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CHAPTER - III 

PART - I

.

22. This Chapter is devoted to the study of indefinite forms. 

The first part of this Chapter deals with the units of indefinite 

symmetric matrices. Units of indefinite symmetric matrices with 

elements in K are infinite in number. In order to construct a 
measure for this group of units the fundamental space f for the 

discontinuous group of mappings T —* U'fU of a subspace 
of into itself, is constructed. Measure of the unit group

is 1 /Volume of p



Definition; Let a be a topological group and let H be a 
discrete subgroup of G» If M is a subset of G and a e 1 
then the set M a is an image of M. A fundamental set F
relative to H is defined by the following properties.

{j) u the empty set
(1) P G * 6 (2) Ax n £ - ^ whenever

(3) F is a Borel set in 6, (1) and (2) assure that every
point of G is covered by one and only image of F.

Sieged jty] proved that a fundamental set exists <&f G 

satisfies the second axiom of countability.

Definition: An image Fa of F is called a neighbour of F 
if p a- o £ ^ o where F is the closure of F.

If F has only a finite number of neighbours then 
H is generated by a finite number of elements.

Definition: Let T be a topological space of points and let
i j- be an open continuous representation

of G as a transitive group of homaomorphic mappings of T on 
itself. The representation ^ j" £ H of H in

T is called discontinuous if no sequence J-

eenverages to a point in T as a^runo over the distinct elements 
of H.

As mentioned above the fundamental space F relative to H 
can be constructed if the points f wheme the discontinuity 
property ( relative to H ) does not hold are omitted from T.

If G is taken as the unimodular group of a given order m 
over and H as the group of units U of an integral

* 6 1If j il $')&']& -j-tjy (A&. Jt ntiCoA s .
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symmetric matrix in K the volume of the fundamental space 

constructed in the space of all symmetric matrices in 
of a given order and with a given determinant is the (inverse 
of the measure of the unit group). This measure is useful in 
formulating the main theorem of Siegel for indefinite forms.

In the article on reduction theory the conditions were 
written down for if to he definite* Also the reduced

space of definite symmetrice matrices with a given determinant 
was constructed* For the diagonal elements the conditions were 
written as J >/ j for all integral columns x_

the nondiagonal elements were taken with values bounded below.
7$; serves as the fundamental space for a representation of the 

space of definite symmetric matrices with a given determinant by 
means of the transformation » U&U where U is a unit of the 

symmetric matrix* • In order to prove the discontinuity U 
can be taken from the unimodular group. This gives also that the 
umimodular group is finitely generated*

This method does not apply to indefinite symmetric 
matrices because the units of a certain indefinite symmetric 
matrix are infinite in number and that spoils the discontinuity, 
of the mappings '> U!^l) « So a fundamental space has to

be constructed. It is shown that, in the ease of the function 
fields, such a fundamental space differs from the reduced space 
of all symmetric matrices with, a given determinant by only a 
countable number of points.

The left hand side of the main theorem of siegel now
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admits an interpretation and the arithmetical parts proceeds 
on the same lines as for the rational number field9 done by 
Siegel [8^ .

The formula of Gauss and %sensteln holds with a 
restriction on the degrees of the terms of ^ ('^3 can

be evaluated with an alteration in the method of induction of 
Chapter II, This method can be used also in Chapter II,

The quantity f (^T) which is a constant with respect to ”T
can be proved to be constant also for varying <jT . This is done 

at the end of this Chapter.

23.

The underlying principle in this passage is not very 
much different from that in the rational number field. It is yet 
another instance during the course of our generalizations where 
we use the compactness of the space f(instead of the arc wise 
connectedness of the space of real numbers.

