CHAPTER -~ III

22, This Chapter is devoted to the study of indefinite forms,
The first part of this Chapter deals with the units of indefinite
symmetric matrices, Units of indefinite symmetric matrices with
elements in K are infinite in number. In order to construct a
measure for this group of units the fundamental space £  for the
discontinmous group of mappings ¥ vy of a subspace
of ¥  into itself, is constructed. Measure Of the unit group

is 1/Volume of £ .



efinition: Let G be a topological group and let H be a
discrete subgroup of G, If M is & Subset of G and a e H
then the set M a 1is an image of M. A fundamental set F
relative to H is defined by the following properties,

(6 the empty set
(1Y FG =G (2 Foak = 99 whenever
(3) F is a Borel set in G. (1) and (2) assure that every
point of G is covered by ome and only image of F,

Siegef [\_9'] preved that a fundamental set exists éf G

satisfies the second axiom of countability,

Defipition: An image Fa of F 4is called a neighbour of F
if Fanf o where F is the closure of F.

If ¥ has only a finite number of neighbours then

H 1s generated by a finite number of elements.

Definition: Let T be a topological space of points and let

T £ ) be an open continuous representation
of G as a transitive group of homeomorphic mappings of T on
itself. The representation 71 > F(T.a) | o eH of H in
T is called discontinuous 1f no sequence f‘["’)am) (r=lixy-~-)
éonverages to a point In T a8 @ runo over the distinct elements
of H. ,

As mentioned above the fundamental space F relative to H

can be constructed if the points T wheme the discontinuity
property ( relative to H ) does not hold are omitted from T.

If G 15 taken as the unimodular group of a given order Mm

over K and H as the group of units U of an integral
X FP 671}, 6 73’;676 f-w dé,jﬁn‘d'l.'oh.s s
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symmetric matrix in K the volume of the fundamental space
constructed in the Space of all symmetric matrices in ku/z,
of a given order and with a given determinant is the (inverse
of the measure of the unit group). This measure is useful in

formuleting the main theorem of Siegel for indefinite forms,

In the article on reduction theory the conditions were

written down for Y €K [+ to be definite. Also the reduced
space of definite symmetrice matrices with a given determinant
was constructed., For the diagonal elements the conditions were
written as  {T(x]] » |4/ for all integral cclumms x and
the nondiagonal elements were taken with values bounded below.

ﬁz, sexrves as the fundamental space for a representation of the
space of definite symmetric matrices with a given determinant by
means of the transformation R — URU where U is a unit of the
symmetric matrix, o In order to prove the discontinuity U
¢can be taeken from the unimodular group. This gives alsc that the
unimodular group is finitely generated,

This method does not apply to indefinite symmetrie
matrices because the units of a certain indefinite symmetric
mabtrix are infipite in number and that spoils the discontinunity,
of the mappings b - V'Y .« So a fundamental space has to
be constructed, It 1s shown that, in the case of the function
fields, such a fundamental Space differs fgyom the reduced space
of all symmetric matrices with. a lgiven determinant by only a

countable number of peints,

The left hand side of the main theorem of Siegel now



admits an interpretation and the arithmetical parts proceeds

on the same lines as for the rational number field, done by
Siegel LG] .

The formula of Gauss and Pisenstein holds with a
restriction on the degrees of the terms of x o Aé ('gﬂ') can
be evzluated with an alteration im the method of induction of
Chapter II. This method can be used also in Chapter II,

The quentity [ (¥)  which is a constant with respect to T
can be proved to be constant also for varying T . This is done
at the end of this Chapter.

23,

The underlying principle in this passage is not very
much different from that in the rational number field., It is yet
another instance during the course of our generd izations where
we use the compactness of the space K " instead of the arcwise

connectedness of the Space of real numbers.

Let W, be the space of reduced symmetric matrices
of a given order ¥ and with a given determinant. [ (7)  1is
the group of units of the symmetric matrix f .

N.,B, The argument which foliows goes through without the
restriction on the determinant {’ﬂ f‘ (’f) does not leave the
whole space fixed. It is not difficult to note that the only
units which leave the whole of R fixed are the trivial units.
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No subgroup of T(«{) can leave the whole space K, fixed
because this is again a subgroup of the unimodular group. Let 'JQ [
be the subspace of 92 such that no element H, of %, is fixed
by all the elements in [(¥) . Iet [(¥,h) be the subgroup
of f(’&} which fixes Hy . A repeated application of the
compactness of the space gives the fundamental space as described
below, Let ?Ql be the subspace of 92, such that no element
of R, 1is fixed by the whole of (V) . Let By be an

element of YQL and 8o on.

