other GRMD muscle is transcriptomic ID GSE68626. The mdx data ID is GSE64418. The 

patient IDs used were GSE1004, GSE-1007, and GSE-109178. The proteomics data from 

Capitanio et al., (2020) was used for analysis. The patient-derived metabolites data from 

Sharma et al., (2003), Srivastava et al., (2018), and Dabaj et al., (2020) were used as the latter 

contained previously reported GRMD and mdx data.  
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WORKFLOW 

 All the transcriptomics data was analyzed using the online GEO2R web tool. The differentially 

expressed genes (DEGs) list was downloaded. The DEGs were considered significant when the 

p-value was less than or equal to 0.05, and there was a 2-fold change (increase or decrease). 

Significant DEGs names/symbols for GRMDs were identified using the bioDBnet online tool 

from Agilent/Affymetrix IDs available on the GEO platform for given data. Significant DEG 

lists from each transcriptomic data were separately used for pathway enrichment analysis with 

the Enrichr online tool. The KEGG pathways generated by Enrichr were selected based on the 

significance (p≤ 0.05) and arranged according to “Combined Scores” as it considers false 

discovery rate (FDR) also. The best 10-15 pathways based on combined scores were used for 

finding commonly enriched pathways. Ven diagram for common pathways was created using 

Venny2.0 online tool. The proteomics data for DMD patients from Capitanio et al., (2020) article 

was similarly used with Enrichr. The pathways with the top combined scores were selected. 

The names of metabolites were fed into “MetaboAnalyst” to find KEGG and SMPDB-based 

pathway enrichment, where pathways with FDR less than 0.25 were selected. Metabolite data 

for GRMD could not be analyzed because the MetaboAnalyst platform does not have tools for 

this organism. The common pathways between transcriptomics, proteomics, and metabolomics 

were similarly collected and represented using the Venny2.0 tool as diagrams and tables.  
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RESULTS 

KEGG PATHWAY ENRICHMENT FOUND PATHWAYS ENRICHED SPECIFICALLY 

IN THE ESCAPER.  

Figure 6.1: Venn diagram represents the commonly enriched pathway between Escaper dogs 

vs GRMD dogs and GRMD dogs vs Control dogs. 

Table 6.1: Escaper vs. GRMD common pathways enriched during transcriptomic analysis 

Sr. 

No. 

Pathways Genes 

1.  Caffeine metabolism NAT2 

2.  Phenylalanine, tyrosine, and tryptophan biosynthesis GOT1 

3.  Sulfur metabolism BPNT1 

4.  Circadian rhythm BHLHE40; PRKAB1 

5.  Proteasome PSMD7; PSMA2 

6.  Phenylalanine metabolism GOT1 

7.  Sphingolipid metabolism SGPL1; KDSR 

8.  Vascular smooth muscle contraction ACTA2; ADORA2A; NPR1; 

PRKACB 

9.  Parkinson disease PSMD7; ADORA2A; PSMA2; 

NDUFC1; PRKACB; EIF2S1 

10.  Spinocerebellar ataxia PSMD7; PSMA2; ATXN1L; 

PUM2 

11.  Regulation of lipolysis in adipocytes NPR1; PRKACB 

12.  Aldosterone synthesis and secretion NPR1; DAGLB; PRKACB 

13.  Arginine biosynthesis GOT1 

14.  Terpenoid backbone biosynthesis IDI1 
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Table 6.2 : GRMD vs. Control common pathways enriched during transcriptomic analysis 

Sr. 

No. 

Pathways Genes 

1.  Citrate cycle (TCA cycle) MDH1; DLAT; SDHD; 

SDHA;DLD; IDH3A 

2.  Glyoxylate and dicarboxylate metabolism GCSH; MDH1; MMUT; DLD; 

ACAT1 

3.  Synthesis and degradation of ketone bodies HMGCS1; ACAT1 

4.  Pentose phosphate pathway ALDOB; PFKM; PGM1; FBP2 

5.  Glycolysis / Gluconeogenesis DLAT; ALDOB; DLD; PFKM; 

PGM1; FBP2 

6.  Glycine, serine, and threonine metabolism GCSH; GATM; MAOB; DLD 

7.  Pyruvate metabolism MDH1; DLAT; DLD; ACAT1 

8.  Valine, leucine and isoleucine degradation HMGCS1; MMUT; DLD; ACAT1 

9.  Fructose and mannose metabolism ALDOB; PFKM; FBP2 

10.  Propanoate metabolism MMUT; DLD; ACAT1 

11.  Pantothenate and CoA biosynthesis PANK3; GADL1 

12.  Oxidative phosphorylation NDUFA8; ATP6V1G2; 

NDUFB10;COX17;SDHD;CYC1;