Let HI, be the space of reduced symmetric matrices 
of a given order f and with a given determinant. f" (f) is 

the group of units of the symmetric matrix •

N.B. The argument which follows goes through without the 
restriction on the determinant jlT|' does not leave the

whole space fixed. It is not difficult to note that the only 
units which leave the whole of ^ fixed are the trivial units.
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So subgroup of ears leave the whole space ^ fixed

because this is again a subgroup of the uniaodular group. Let 
be the subspace of 9^ such that no element El of 9<*( is fixed 

by all the elements in • Let be the subgroup
of rCf) fixes H<] • A repeated application of the

compactness of the space gives the fundamental space as described 

below. Let be the subspace of such that no element
of 9?, is fixed by the whole of rC^/) • Let H2 be an

element of 7^. and so on.

1? j -------------- - -

If this process terminates in a point H then H is not 
fixed by any and therefore not by f (jf) . If

it terminates in a subspaee then there exists
a for which there is not ( . Consider
the group T • Let be the subspace of ^

consisting of elements not fixed by the whole of ["(Y j j 

the subspace of with the same property and so on upto m-<

Choose tit A„, e ^in-j and repeat the process.

& ;> *?*, s-----~ -an-1

where . 0^ . We have other similar sequences and

finally O /<,

because ^13. ? o--------

must terminate in a point, say .

and this process
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Either P (P> Kp) axes the whole of <£Z and the 

whole space or fc„ is not fixed by any element of /YO

If ke is not fixed by any element of f (f) the 

point K is not an isolated point in the metric defined by the 

valuation in ljx, ( when K is represented as a point of 

being the order of K*)

Suppose kt> is written as (¥cj^) . The last statement is

true because all the points which have the same first terms as 

/<* ( in the power series expansions in (fcj) ) are represented by 

kp/if fixes the whole of j f0r if
(4mft is the point of which defines K that is, if Ko

is not fixed by any element of t (f jUmP) ) t k.J „f(tjH A»hJ 

is empty said is not fixed by any element of H and
therefore F[fdoes not fix the whole of ^ t Therefore Mm*, 
as defined above does not exist and K» e »

If Ko * j 9£U, can be taken instead of 9Z and 

F (jF)Kt>) instead of Ffof) and the above process can be 

repeated again so that one actually arrives at a M, such that 
$3! ;> 9?„ ;> kp where R0 is not fixed by any element of T(/J)

Given F(f) the set of points k.Q not fixed by any 

element of P£tT) and which belong to form a subspace p .The 
space f is the fundamental space for the discontinuous group 

of mappings 0 'Ru where R belongs to the space covered by the

images of jt by means of the elements of f (p) • The space Ji is

* -TAa? k> ov«yco^e ^ - oxUc.

-Hfs o=f bUr fc. Y*o.So*vcaj keys.

tfkexx.qk_ ta /brooe. fcxi ^.o £> ACrf~ laj-&. «
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compact and has only a finite number of neighbour if is 
represented the Euclidean space by theNp - adic representation. 

This proves thatf~ ( ~f) is finitely generated. Also ^differs 
from the space of all iTof a given order and with a given deter

minant only by a countable number of points. So we have proved 

the

THEOREM A; (~ ( 1) is finitely generated.

The nest theorem will be proved.

THEOREM B; jp differs from the space of all f~ot given order 

and with a given determinant only by a countable number of 

points.

Proof? Consider the two spaces ^and ^. Let iff 

but not to Then f (if) cT^). Of all these T1 with this 
property there must be one f~Q with the property that all the 

Gf ( r/0). Consider *f~0 and .^and proceed as for r 
and ^ Let^10 be the space corresponding to'Hj. Those points 

which are in^Jmt not in $|jq are only finite number corres

ponding to the trivial units. Before one arrives at Kc there

are only a countable number of such spaces as Therefore
the difference between It and F is a countable. Here we make 

use of some properties of the unit group mentioned in Paragraphs 
1 chapter I.
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24. ... - Att................... -....... is P°ssible with a

slight alteration in the method of induction of Chapter II,

In order to explain this point we proceed to evaluate 
A0by induction# For binary Indefinite forms we use the 

correspondence between ideal theory and binary quadratic forms. 