R->%,o8,0 — — Ko ~— -

If this process terminates in a point H then H is not
fixed by any [ (f,4») eand therefore mot by [(¥) . 1If
it terminates in a subspace @?n Saj)  then there exists
a Hoe Koo for which there is not ZQM( . Consider
the group [ ({) Um) . Let W, be the subspace of K,
consisting of elements not fixed by the whole of [ (¥, Hn) > @u_

the subspace of ‘322_ with the same property and so on upto Wm_,
‘72,2) Ryo> —— > %mq

Choose  H pn. € Rin-y and repeat the process,
R > Wu > = - °Kaon-a
where XK, . %, o We have other similar sequences and
finally KoRm; 2K,
because an ? sz o2 ?QSz’ -— and this process

must terminate in a point, say K, .
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Etther | (V)K,) fizes the whole of ¥<  and the
whole space or K, is not fixed by any element of [(7")
If KR, 1s not fixed by any element of [ (a’”) the
point K is not an isolated point in the metric defined by the
valuation in ![g ( when K 1s represented as a point of R'.»
being the order of K,)

Suppose K, - is written as G—c‘/) « The last statement is

true because all the points which have the same first terms as

K, ( in the power series expansions in (iﬁ; )) are represented by
R,fif [, Ko) fixes the whole of ?Q, Ko ¢ ®Ron)  gor if

W 1S the point of m, which defines K  that is, if K,
is not fixed by any element of I (:'[Jl-lmn) ) r(&kd r 6‘(2(,)—;,..,‘)
is empty and Hma is no'l; fixed by any element of [ C?fﬂ(oj and
therefore f('f;KQ does not fix the whole of 4 » Therefore H/m.,
as defined above does not exist ang@ K, € ‘Km,

1 K,¢ R, , Un, con be taken instead of X  and
F(’f,l(a instead of [(¥) and the above process can be
repeated again so that one actually arrives at a k, such that
K >Ry oK, where K, is not fixed by any element of [ (9“)

Given f (*[) ﬁhe set of points ko not fixed by any
element of [ (¥)  and which belong to /& form a subspace L .The
Space ): is the fundamental space for the discontinuous group
of mappings /O — U'RU where R belongs to the space covered by the
images of = by means of the elements of ((#) . The space .  1is

( ./
s - | his diffcculty w  overcome by  toking B p-odes
T rtoentallion o # bob B veass ning groen heye €8
&r\ou.yl\ L [orove Kod Xo & not Solode 4 .



compact and has only a finite number of neighbour if R is
represented the Buclidean space by the'p - adic representation.
This proves that{ ( ﬂ is finitely generated. Also F differs
from the space of all F of a given order and with a given deter-
minant only by a eountéble number of points. So we have proved
the

THEOREM A: [ ( “53 is finitely generated.
The next theorem will be proved.

THEOREM B: § differs from the space of all Tof given order
and with a given determinant only by a ecountable number of

points.

Proofs: Consider the two spaces @md ’Q. Let 'ﬂ eR

but not to R Then[ (V) C-F(‘DC). Of all these 74 with this
property there' must be one To with the property that all the
(’(:{1) QF({O). Consider fo and ®_and proceed as for 1
and‘@.g Let ﬁw. be the space corresponding to"Rj. Those points
‘which are in{R but not in Ry are only finite number corres-
ponding to the trivial units. Before one arrives at K, tr.zere
are only a countable number of such spaces as Rﬁ. Therefore
the dafference mWeeﬁRand F is a countable, Here we make
use of some properties of the unit group mentioned in Paragraphs

1¢. chapter 1.
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24, Evaluation Ag (‘{4’4/\ is possible with a
slight alteration in the method of induction of Chapter II,

In order to explainm thls point we proceed to evaluate
A, ({;:D by induction. For binary indefinite forms we use the
correspondence between ideal theory and binary quadratic forms,
It proceeds exactly in the same way as for definite forms. We
shall next do the evaluation for ternary diagonal forms,

G Q’ y
onsider ndd CB)
A
A-S
Here ¥  1is of order three and T s of order one. The
genstty Ao (7,9 is !/n  times the measure of the group
of units in the gquadratic algebraic function fields when § is

of order two and 7 is of order one.,

I /Q is the constant in the thesis of Artin for indefinite

binary forms.

Now in the equation
A,)&,z'fﬂ;_x;: ?A‘ng‘ =B;y12'

ArE +A,_7<§" is a binary form of determinant Aq Ag
and 1f it represents a eerﬁain JC. of degree greater than‘ that
of B, As>% represents 53 in /"’% ways

o 2.
}ﬁb} . Fv , H]; P and LI represents f
~ -

in b7 ways,  [B,y] p”-
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Therefore 1f C is defined as in Chapter II for Ax> +4,%F

i { Ve Rl
1t 1s (P75 /M = CPT por AxP ahaxZ rlgxs

P2

for v sufficiently large, that is, of all these representa-
tions, for every one of P"’;f on the left only one on the

right is relevant, This proves the theorem for n=3, n=t,

Before we consider for more general forms we have
(1i1) the second part of the induction is that which asserts
we can proceed from ( myn ) to {m,n+1). Let us start with m,1

as beforez; we shall prove foxr m,2

A x> 'f‘AJX:.L '*Aéxc? =B = fi —(D)