SDHA 

13.  Histidine metabolism MAOB; CARNMT1 
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Table 6.3: Pathways enriched exclusive to Escaper dogs 

Eleven elements include exclusively in “Escaper vs. GRMD” 

1.  Sulphur metabolism 

2.  Circadian rhythm 

3.  Proteasome 

4.  Phenylalanine metabolism 

5.  Sphingolipid metabolism 

6.  Vascular Smooth Muscle Contraction 

7.  Parkinson disease 

8.  Spinocerebellar ataxia 

9.  Regulation of lipolysis in adipocytes 

10.  Aldosterone synthesis and secretion 

11.  Arginine biosynthesis 

The WIKI pathways-based enrichment was also initially done but did not reveal pathways with 

enrichment that have p≤0.05 for significance. The KEGG pathway enrichment, as Figure 6.1 

shows metabolic pathways common between Affected and Escaper GRMD compared to 

Control. Table 6.1 lists pathways enriched in Escaper vs. Affected, while Table 6.2 lists 

pathways enriched in Escaper vs. Control. Table 6.3 shows a pathway list unique to only 

Escaper, related to amino acids and lipid metabolism in “Escapers.” Another interesting 

pathway is proteasomal degradation, as it is known to cause excess atrophy in DMD. It is also 

important to note that pathways scoring high in affected GRMD compared to healthy, like 

glyoxylate and dicarboxylate, glycolysis, and tricarboxylic acid metabolism, are absent in the 

escapers.  

This is a single transcriptomic data from a single rescue report for DMD. In order to observe 

how disease-associated pathways from the above study compared to overall DMD disease, 

other reported data from GRMD, patients, and mouse models of DMD were analyzed from the 

publicly available GEO database. 

The WIKI pathway enrichment did not yield any common pathways even within the same study 

with the same platform for human DMD patient transcriptomics data (Figure 6.2). Hence, 

KEGG pathway enrichment was considered for the rest of the studies. Similarly, using 

MetaboAnalyst, the metabolite list from Dabaj et al., (2020) found only 2 KEGG pathways with 
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FDR less than 0.25. The metabolite list from Sharma et al., (2003) found only 2 SMPDB 

pathways with FDR less than 0.25. It is important to mention that all three-metabolite data used 

here showed “arginine metabolism” as a significant pathway in both SMPDB and KEGG-based 

enrichment (unpublished data from our lab). The methods and data which generated more 

pathways of significance were considered. The datasets that generated unique pathways were 

not considered further as the aim is to find common pathways. As apparent from figures 6.4 and 

6.5, Arginine metabolism appears in human proteomics data and common metabolomic 

pathways between humans and mice. Though glyoxylate and dicarboxylate pathway is the only 

common element between transcriptomics data of human, mdx, and GRMD in dystrophic 

conditions (Figure 6.3), the other pathways common between human and mdx, GRMD, and 

mdx were also taken for other typical pathway building.  

 

WIKIBASED PATHWAY ENRICHMENT FOR PATIENT TRANSCRIPTOMICS DATA 

 

Figure 6.2: Venn diagram represents that the WIKI based enriched pathway for human DMD 

patient transcriptomics data. 

 

The wiki pathways-based enrichment did not find any common pathways even within the same 

geo-platform for human transcriptomics data. 
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THE COMMON KEGG-ENRICHED PATHWAYS BETWEEN HUMAN, GRMD AND 

MDX TRANSCRIPTOMICS DATA 

 

Figure 6.3: Venn diagram shows the common KEGG-enriched pathways between Human 

patients, GRMD dogs and mdx mouse transcriptomics data. 
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PROTEOMICS-BASED PATHWAY ENRICHMENT POINTS TO DEFECTS IN 

GLUCOSE METABOLISM AND EXTRACELLULAR MATRIX CHANGES 

Table 6.4: Proteomics based KEGG pathway enrichment of patient samples 

 

Sr. 

No. 