It proceeds exactly in the same way as for definite forms. We 

shall next do the ©valuation for ternary diagonal forms.

Consider A,
At

aA.<K. C&r)

Here if* is of order three and % is of order one, The 

density (J ^ is '/fi times the measure of the group

of units in the quadratic algebraic function fields when is
of order two and ^ is of order one.

Ife is the constant in the thesis of Artin for indefinite 

binary forms.

Now in the equation
+ aS'V/2"

A)*!*" is a binary form of determinant At A2
and if it represents a certain J- of degree greater than that 

of $J As*!" represents in

j A^| s f,+ J \j\~ and &,y A represents j-
in |b^7 ways? j&fj •

ways
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it is

Therefor® if 0 is defined as in Chapter II for 
£ y* -y / r, , A -vf- x- •j-w -t A^x^"Cb X. z. 

5 ^3

for 0 sufficiently large, that is, of all these representa
tions, for every one of on le^ only one on the
right is relevant. This proves the theorem for m=3, n^l.

Before we consider for more general forms we have 
(ii) the second part of the induction is that which asserts 
we can proceed from ( ra,n ) to (m,n+1). Let us start with m,1 

as heforej we shall prove for m,2
A,*!4, ~ - fi --------- Cl)

+A«sY£. ~ ' cv

¥e next make use of the identity

( So.1 zty (*ac6cf-t Ci&aaP
2 2. &C<y hfrll --22. dt-y ii j

4 Mo.% f i £4k4fi
V L*f

/Lt fP-lJi-cLvijto

For dC we give the value l/Aj 

the value JJI yt- because
and for

£ tXcic -o
we give

22
A'*i
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So far we usea j-/ and ^ by specifying their degrees and
••oflfcSi!—    *' *

leading coefficients. So there are at least \ ^j| \^\ possibili- 

ties for the [AC^f of which only one is relevant for ns 

depending on which exactly are the and w® take into
consideration. If there are more than {ThlJf^l possibilities

that means one of the '[A;x i or /V takes a
f111 "* ■— *

value greater than Jlj»| or y j/a.| . This is possible

because the forms are indefinite. Even in such a possibility 

the existence of -is proved for m®2j n=1 and it has been

extended for m®2, n y 1. Therefore, taking the equations (1) 
and (2) as the restricting, conditions on {A7 X* j I 

this situation can be accounted f0r.

The rest of the argument to complete the main theorem
Afftis exactly as for the definite fottas. This procedure is^repeated

Aye Aiflub'fAtd
ei&lbl&ing results in Chapter Il^as a special case at the end of 

this Chapter.

For the nondiagonal forms we have a different type of 

argument where w© use the reduced matrices which we already 

have constructed.

Take 0

el

ikP is of order * and diagonal. If we cut the ^ 
column we are omitting 2. Jtm-u xv from the

form. We can have the above matrix with ,«•«{

row and

as the
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maximum of the diagonal elements of P and
( - fAvnwi J

If we omit zr i the form has m~1 elements and

along with A fm-i i 4 ^ tn-t i n*-ti it is i

If the average is C for m-1 ^ i it is

lei'll jfl *
1 J = ^ \ii-ri

jr* m-tl j /

n\-ti j i - ei m I

25 4 Measure of the unit group and measure of representation,

In article 29 the existence of the fundamental space
•VU.VCVUC Of7^

was proved and volume of the fundamental space isAmeasure of 

the unit group* The fundamental space for the discontinuous 
group of mappings ft -»D/£(/ ( where R belongs to the space 

covered by the images of f- by means of the elements of ri'f) 

differs from the reduced space of symmetric matrices with 

a given determinant by a countable number of points. The 
space covered by the images of f£ by means of the elements 
of r [fj is the ^ space. Call the volume of f-

NS'