Ay 'fALYf' i‘A&yg’, =B, =4 &)
We next make use of the identity
: z 4 - Ly N2
[ Ta/ ZG/! - l @du éc)“'t ] L#d@atép -
-2 Z O.c (lk»gg -“Zia;"ad‘ 4 A/ }
2 Max s (a; Qcay A4 LAk,
( c%; ], laa dede] F7¢)
,Qc'mu/ia.meaowl;

For a. we give the value ﬁ: X{ and for 45 we give
the value )Ai \/5 because g acdc=o

| = Lj)" . 2/%()‘ ace; g“-/?«} - & acz@ )
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So far we used }, and f,_ by specifying their degrees and

leading coefficients. So there are at least “};2 [QC;[ possibili-
ties for the |a; (? | of which only one is relevant for us

depending on which exactly are the JC , and f 2 we take into
consideration. If there are more than [$1] 153:,[ possibilities

that means one of the \(E; X{ or W oY) takes a

value greater than m or m » Thils 1s possible
because the forms are indefinite, Bven in such a possibility

the existence of Ao('f _,4) 18 proved for m=2, n=! and it has been.
extended for m=2, n 7 1. Therefore taking the eguations (1) -

and (2) as the restricting conditions on \/;4‘; Xiy W x/

this situation can be -accounted for,

The rest of the argument to complete the maln theorem
Aot
is exactly as for the definite forms, This procedure 1s repeated
Gve exhibuted
e-ﬁhé.-b:l.ting results in Chapter II .as a special case at the end of

this Chapter.

For the nondiagonal forms we have a different type of
argument where we use the reduced matrices which we already

have constructed.

T ake o ) P
(o F &
P’ ! @

P 15 of order ¥ and diagonal. If we cut the v &

row and 7
column we are omiting 2 Av,mu Zmit %v  fyrom the

form. We can have the above matrix with A‘Y,m-ct as the



maximum of the diagonal elements of P and

IAm-u\ € lAvm-ul
If we omit Xy ;% pnq) the form has m-1 elements and
along with A my zm 2v  * A, 254 itie T,
If the average 18 C for m=1 ., 1 it is

2~}

ci Ly R /Y
o |51 A

25,

In article 2% the existence of the fundamental space
wutrie of
was proved and volume of the fundamental Space is, measure of

the unit group. The fundamental space F for the discontinuous

group of mappings R -y ( vhere R belongs to the space

covered by the images of F by means of the elements of [ ('If’)

differs fyom the reduced space of symmetric matrices with

a given determinant by a countable number of points, The

space covered by the images of f= by means of the elements

of [(7) 1is the é_ space. Call the volume of j~ /;Zw‘(«f)}
N8 ‘/ﬁ@)%/%’f)

Let T be the matrix of a nondegenera-

te rational quadratie form and let f,‘ be an element of K
represented by *f so that TL.?J ’*é

‘* Notalin
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for an integral column Y, that is, the elements of Y belong

to k)x] . AlongwithY ,U Y 15 also a solution of the above
equation where U 1s a unit of'd- . Because such units are not
finite in number and the nature of the ‘number' of representations
of the above equation even otherwise i$§ not known we define

the measure of Representation. This can be generalized later

to the number of representations., Let A{) be a symmetric
matrix which belongs to K,/ with the same index of inertia

as T . Consider all the solutions

“ -
N, = yL 'Y hich belong to K:/ X

satisfying T[Y]:=%0) where Y QU
20 has the form (

Let {1~ be the set of all matrices ?ft with elements in

K I such that f[_k] =, L. is a compact

topological group. Instead of —Q,. consider the surface
2 C>-O) Consisting of Solutions Y of the matrix

equation 7}.. L
y] =0
Let 2 (3 ,R) be the surface determined by Yo.

Let {2 (1) be the group of those matrices ) in L2
with D) y,) = z
Then (2 (‘Z) is a compact topological group. If Y is a
solution of the equation \FLZJ =) ; VYis also
a solution for VY ¢ Q( 1) o The mapping Yo > V Yo glves

a representation of )R (Z) in  J2 Cq; R)



As before we have a reduced space for this representation.

The subgroup [ (Z) of units 21'(, of 3 - with
1"(1 zz is a diserete subgroup of O—(l) and the representa-
tion Yo —> VYowith Vel CZ) is discontinuous in - (9 &)
Let 7 ( :/_) be a fundamental space in 0 Cg;@ for the
discrete subgroup /[ (Z) .

