
Chapter 3

Pair Production at Finite 
Temperature

3.1 Introduction

Following the discussion in the last chapter on pair production from vacuum in the 
presence of an oscillating external chromo-electric field , in this chapter we will discuss 
the effect of heat bath on such a process.

Before going into the details of the calculation we will elaborate, on the phys­
ical situation relevant for this computation. In particular we will try to show that 
,whether the time scale of reduction of the external field due to pair creation process 
is long enough for the system to come to thermal equilibrium.

It is worth emphasising here that, though in the earlier chapter , the vacuum 
chromo-electric field in the flux tube was taken to be oscillating in time, ( since it 
followed from the solutions of the vacuum Yang-Mills ( YM ) equations), one need 
not assume the same, in the presence of a heat bath. To determine the nature of the 
chromo-electric field in the presence of the plasma, one has to solve the YM equations 
with a plasma source term. Although for a realistic study, one should compute the 
spontaneous pair production rate in the presence of such a field, as an approximation 
to the more realistic case we will restrict ourselves to a constant external chromo­
electric field, as a proper investigation of this process has not been performed before.

Estimation Of The Characteristic Time Scales
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In this section we first estimate the time scale for the production of pairs. If 
we recall, the expression for the spontaneous pair production rate from vacuum / unit 
time /unit volume is given by
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From this expression, one can crudely estimate the time scale of production of qq 
pairs in an unit volume, and it comes out as
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In the above expression we have assumed that just one pair is being produced , 
so we have neglected the sum over n in equation (3.1). After estimating the time 
scale of production of pairs, we will estimate next, the time scale of depletion of the 
external field. It is worth mentioning here that this time scale has been estimated by 
Gyulassy et.al1 and Gatoff et.al2 before. Gyulassy had estimated it assuming abelian 
dominance approximation for pair production rate and Gatoff et.al had estimated it 
using hydrodynamic equations. We will however estimate the same, from the principle 
of energy conservation , essentially following the argument of reference (3), assuming 
Schwinger picture for pair production to hold good.
Since in this model pairs are produced with zero longitudinal momentum but all 
possible values of the transverse momentum, px, the amount energy loss with the 
production of a pair, where each one of the produced particles is having average 
energy {y/m2 + px2), is 2{y/m2 + px2), so after producing n such pairs, the total 
energy lost by the external field is 2n (\frn2 + px2). Since the production probability

. r* 2 ~TT (
for a pair is given by , the associated energy loss by the field can be written
as de(t)

dt
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where e{t) = ~ is the field energy. From the solution of this differential equation, 
one arrives at the time required for the electric field to decay to th of its original 
value as

U = C [Ei (ymax) - Ei (ymin)] < (3.3)

Here C — 2o (y’ ^mtu; = gEmax ’ 9&max — 9&{t = 0) = gE, and ymin ==

and Ei represents the exponential integral. So one needs to know the average 
value of \/m2 + pj_2, for- the proper estimation of the depletion time.The distribution 
of particles in the momentum interval px to px + dp± can be computed from the
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solution of the Dirac equation in presence of the external held and it is (Ref Kerman4, 
Nussinov5);
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' From this equation one can compute the average energy of each produced particle to 
be ,

(sjm2 + p±2) ~ k^~

where
lb = 0(1)

Hence
TT2

= j.a (ymax)~ ^

Finally from these relations one arrives at the ratio of depletion time to production 
time as

tp = (lfc(4™,j) 9E ^ ^max) “ El (VminN (3-5)
With m = 0.2 GeV, as = 0.3 and gE = 1 GeV2 we get ~ 5/m/c and ^ ~ 30

One can see from these relationships that, as the ratio of field strength to mass 
square increases the time scale of reduction of the electric field also increases. Since 
the strength of the electric field is proportional to the mass number( Ap*At* ) of. 
the colliding nuclei, for heavier nuclei, one can expect the external field to last for a 
time longer than the production time of the pairs.