Term Combined Score Genes 

1.  Citrate cycle (TCA cycle) 1371.7435 PDHA1; SUCLA2; MDH1; 

MDH2; OGDH; ACO2; 

SDHA 

2.  Phenylalanine, tyrosine and 

tryptophan biosynthesis 

745.43404 GOT1; GOT2 

3.  Glycolysis / Gluconeogenesis 544.72766 TPI1; PDHA1; ADH1B; 

PGAM2; AKR1A1; PGK1; 

ALDOA; ENO3 

4.  Pyruvate metabolism 452.36947 PDHA1; MDH1; ADH1B; 

MDH2; AKR1A1; ACAT1 

5.  Glyoxylate and dicarboxylate 

metabolism 

326.78373 MDH1; MDH2; ACO2; 

ACAT1 

6.  Complement and coagulation 

cascades 

180.98583 C4B; C3; SERPINA1; FGG; 

A2M; CLU 

7.  ECM-receptor interaction 171.41604 COL1A1; COL2A1; 

COL1A2; COL6A2; 

COL6A1; COL6A3 

8.  Cysteine and methionine 

metabolism 

149.87651 GOT1; MDH1; MDH2; 

GOT2 

9.  Phenylalanine metabolism 143.45595 GOT1; GOT2 

10.  Fructose and mannose 

metabolism 

140.00883 TPI1; AKR1B1; ALDOA 

11.  Protein digestion and 

absorption 

133.70381 COL1A1; COL1A2; 

COL2A1; COL6A2; 

COL6A1; COL6A3 

12.  Diabetic cardiomyopathy 127.37933 COL1A1; PDHA1; COL1A2; 

NDUFA4; VDAC1; 

UQCRC2; CYC1; SDHA; 

SLC25A4 

13.  Tyrosine metabolism 122.74824 GOT1; ADH1B; GOT2 

14.  Cardiac muscle contraction 110.22156 MYL4; ACTC1; MYL3; 

UQCRC2; CYC1 

15.  Arginine biosynthesis 97.770868 GOT1; GOT2 

16.  Fat digestion and absorption 93.709132 GOT2; APOA1; ACAT1 

17.  HIF-1 signaling pathway 76.832273 TF; PDHA1; PGK1; 

ALDOA; ENO3 

18.  Arginine and proline 

metabolism 

7 4.364624 CKM; GOT1; GOT2 

19.  Cholesterol metabolism 74.364624 APOH; APOA1; VDAC1 
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METABOLOMICS-BASED KEGG PATHWAY ENRICHMENT FROM 

HUMAN/PATIENT SAMPLES.  

 

Figure 6.4: Venn diagram shows the Metabolomics-based KEGG enriched pathways From 

Human/Patient Samples 
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THE SMPDB PATHWAY ENRICHMENT OF METABOLOMICS STUDIES FOUND 

MORE COMMON PATHWAYS BETWEEN HUMAN AND MDX MOUSE MODELS. 

 

Figure 6.5: Venn diagram shows the SMPDB pathway enriched metabolomics studies between 

Human and mdx mouse models. 
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COMMON PATHWAYS BETWEEN 3 SPECIES TRANSCRIPTOMICS, HUMAN 

PROTEOMICS AND HUMAN METABOLOMICS 

Figure 6.6: Venn diagram represents the common pathways found between Transcriptomics, 

Human Proteomics and Human Metabolomics data. 
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The proteomics data from Capitanio et al., (2020) also points to dysregulated metabolism and 

changes to ECM and complement pathways of the immune system. The diabetic 

cardiomyopathy pathway has similar collagen changes to ECM and mitochondrial VDAC and 

ETC-associated NDUFA4, a part of the NADH Dehydrogenase (Ubiquinone) complex. The 

TCA cycle (Citric Acid Cycle) is common in Proteomics and Metabolomics pathway 

enrichment (Figure 6.6). Surprisingly Glyoxylate pathway has come up common between three 

species transcriptomics, human proteomics, and two species metabolomics-based pathway 

enrichment. In the mdx model, the glyoxylate pathway was scored very low though GRMD and 

patient data are at the top. Although indirect evidence suggests its involvement in dystrophic 

pathology, it has never been considered a significant contributor to pathology. 

DISCUSSION  

The glyoxylates and dicarboxylates are the toxic byproducts of glycolysis, non-enzymatically 

generated during hyperglycemic conditions. The three carbon products of fructose 1,6 

bisphosphate breakdown – dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3 

phosphate (GAP) are considered significant sources of glyoxylates. In addition, excess amino 

acid and fatty acid catabolism end products also can generate glyoxylates (Lange et al., 2012). 