The construction of the fundamental space is carried
out as before and /‘\ (1;3’9 is the measure of representation,

This procedure can be carried out with a matrix instead
of the column Y such that L 7L =%  with the usual definition

for T and + . /«CC J f) is the measure of representa-
tion [iiegei, 6_7 |

Take a neigbbourhood of + and the set of Solutions ¥
such that E‘?f“ x =%, in the neighbourhood of #

(as in Chapter II ).

z ACKT) , (for the different integral +) by the
number of integral 7  , in the limit when the
neighbourhood shrinks to 7 is denoted by f(L,F )

Let L\' run through a full system of integral
solutions of L 'TL=9 such that no two of them arise
from one another by left sided multiplication with a unit,



Define
A1) = ZF(EE) L () F(xA)
Finally sx let
L(F,1) + —— = (Tu?) =@ (07)
(51 | lem Ag (4,

s ["{) Iﬂmh-”cn*g

A FE) - T
SVJ\ él,;} }m»jc. 293 &egdll_]
with the usual restriction on .f~ is the main theorem of

Siegel when ?h and ?- are indefinite,

It may be worthwhile to include more detalls about
reduction theory and the different reduced spaces, But as

such these are not required here,

After the above preparation the proof of the main
theorem is carried out in two stages, one to include the
arithmetical part and the other the analytical part. The
arithmetical part consists of the two formulae generalized
from the works of Gauss and Eisenstein. The formula in the
smagll is the same as in Chapter II, The formula in the large

is given in the next article.



So far we have not used the result in Chapter II.

Hereafter we can look back at Part II, Chapter II for a comparison.

In order to state the formula of Gauss and Eisenstein
in the large for indefinite forms one needs two lemmas given below
Some of the methods in Chapter II are recalled so that a comparison
would help to understand the procedure, not that a comparison is
absolutely essential. The next paragraph starts with some ideas
from Siegel Lg) generalized to function fields. This automatically
leads to a comparison with Part II, Chapter II and the formula of
Ganss and Eisenstein in the large. The procedure in Chapter II
is completely recalled and in part III the analytical part of the
proof is written just as in Chapter II.

27,  Some ideas from Sieger [6] .

The construction of the reduced é and -O] was carried
out for definite forms on page 55 following Siegel Ls_’] o The
construction of 1} and for indefinite forms is an important
step in the formla of Gauss and Bisenstein im the large,

tet L/YE = be a particular primitive
representation in &|2] . If o is a complement of
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L, (Lt =k
47,.-L‘z~w,, by, g_ﬁ ;7)
R P R A
[h| [ 1™ and

wiske (R ) ¥

VA
,701 l—_?f, '-'féo " ‘701 .;-l 70
For any general complement _

bt k-3 E g‘ + Ozom
with integral %‘E}; and wnimodular LO the following equations

are true
H:ho(es* ?“#shw],*f)
7 =0
%} = 9»-0{’64"0
Given L[ and (11, /é, is fixed uniquely and /é is

in the same class as é—@ « That is, the elass of *é— is
uniquely fixed and X)) is determined in E ( éf) ways if
/é,is definite, If ’l) is indefinite the B ( é ) has to be

replaced by the measure of the unit group of é» o Also for

the number of primitive representations 1: the notion of the
measure of representation has to be used. This was introduced

in paragraph 23, At this stage the method in Siegel Ls} can

be compared with that in Lﬁ] to establish the formula of N
Gauss and Eisenstein in the large. Let L ! L 4 be
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a representation of 7’{? T . To a representation [,ff’-cé
L of F A} vh let U be a unit of T  such that
UE:.[: . Lot %,(""""—'9 be a matrix in K’/z, such
that (K %s) has a determinant different from zero, Then put

Lm@wf(r:%,) 7 /7,,') —3)
(&

so that E(’f.io - Wo i 20{5\%0 :%o

Then it shall be shown that

ED'T (k%) (1 -
,_ y' @

[§]

possesses a solution X% in K, . 1f '(7 anda K =&
1ie sufficiently near to "]u' and Ko . Here lemma 1,
Chapter II is applied.

! /
In order to solve the equations L'T% - J ATE=R
put X = LFH tRE, N0 with unknown ?Q’m'y
and  WO@ Y | With the abbreviations

gﬂ - 7&174{70’-53‘“‘4
R -q'#" Y = b

D) (@ DD



then ,6:;1 f ) aﬁd we have further the equations 73‘ H:[ﬁvﬂ: 47
and  30/4o0 = 4 . Here h mst be

sufficiently near to 12 o -+ In the (m- =n+1 dimensional
space of pairs ‘7: 92 the set of points, for which (3)

is soluble, is chosen. By means of (3) the space is mapped to

B' ( the m(m-n)dimensional) of the ¥ space. Any two points X, %,
of the X space are called associated if for a certain

unit U of the equation %, = U Z, is true. If B is

the reduced space of #* in B' for this equivalence

relations volume of B exists and is different from zero. Also

for a certain neighbourhood B of 6[ % yolume of B' in
volume_¢ of B
the 1imlt when B tends to &7, is the seme as p (L ,8)it £

is a primitive representation and (4 %, ) is unimodular. The
construction of the measure :F. CE 13") its existence and the
inter~relation with the reduced b« and are given by
lemmas 11 and 12, Siegel LGJ . These reduced é and 47
are defined just as for definite forms. Refer back to the
equations (1) ang (2). ? is called reduced once its class
( ) is fixed. Of the possibilities for ") ( which can be
measured by /M"’Cé,) ) one is chosen and to fix A in