Since these produced pairs come almost with a Boltzmann like distribution 
in momentum space4 , (both in the case of constant as well as the time varying 
external field), they will come close to thermal equilibrium very fast through collision 
with each other. Moreover, other than the collisional processes, the joule heating of 
the plasma generated because of the conduction current produced by the external 
chromo-electric field will also contribute towards the thermalisation of the system. A 
quantitative estimate of momentum equlibration time, in a parton cascade model, has 
been obtained by Biro et. al.15 who get a value of 0.31 fm/c. This value is. essentially 
the same as the thermalization time ~ 0.3 fm/c for gluons at RHIC energies estimated 
by Shuryak16. For quarks the thermalization time ~ 1-2 fm/c. In brief, since the 
depletion time tj is greater than the production time tp, and the thermalisation time 
is smaller than the depletion time, one might be justified in assuming the existence 
of the external field in the thermally equilibrated plasma.

26



Though it is not very clear whether, initially the temperature of the system 
will be the same everywhere, but if the time scale of thermalisation is faster than the 
speed of separation of the two color charged, Lorentz contracted receding nuclei , one 
can expect the temperature to remain constant in the space, between them. Thus, in 
our view, it is pertinent to study the process of pair production at finite temperature, 
in RHIC.

As we go along we will see that because of the presence of heat bath, the rate 
of spontaneous creation of qq pairs in the presence of external field, is no more homo­
geneous in space ;rather it decreases towards the center. As a result of this differential 
rate of pair production, after all the field energy is exhausted in producing pairs, 
there will be an anisotropy in the temperature (global) distribution of the produced 
plasma.In our view, the following hydrodynamic evolution of the plasma will bear a 
signature of this anisotropic temperature distribution.

Having motivated the physical situation, we discuss the organisation of the 
chapter.In section 2 we will review the basics of finite temperature field theory .In 
section 3 we will be computing the finite temperature pair production rate in presence 
of external electric field following which we will conclude the chapter by discussing 
possible extension of our work to improve of our result.

3.2 Introduction To Thermal Effective Action:

In this section we will be introducing thermal field theory and the concept of thermal 
effective action.lt is a well known fact that there are two different ways of intro­
ducing temperature in Quantum field theory.One of them being the imaginary time 
formalism6 of Matsubara and the other is the real time7 finite temperature field the­
ory or thermo field dynamics.The real time formalism has distinct advantages over 
the former, in terms of computation of dynamical quantities.However as far the ther­
modynamic quantities are concerned the two formalisms give identical results.
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The objective of the present work is to find out the rate of qq production at 
finite temperature in the presence of a static external chromo-electric field.One can 
compute this quantity either by evaluating the { reference(8) ) thermal S matrix in 
presence of the external field or computing the imaginary part of the effective po­
tential which is essentially the free energy9 density of the system.In our work, we 
calculate the free energy density or the effective Lagrangian of the system.

3.3 Effective Action

Now let us recall that the expression for the partition function Z is given as 

Z = Tre-*H s'Efa \e-pH\ fa) (3.6)
a

The first task in finite temperature studies of field theory is to write down the par­
tition function in field theory as a functional integral involving Lagrangian density 
expressed in terms of the dynamical fields present in the theory. More precisely, given 
a theory, defined in Minkowski space, how does one compute the partition function 
Z, in relativistic quantum field theory. In order to illustrate the basic ideas , for the 
moment, we consider the case of a scalar quantum field theory with field operators 
(in Heisenberg picture), <f>(t, x) with momenta t (t,x) the Lagrangian density L and 
Hamiltonian density H.

If <j>{x, 0) is the Schrodinger-picture field operator having eigen states | <f>a) 
and) <f>b), with eigenvalues <f>a(x) and <j>b(x) then the transition amplitude for the 
system to go from the state <j>a(x) at t=0, to the state <j>b{x) at t = tj is

(<j>b | e~,Ht | (j>a) = N'J^ [d<f\exp Jq * dr J dzxL (3.7)

Here N' as a normalisation constant, and the functional integral is defined over clas­
sical fields <f*(t, x).