The Glyoxylates are highly reactive chemical species that react with proteins, and nucleic acids 

(DNA and RNA), and lipids in the membrane to cause lesions and permeability. The toxic 

nucleic acid, lipid, protein products of glyoxal reactions are collectively called Advance 

Glycation End products (AGEs). The ubiquitously expressed Glyoxalase-1 (GLO1) and GLO2 

enzymes which, in tandem reactions, convert glyoxal and methylglyoxal (MG) into D-Lactate 

in a glutathione (reduction) dependent manner form the first line of defense (Thornalley, 1993). 

GLO1 activity was low in DMD patients, though GLO2 activity remained unchanged (Kar & 

Pearson, 1975). In addition to GLO enzymes, a family of aldehyde reductases comprising 

roughly 40 understudied enzymes also contributes to detoxification. AGEs with lipid 

pore/lesion forming ability quickly enter general circulation from the tissue of formation and 

bind to receptors on various cells receptor for AGEs - called RAGE (or AGER) (Chavakis et 

al., 2004). 

The excess AGEs production during aging has been shown to cause plasma membrane lesions, 

ROS production, Ion channel disturbances, increased fibrosis, muscle stiffness, and 

mitochondrial oxidative stress (Olson et al., 2021), all involved in the pathogenesis of DMD. 

RAGEs are expressed during embryonic developmental stages but are downregulated in most 
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tissues postnatally except some tissue-resident stem cells, leukocytes, and lung epithelial lining. 

RAGE is upregulated in leukocytes and myofibers from dystrophic conditions. The other 

ligands for RAGE, proteins HMGB1, and S100B, are also upregulated in DMD conditions 

(Riuzzi et al., 2017; Sagheddu et al., 2018). The knockdown of RAGE reduced pathology 

progression in mdx mice but did not inhibit pathology initiation (Sagheddu et al., 2018). This 

suggests that AGEs production might be responsible for the excessive inflammatory response 

in this disease. The myoblasts also express these receptors (RAGE), which might be 

overactivated due to high ligands accumulation in dystrophic muscles contributing to 

compromised regeneration. The inhibitors of the RAGE receptor as well as ligands HMGB1 

and S100B are under consideration for the development of therapy, but standard glucocorticoid 

treatment is already known to downregulate the RAGE receptors (Hathout et al., 2019). The 

natural compound Gingerol from Ginger has been shown to quench the AGEs (Zhu et al., 2015), 

which has also shown functional rescue in a zebrafish model of DMD at 8-10 dpf but not beyond 

that and was unable to improve lifespan (Licitra et al., 2021).   

All these studies suggest that receptors for AGEs (RAGE) might be involved in the 

amplification of dystrophic pathology but not initiation. The defects of glycolysis might be 

more involved in pathology initiation (Nesari et al., 2023) as the initial phase of muscle 

contraction depends on glycolysis for ATP and metabolite production when energy stores are 

quickly depleted when mitochondria are still reaching maximum capacity. The elegant 

radiolabeling study suggested that glucose from glycogenolysis-glycolysis is shunted to 

glycerol-3-phosphate (G3P) instead of pyruvate and lactic acid (Ellis, 1980), which could be 

due to the low activity of GPD2 enzyme that reconverts G3P into DHAP which can reenter 

glycolysis via isomerase (GPI) conversion to GAP. However, this would require the 

coordination of enzymes involved in the upper and lower half of glycolysis with the glycerol-

phosphate shuttle. The discord would increase the toxic glyoxal production on the one hand, 

whereas, on the other hand, it reduces ATP and pyruvate production from glycolysis. The 

pyruvate has been shown to activate the GLO1 enzyme (Scott et al., 2017). Hence, lower 

pyruvate from glycogenolysis-glycolysis during muscle contraction can result in lower defense 

against glyoxal toxicity. Though the heart and the brain have higher basal glycolysis, it further 

increases during a sudden increase in workload in the heart (Depre et al., 1999) and neuronal 

activity in the brain (Vaishnavi et al., 2010). Hence, the absence of dystrophin would affect 

these two tissues to lesser extents except during excess workload. The overall energy starvation 

and fold glycolytic requirement between skeletal muscle, heart, and brain would change the 
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intensity and progression of pathology in the absence of dystrophin, as seen in DMD. As seen 

in Escaper transcriptomics data, the metabolic rewiring that reduces energy starvation and 

mitigates glyoxal toxicity could change the disease outcome. The exact mechanism of how 

Jagged 1 overexpression results in metabolic rewiring needs further study.    