A= &P + o) with primitive [T . Therefore it is
enough to consider the case when K is primitive, Let

)?o be a complenment of I~ « Then we have the following

28,

= : .
Lemma 1: Let LY7ol =7 be a primitive representation and Jé]fa
be a complement of K g that 1s CE '79 is unimodular

Put Z)b“)ga :-ibl, )59012??0 "47,'7"'47,’54
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I1f U is a unit of ¥ such that [ L:=L |, the equation,

W = s, (4)
rcmo) {4@ &e;el[éjj

i
defines g unit Q‘Oo O‘é éx | for which
o ¥ (6- m) (o) @
is 1ntegra1. If conversely ' ’)J)O ig such a unit of 5

that the matrix 3‘ defined by (6) is 1nt§gral (4) gilves a unit
Uof T such that US= L .

Proof: If (L-L then [)~ Uy, is of
the form (4) with integral P, ™D,
Put ks éh,, 4 20, = 47
w0, 45 *), =
men /7 4, C 71 ) (7 Z) @
(ﬁ é (ﬁ Tt; mo n
Becanse U~ U U, is & it oz Ui U,

AN DGEY T
. |
(‘lo' M*’ )
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(4) and (8) give

e A
<"'7o/ é"/{{oljﬂ'%/} 47/§4‘7]$“:{7/f>

so that Y=Y, , 4 -4, and M) 1is

a unit of 6,0 satisfying (5).

If conversely 9104 is a unit of éo for
“which the matrix ', determined by (5) is inteégral then (7)
holds with - 47 47 and (8) gives that (g '

o/

is a unit of U: 'DAU, o The U defines, by 4, a unit of 7
such that VL =

Lemma 2 : Let not m-n=2 and |7 ||¥| not a square of an

element from the field of power series, happen simultaneously.

Lemma 12 5‘4: [,{]
IfB has, in the space of 47, R a content, then the

equation

Q:j?)’féco?) ;(;‘ gg)

determines a »-9 space B , which 1s reduced with respect
to the units U of 7 such that UZ=L  has a finite content.



Broof: There exists a primitive matrix f@" ') and an
integral matrix 2}09 so that [ = L, 27 . By the substitution

ERE L3 ,"'Z& /5’% , the equation
L’:"?)‘f CI:’?J = (3,
(’1!
g‘ﬁ. > '7", ‘*’3"03\'0‘ b) ma.. I O ml
Then M\a is a unit of éo and

o = (698:) =77 (£ - 20,

the () form, if gtb .--is integral,.a subgroup of finite index
with respect to the full unit group of /2,, °

l'f} = llfo/ }T') | 'm«n»*-?. and "['éo/ being equal to
a square do not happen simultaneously. If é‘V runs through

such a space that it can be represented as a Square in K

the same holds for 9»0 § the 67;(ZQ and the ‘(7 Ja,

the pairs 9‘;9\-0 and ‘7;9-0 have the same property.

Here )‘ﬂ [+ { cannot be extended as a power series in

the sense of Puiseux,

(Chevalley: algebraie functions of one variable)



By the substitution { ”
(4 9 ) - v (71 AL
That is 3‘}—’ é?‘! + 7’“90 20 and the 79 space is

mapped to the 7 ;%) space and because of (8) and (9) by means
of the substitutions

FH 00 =Y, P0G 20D
/{)4/{71‘?",’(7 zf’e

goes over into the lr]t@& space, If 9-9,) ?gz, are two

associated points of the 3?, space X, = ‘Uﬂﬂt ©  where -
UL=LT, U'fU=%  and for the values &, , ™), ~ and
correspending i:o ’)9, and >92_
v, /¢ s&) = U (‘% &, )
St 1T X,

from (4) e is determined uniquely so that U] =7 S M]ﬁ«()
1s a given representant of its left residue class modulo 7 .
Here 4/ 1is reduced., If é and ‘7 are both reduced 8’1 is
also called reduced. To call 9} actually reduced for indefinite
forms it must be chosen from a certain reduced space, These
spaces are dealt with inparagraph 25, of this chapter, The
gquantities B (¥,% ) and EC@) were already generalized

to i ff') and /w“@) . The quentities B ( ? ) and

c ¢ 43 T Y ) have thelr eorrésponding gemerslizations /Ag (/0‘»)
and /“‘C,%)'IO » The next paragrasph gives the

generalizations of the lemma 11 and 12, Siegel [gj .