As it has been shown in number of places (see reference(6) and the references 
therein ) one can use functional integral form of equation (3.7) to obtain a functional 
integral form for Z by a series of steps, (i) Choose the initial state and the final state 
to be the same,(ii) change the time coordinate t over to a variable defined as r = it 
with the limits of integration varying between 0 to ft and.(iii) lastly as a consequence 
of the trace operation, perform the functional integration over the fields <^(t, x) with 
a periodic boundary conditions in r i.e <j>(0,x) = <f>(/3,x).
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(3.8)

For a system with no conserved charge one can equivalently show that,

Z — N* J [d(f>]exp^J dr J d3xL(j>,^j

For a Lagrangian that is quadratic in the field variables, one can compute the partition 
function Z exactly by expanding the field variables <f>(t,x) as

<j>{t3,x)
.Lv' / e-iK r-r.^(w;!p) (3.9)

and performing the Gaussian integration over the field variables. Here con = ^jf(n = 
—oo to oo) are the (Matsubara) frequencies for bosons and have been defined to agree 
with the periodic boundary conditions of the field variables. The finite temperature 
Green functions defined as

Gfi(x ux2....Xj)
Tre 0H(T<j>(xi) ,...<f>(xj))

• Tre~^H

can be shown to be coming from

G/3 {Xi,X2....X}) 6>Z(J) ,
SJ(xj)......8J {xxY^0

(3.10)

(3.11)

where
Z - ^eriodic {D$exp {fo0dTf ^xL W) + J^)

fperiodic [D(f\exp (fcf-drf d3xL (<f>, d^))
The generating functional for the connected Green function is defined through

W13 (J) = inZ0 (J) (3.13)
An effective action F (<f>c) is defined in terms of the Legendre transform10 of (J) 

as r(^) = H«’[.7]- JdxM*)J(t) (3.14)

where <f>c (x) is the classical field defined as

4>c{?)
6WP (Jj

SJ [*]
(3.15)
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and the source J(x) is given by

J(x) = -EM6<j>c [x]
(3.16)

Here the vector x = (—fr, x).

The quantity F (<pc), evaluated semiclassically about some field configuration 
<f>c(x), gives the free energy of the system in that configuration. Usually K//($) > 
the effective potential, the first term in a derivative expansion of F {(j>) , is just the 
free energy density in a background constant field configuration. The quantity ef­
fective lagrangian Lejj, is defined11 to be, Lejj = - Vefj This quantity is used for 
determining not only the thermal ground state energy of the system but also for de­
termining the phase transition, symmetry breaking etc. In the case of a first order 
phase transition, a system can be trapped temporarily in a meta stable state leading 
to non-equilibrium phenomena. The rate of decay for such a system is determined 
from the imaginary part of its free energy (reference (9): Affleck, Langer). Though 
we have outlined the formalism for scalar bosons, it has been generalised for the case 
of fermions and gauge bosons too. For fermions one has to take the anti-periodic 
boundary condition because of anti commutation relation satisfied by the fermions. 
For vector bosons, other than periodic boundary conditions one also has to take care 
of the extra degrees of freedom carried by the gauge bosons. We are not going to 
elaborate on this point any further here. All the details can be found in reference (12).

3.4 Computation of Effective Lagrangian Prom 
The Fermionic Determinant

In this section we compute the effective action for a system of fermions with 
SU(2) color symmetry, in an external chromo-electric field.In our calculation we as­
sume the plasma to consist of equal number of quarks and antiquarks, so the net 
baryon number as well as the chemical potential are zero. Further we do not include 
the dynamics of the gluon fields, though in a more realistic case one ought to do so.

It is also worth mentioning, that this problem has been studied earlier, in the 
context of quantum electrodynamics U(l) symmetry, by Loewe and Rojas® using real 
time thermal field theory and also by Cox, Helmann and Yildiz13. Unfortunately 
there is no agreement between the results obtained by them. Cox et al find no effect 
of temperature on pair production rate, whereas the authors of reference^) do find
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a finite temperature contribution to pair production rate. In fact their result also 
shows that it increases dramatically with temperature. Our calculation, when per­
formed with an U(l) symmetry, agrees qualitatively with the findings of reference(8) 
but it disagrees in other aspects.

For instance, in contrast to the result of Loewe and Rojas, we find that the 
finite temperature pair production rate has two distinct pieces in it, one being the 
vacuum contribution and the other the finite temperature contribution having a sign 
difference. The finite temperature contribution,unlike the vacuum contribution is a 
space dependent quantity implying that the pair production rate as well as all the 
thermodynamic quantities vary in space, in particular along the longitudinal direction. 
In fact, this striking result is due to shielding of the electric field by the polarised 
plasma in between. Consequently, as one moves away from the source, the field 
strength decreases, giving rise to a differential rate in pair production. Since the rate 
of pair production varies in space, the number density of produced particles will also 
vary in space leading to a similar behaviour of the thermodynamic quantities like 
pressure, entropy, temperature etc. Since we are interested in investigating the pair 
production rate, we will not discuss the thermodynamic quantities here.

3.4.1 Computation of Effective Lagrangian

We start from the “partition function” in Minkowski space defined by

J Di>D$e'JLod X
(3.17)

where L — ij> - g-)'tiAatiTa)t!> — m4>'ip is the fermionic Lagrangian in the presence
of external vector field AM°, ra!s are the Pauli matrices and L0 — tj) — m) tp is
the free fermionic Lagrangian, such that Z{0] = 1.
Since we are interested in evaluating the effective action, in the presence of external 
chromo-electric field only, we choose A0a — —Eaz and other components of A to 
be equal to zero. Following standard prescriptions ( see reference^) and (10) ), we' 
obtain the finite temperature partition function in terms of the Euclidean action Sp 
defined as,

1 00 r

Sp = J2- J $»(*) [(w«7° + #A°oTa70) + i^dj - mj i/>n(x)d3x (3.18)
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and compactify the time direction by putting antiperiodic boundary condition to get

7 Ml, re-ooJi^^e-^
1 J nZ-oJD$nDtJ>ne-So0 (3.19)

Here if? ’s are the fermion fields in the fundamental representation of SU(2) defined 
as ^(s) = (untp) and

S0fi = ^ ESUo/W*) [w„7° + *V3j ~ m] ipn(x)d3x 
It should be noted that in Eq(3.19) 70 and A0“ are quantities in Euclidean space. On 
integrating over the fermion fields one arrives at

OO

Z\A\=. n Det
n= — 00

(7°o>n + ff7°Agra) + ifd, - rri
(u>nl° + *7j*3j — m)

(3.20)

This determinant is defined over color, spinor as well as the coordinate space.

Using well known techniques^14) one can further write it as

Z[A} = J] Det

2 [ 0 cr3 ^ „2 21^2

-' 1 E ra - at Am1(con+gAa0ra) -$[ ^ 0

wn ~ + m2
(3.21)

The determinant in Eq.(3.21) can further be diagonalised in color space using an 
unitary matrix of the form.

U+ =
(£3 + E)/Ni (Er-iEJ/Nr 

(E3 + E)/N2 (Ex-iE2)/N2
(3.22)

with E = ^ + El + E2; N2 = 2E2 + 2E3E, N2 = 2E2 - 2£3£.

BtrfnO
After diagonalising Eq(3.21) in color space and using the identity DetO 

and the integral representation InO = /0°° one arrives at

>«// InZ = —itr
g-»[“n+Pj+"»2]

Jo°° t fco-sA(<7£s)e~'’^n+io)2+P"+m2
(3.23)

with A0 = — £2. The trace is now defined only over coordinate space. We note that* 
since is an external field, no Legendre transformation is required to go from the
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connected vacuum functional to the effective action .
After doing some lengthy algebra one arrives at the expression for free energy density

-T 14tt2
_co(-l)n \einl)3Ez /“ §(gE)coth(gEs)e~3rn2-^^coth[gEs)

roo da 
JO •nre

nl£ 
ia

(3.24)
Expanding coth z in the asymptotic form 1 + 1 /z, we get after separating the n = 0 
term from the other n ^ 0 terms

+ sr=i(-l)“ [cos (nsfiA.) %gEa)coth(gE3)t-^-’^-a-''^’Blt

roo am2 -
~ Jo *' I

(3.25)
Since E in Eq.(3.25) is the Euclidean electric field we need to rotate the electric field 
back to Minkowski space i.e. E —* —iE to obtain the expression for the thermal 
effective action

r , - v , 2fl2-| (3.26)
Jcosh (ngfUAoj {gEa)coth{gEs)e~in7^gE^4 — lj e~sm2~ «»

This is the main result of our work. We can clearly see that n = 0 provides the 
vacuum contribution to the effective action and n 0 provides the finite temperature 
correction to it.

The spontaneous pair production rate is given by the imaginary part of the 
effective action given above.
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Contour Of Integration.