Heregfter it is assumed that it does not happen at the
seme time that m-n=2 and |7 |#) is hot a square of an element

from the field of power series,
We have one more lemma from Siegel (Lemma 13, LGJ )

*Lenma 3 ¢ Let V (B) be the content of the space B in the
space and V (—B—) the content of the space of ’?, which satisfy,

(& )4 (x Y =/ )

Let B shrink'to }:he'pw’air J 9€ . o Then

F lim \’“CE)' - CE}O Ao C'fff
TR , ool 14

where CTJ:; depends only on Z‘f) [#| and where /L\C[ ,79
depends only on T and L

. Proof: Put

Q:‘;U’ ) @7‘) Gy’ ;7@’\

L = (L) /[t
SIS

* This lemma and lémmas 16 and 19, Siegel [_{SJ are applied in the
last paragraph of Chapter III and therefore discussed. in detail

over there,



B4 1s the space corresponding to "7;)‘%»

From the method of proof and the construction of the

reduced spaces inparagraphs 24,25 and 26 it is clear that the

orders of (’];'ZQ /"70 Q?, B) 5 and the determinant of f
are the only factors to be taken into consideration here,
lim 7"6@ :/‘“C‘Cif) Timeo Ca‘ﬂ

R ‘02 K v (B)

where (3  depends only the determinants of 7,7

and also on the order of L , Vv CB) /v [8) tends to a
finite limit becau**e 1t exists for the. binary forms from ‘the
" thesis of Artin and it can be extended by induction exactly
as we extended the definition of A 6 Gfﬂ)- )

in paragraph 28,

We can next have the proof of the formula of Gauss and

Eisenstein in the large for indefinite forms,

The formula in the large reads

Mg (B?) - (4,7 (5) ("
T ;/(@ L@ FeCD) S
oo el
Aulo) 7 2}2 “L“& é@)
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) V*{‘ means that ’fk mad and ¥ are in the same genus and
42 runs through all the distinct genus representants of
definite é (men) , /A ¢ (457 ) is the measure of the reduced
7 such that
¥
] -;7-'{ é P \
l * 9
ff Yy
is in the same genus as 7. "7 and fé_ are defined.

The second formula is the relation (¥1) for quantities
modulo f o It is

D - e e

EJ‘ Lﬁ) Lé) E]c (é)

where ( ér ) runs through all the class representants modulof,
F (é )[) is the measure of the reduced ‘7 for which

? 7—1 feq ol ):fo
y gy
T

is equivalent to modulo J / [#] ‘ Jt is assumed
to be a multiple of C}ﬂ 1#)™) 9 in order to identify
F}(é)'{ and f:(_ﬁ,f) . @(é;f) has the same
measure /L‘P (é .1 ) because one can have a correspondence

between the class vepresentants ( éL ) and the genus representants

L 4]
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The reducedJ) and 47 have already been defined in
paragraphs 29-32,

For the proof we refers back to page 53,57, -ShapterTI¥.

Just as in Siegel Ls_'] in order t¢ derive the formuls
(11) 4initially two other formulae are derifed, namely

M = 2 Efél.. - (13)
Vo) 9 Vb

/‘*03 (fﬂ) is the measure of the primitive solutions L
nonassociated with respect toc the units of P in kK }_'x-j and

/‘,3 (@ those whiéh belong tc the same class ( § Yo é is of

determinant I?” !"H on « The above statement is explained

just as in Stegel |6] . After this s accomplished the next
formula is

Felbh) /i (4.7) ()
@)

{

The definition of é;47 and the reduced é and
give almost the complete statement as well as the proof of the
formulae, The proof is really complete only after the summations
are justified only with the help of Hasse-Witt theorem. Rest
of the argument 18 as in Siegel Lﬁ] .



30. An alternative method to the above proof is t¢ derive
the formula (12) just as (11) with a restriction on the degrees
of the element in [, ¥, v A ana H and then
proceed to the limit. The procedure to the 1imit 1is justifiled
once agaln only if we make use of the lemmas in paragraph 2%
and the notions in 24-27 . So the proof practically comes to the
sameé. The fact is that this latter procedure is not possible in
the rational number field. It is not a very advantageous method

either, Still 1t is interesting tc notice this method.



31. The method of induction for the proof of the main theorem

is just as in Siegel f_sj pp 557-3. The proof is just as for definite
forms on pp 65-67 with no restriction on /k + Procf for the definite
forms can be derived as a particular case.The results from Artin'’s
thesis are exhibited as Speciai cases of the more general results,

This is already done for the definite forms,

For example it is not difficult to see from the definitions

that M generalizes A (lffr') from Chapteyr II,
Ve C'J) Ao (‘f.) '1)
Moreover one can see from the definition that in general lim w(8)
Bk v(e)

is part of the contribution to A, Cf_)‘-{) module the uwnits of ™
depending on the nature of L . In the binary case when C is a

column matrix, say, C,) and FY = 4 and (7,% are also
¢

matrices of order one; also A& (7 ) exists from the thesis of
Artin because of the correspondence between the inequivalent integral
representations of %"f X =F and the inequivalent integral
ideas with a given norm in K (¥2)  jwhere [ [= D . And
J (€)= gfipis nothing else but ¥ (%,%) divided by the
measure of the unit group of K@ which is finite. Also
/"L (.‘f) -2 j C’(f)E) J the number of such L  is finite
because of thg above correspondence of ideals and representations.
It can be proved that :)'T CC;T) is finite because :f—[ll)?f) to
FU: ,j‘) _ﬁ/:(@< &= ?(@@can be proved to be finite even
directly. For forms of order greater than two this can be extended

by induction and
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as in lemma 3 can be proved as in Siegel L6J using the usual
‘}, ~adic’ representation and the considerations already mentioned

under lemmasy2, |3 Sctegel (¢

The proofs of formulae (12),(13) and (14) are just as in
Siegel LS] pP and after the proparation so far the formulae
for the definite case on pages 47—7) &an be easily exhibited as

particular cases of these formulae

Lemmas 16  Siege] LSJ Let j be a polynomial prime to [’fj

and f[‘ the highest power of Foin JM

If we put LL'D_’_’?’__}J&) = & ort(:’)"”‘ )

according as m is even or odd and analogously 7T = / f /

or ¥ = ch-m ?j;f“‘ andg &7+  the formula

%t m A {‘{J-'?) l’ﬂ)C b 7] L2 TE 4 — — +g'€[rr]{)

| mwtwn
_ )m [T + — —- ‘H’V‘f{
= Q H: (’H Mmtn, , )
t-m T oo AR i e N
C' Hl ) ( +“_Jl—-t 42{%——
-EeH1

’ modd,leven



32, A final reference to the thesis of Artin (for the time being)

One can look back now at the work done in pages 65-67
A special reference to indefinite binary forms proceeds in the

same way once we notice A, (4. 4) exists for m=2, n=i,

R When ‘FD— is real, is the same as Vi2] /{f-f)R
where |[fo] - PQ and £o is the fundamental unit which
generate the units of f . log ]i'e] is the volume of the

fundamental sSpace.

We can have the identity for the binary forms as before

Case 1: Number of genera is 2”; L - __f_!___
(PR
I -t % - [P L
_/_%g) - Ao (57 ()Pl T (/ Ehy
- “‘32 . A T .
= ey, |[BITRf(E) €y 1P 2 Qtu Cl [}J,ﬁ)
l?/_L (Fl2g)” (P-D*R* ¢, |D] 2
m — B \
R* ";i‘ L ! L:E-J-%I' Lemae (T
3 = | € ] -
«5’ - ;2 21
A=)

f(a) =L R
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1

This proves that f(ﬁ?x is constant and it is
independent of R. In general f(f\ can be proved to be
bounded with (}1}3/['43 for an upper bound.

Maoe o k r>oible

33. Theorem: f(f\ is a constant even with respect to T

Broof: The proof is the same as in Siegel |5 ] 563-567 and
Siegel [gj 255=-256 after representing all the matrices concerned
in the Euclidean space by means of the ! f -adle! representation.
The details are as follows.

Let { be a polynomial dividble by [F/3 /7]
Then

T o (5,7) = Pg (B3 .

HQ zalmn-ﬂ(':‘

as in equation (74) Siegel | 6] bp 255, 1Ir 36(59 is a.n
integrable function of the matrix wvariabie F} in the 7 space

it is true when W,%+ are in [~ that
Ae (09 R [ §)
mn "",Cﬁif) @
|©| = Q;gﬂ) |
Cden () E () 419
t 7,27 (med ©)

{'—#t “"1'9
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Now in/slf "f) 3 are in A.ca. ) they can be taken over to [
by means of thexpnadiclrepresentation, B is tne closure of the);l/
space vhen 7 is represented in the Eyclidean space, t is an
integer which satisfies the property fd"f in 3 when the
! ‘b-adic' representation of 7 is taken and {41./{> is the
integral value of the polynomial - by means of the '/b -gdic!
representation + The [} -adic representation is not necessary to
write the integrals but their value remains, unaltered with the
! [: -adicl representation,

Consider any integrable function F (X'Y %) T fired,

!
of the continuous meal matrix variable ¥ , where XTk =¥

lh:/‘l >
T pke ®  the closure of the 7 space by means of the ';madic’

\ / !
representation and the corresponding 7 Space b

Jraroar = [y A (57) 4
b’ B
Put F (¥ = L
%) Ao($:7)

Az . = - v (D
J@ RS %u (®)

which gives

[ ey

o' Ao (4.25%) Y et f
Aa(f)?{fé)

)
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Therefore
7 g " .z g7h (451
%“‘B'A,(f,g'fg) TR (% 7))
o7 U
taken with the proper meaning for L /T J 7 and 2 » When

the values A (4.7) , A, (¥,7) are teken Y ana ?
are in AC2,>

A, Cf;?) z oz,,m[[ﬂ[m/" //7—//”\-:-, as a function o;fcwi?