On carrying out the integration in Eq,(3.26), by choosing a contour as shown 
in figure-1 with poles at s = (Ix/gE) ;we get for the imaginary part of the Lejj

Im [LeJf] = ~ 2~s J2(-l)ncosh(nP3A0)
n=l n=l

oo

Jroo Jo
' -jgEcotgEs 
0 s2

■ 7T
1=1

cs!0£i£

(3.27)
Here P.V means principal value. Although we have not evaluated the real part of 
the effective lagrangian, it will provide one with expressions for the thermodynamic 
quantities like pressure, entropy etc.

Analysis of Our Result

One can see from Eq. (3.27) that there is a sign difference between the zero 
temperature and the finite temperature part of the effective lagrangian. Depending 
on the temperature and field strength one or the other term will dominate. We have
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tried to evaluate the expression numerically for z = 0

n=1 L /=1
00 too f]q-5?EC-1 rP.V.J -gEcotgEsriu

n=l 5

1 + §£ e-5^ cos^

n2fi2gE sm2 n2p> (3.28)
e ~sm w

For z = 0 (See eq.(3.28)) we find a dramatic increment in the pair production 
rate at high temperature over that of vacuum, though at some intermediate temper­
atures the rate decreases.

Fig-II
Potential well for quarks submittei to an external chromo-electric field gE .

It is possible to understand these phenomena, in terms of a simple potential 
well model, where the pair creation is viewed as tunnelling of pairs from vacuum 
through an energy barrier in the configuration space with maximum height 2m and 
width is Jf.In the presence of finite temperature the same picture still holds good. 
Due to thermal effects, the particles are lifted up from the bottom of the well, and as 
a consequence the effective barrier width, as seen by them becomes less, hence making 
it easier for them to tunnel out of the vacuum. This might be an explanation of the 
temperature corrected Schwinger expression i.e. the first term in Eq.(3.28).Moreover,
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Figure 3.1: Pair Production Rate with Temperature/mass.

other than the temperature induced tunneling, at high temperature, the thermal exci­
tations also push the particles over the barrier resulting in a significant increase in the 
pair production rate at high temperature. At low and intermediate temperatures, for 
some value of the external chromo-electric field, we find a decrease in pair production 
rate with respect to Schwinger’s result. This effect probably reflects an increase in 
the width of the barrier due to thermal excitations.

From equation (3.26), we find that, at extremely high temperature the pair 
production rate goes as

Im [Le//] ~
gET2 

6
(3,29)
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At 2 ^ 0 (eqn (3.27)), because of the presence of the cosine hyperbolic term, the pair 
production rate increases with increase in z [Figure].The reason behind this is that, in 
the presence of an electric field charged particles do not stay at rest. They move to­
wards the source and try to cancel the electric field in the region in between. Thus, as 
one moves towards the source of the chromo-electric field, the field intensity increases, 
and hence one would expect a reasonable increment in the pair production rate as 
one approaches the color charged nuclear plates. In the context of heavy ion collision 
this would mean that if the flux tube model is correct then production rate of qq will 
be more as one moves away from the reaction plane. Considering the complexity of 
the underlying process and the successive phases that the plasma undergoes, it might 
be a difficult task at this stage to give a quantitative description about the signature 
of this phase but we believe, early signals like dilepton or direct photon might be an 
ideal candidate that might carry the information of this phase. From a simple minded 
approach to the problem, if one assumes the fluid to undergo Bjorken hydrodynamic 
expansion, in the following stage of its evolution, the effect of this phase may show 
up in the observed angular multiplicity distribution of the particles.

In summary, we have computed the pair production rate at finite temperature 
in the imaginary time formalism starting from the thermal partition function for a 
system of fermions with SU(2) color symmetry in the presence of a non-abelian ex­
ternal chromoelectric field.

Our results show the presence of two distinct pieces i.e. the vacuum contribu­
tion and the thermal correction to it. In the case of a 17(1) gauge symmetry it reduces 
to that of Loewe and Rojas but with a sign difference between the thermal and the 
vacuum contribution. It also clearly shows the spatial dependence of the temperature 
corrected part of the effective Lagrangian.

We have also tried to give a physical picture of the whole process in terms of 
particles in a simple potential well. We see that the pair production rate increases 
away from the plane at z — 0 and we expect that this effect might show up in future 
relativistic heavy ion collision experiments.
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