{’#/92/ = ]"—'}} g"‘m‘ as a function of F
We see that . (MmN
Po(Fo7a) = g Ay (£,7)

Thus

Z.
s

?“‘7“"\ \-'Y\Cn‘i!)

A(%,7)
A (7, tm:- % Ao (% 7)
(9

Where B denotes the region obtained from L(} by the transforma-
tion ;:;" z ?27 with Jacobian J (77.4> = g“‘—’”Q

It is here the ’]b -adic! representation is useful. On multiplying
and dividing this sxpemsiem expression by j 45{

we see that
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! -mA '.;L
1L, Wb ;ZBW
F
A 57

ja;“ (1Y)
These equations 16,17,18,190 give
= _/
L2 o
e 728, o) [T EO
beca.use
lim A C‘?S\ 7‘)

jww 7”“; A(’f?) 0(7

Summing over the genus representants of f and dividing

by M C'Zf)

l‘;m——-—ﬁw Z" ”A— (‘{ ?) / =)
e A WA 2
e MO ag
3/%’. A(nal

W’hh -

9 >
In order to prove f('f) is a constant it is enough to prove
that

€mp lim d (4%
11 j%m%"“gj C) )/VC@;) is a constant

(20)
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It is already evaluated for binary forms - definite and indefinite,
In the equation 16 the summation is extended over all the lattice

points [~ of the  : spaceé such that ?") L lies in B’ .
Instead only such lattice points A are considered which satisfy

[ S [:a (fho-c[ Q)

for a given and ( is a polynomial divisible by 7/3/3*
0

'\rCD —_—
A ’\( L'sg) 2 &)™
[ 1; (Mad@) 3 7 F
{} mb’

as }'—-—sl-lo

AS on page 225 Siegel ljej

Z__.- C) AC"&)"D -\,CD;) —s AQ_ ('DPHQ
# B, 9 /e

Similarly one can bring the eguation (15) to this form.

In order to prove that f('f) is a constant 1t 1s prove

Somn Z:_ 0(‘ [X):r')
7 :-j.ige) W Aa (7.7,)
7B, 2"

tends to a2 constant
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Put 7’ = '£' and when the corresponding ’/5 -adic' value is
taxan T is said to be in By e B

lim I%‘I,: T

T oo I ‘LC'{J'U z Aé.('fﬂ'o) times a constant

}f} =1 mn
£, tate) Pl

where the constant depends on the nature of 3/\'

1t 4, 1is a polynomial representable by A tg in D)

}

is representable by 75.- in B and{a polynomial divisible

by ¥[8 g

T L (7,1 = T Ay (F,¢) =T °<)t (7,7
A ) /e 5 ( >U)9)“" )

o(j ('fﬂ') -‘-’°é.‘(f,h> o1 E{,[&)
':;Lf + divides_”& page 227 S;jlegei fe
and
T4E) = fa (B8) J p2t)
™ et e,

P({J%) :“(IT@ .:IOL} ({" &)

In order to prove that _r(zf) is a constant ad w f"“\jk

t fwou. ]9-1,:“ ; ﬁ(f){ ~ iac::::r;;?:.aﬂt
_...--—-»-———-—:*‘""""" & i f o 7 — D
ICL[»\ tT..I ly=1 padid Atpreas b akion

iy poekd
ofc Ao affee e
t k= éo (@’) f'nl:/!m , j} f



Now we take Wi = 2k and we apply the method on page 228 [16]

Siegel [16] . Here we make use of lemma 16, to write

'{d"t) = 5 1-k
/'t (-i—)é% A= 1]

(d,@ ) =1
' -k
4, d,t, O-€ X[x] B = ™ (1- (== Izl )
(£f,Q0 = 4
In order to{?stimate‘f(%‘BEprove thatﬁf(ﬁ‘) is equal to one it is

enough to prove that

T S,
l’g:‘(? A pl y CQ‘) N;/f/‘) Qnds T« constant
T bl T poedid feprovin

R l‘wi(f&lp)
Adu.@.ﬂy T lemit td one
The rest of the argument 1s one page 220 Siegel [16] and pp
255-256 Siegel [16]. '
The cage k = 1 is already known)wheﬁ m is oddit is as in page

235 Siegel [16]. For odd orders of 7/ it can be similarly derived
and proved equal to have one simple value as in Siegel [16] page 236.

In the binary case and in the ternary case € mpn can be so
adjusted that f (%) is always equal to one. This would have

a siginificance even otherwise.

The details are a direct consequence of the principles in

the equation Siegel [6] and the nature of B and) . .