Measure of representation: Let IT be th® matrix of a nondegenera

te rational quadratic form and let be an element of K
represented by if" so that nu - *

/Vo+oXcfh
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for an integral column Y, that is? the elements of Y belong 
to * Along with Y , U Y is also a solution of the above
equation where U is a unit of . Because such units are not 
finite in number and the nature of the 'number9 of representations 
of the above equation even otherwise it not known we define 
the measure of Representation. This can be generalized later 
to the number of representations,, Let %f} be a symmetric 
matrix which belongs to Ky^ with the same index of inertia 
as f" . Consider all the solutions

satisfying - ^0

XQ has the form

which belong to

*ere, Y;W
K,

U

k with elements in 
is a compact 

consider the surface

Let -ft-. be the set of all matrices 

K ij such that f[_k] --1,-0-
topological group* Instead of -Q~

JL Consisting of solutions Y of the matrix

equation

Let -Q. be the surface determined by Yo.

Let -0- [-0 be the group of those matrices 2-Q in -Q_

with X) x) = i
Then JTL. is a compact topological group* If X is a
solution of the equation - ?>0 5 V Y is also

a solution for V 6- mapping Yo —* V Yo gives
a representation of -ft- (in ~ft~
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As before ye have a reduced space for this representation.

The subgroup f ()Q of units of ^ ■ with
1^2 *■/ is a discrete subgroup of ^-(2^) and the represents-* 

tion Yo *> V Yo with V £ ^Ct) is discontinuous in 
Let P £ Y A be a fundamental space in -XL (jL> 
discrete subgroup • f"(•

for the

The construction of the fundamental space is carried 
out as before and J *s *he measure of representation.

This procedure can be carried out with a matrix instead 
of the column Y such that with the usual definition
for T" and %■ . ££j2f) is the measure of representa
tion ^Siegeij ej <

Take a neighbourhood of 7- 

such that \
(as in Chapter II ).

and the set of solutions £ 
in the neighbourhood of 7

t /XCjJ^) * (for the different integral) by the
-

number of integral t f in the limit when the
neighbourhood shrinks to is denoted by $(£

Let L run through a full system of integral 
solutions of C rfC~-¥ such that no two of them arise 
from one another by left sided multiplication with a unit.
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Define = f U^jf) j f PJ ‘ffcj*)

Finally sk let
•> — **0^0 ~p-(?•>*)

/W) ._ £mn a« Ajf*?)"^Tco ui-***

/W ‘TW * - . +fP# c .. .& it j j*ufc J
with the usual restriction on j- is the main theorem of 
Siegel when if and % are indefinite*

It may be worthwhile to include more details about 
reduction theory and the different reduced spaces. But as 
such these are not required here.

After the above preparation the proof of the main 
theorem is carried out in two stages, one to include the 
arithmetical part and the other the analytical part. The 
arithmetical part consists of the two formulae generalized 
from the works of Gauss and Eisenstein* The formula in the 
small is the same as in Chapter II* The formula in the large 
is given in the next article*
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PART - II

IhS..arithmetical partof the j)rQOf.fox, the, IndejfiMte ^grmg.

26. formulaof Gauss and Sisensteln in the JLarge.:

So far \are have not used the result in Chapter II.
Hereafter we can look back at Part II, Chapter II for a comparison.

In order to state the formula of Gauss and Eisenstein 
in the large for indefinite forms one needs two lemmas given below 
Some of the methods in Chapter II are recalled so that a comparison 
would help to understand the procedure, not that a comparison is 
absolutely essential. The next paragraph starts with some ideas 
from Siegel [6j generalized to function fields. This automatically 

leads to a comparison with Part II, Chapter II and the formula of 
Gauss and Eisenstein in the large* The procedure in Chapter II 
is completely recalled and in part III the analytical part of the 
proof is written ^ust as in Chapter II.

2*?. Some ideas from Siegel [fij .

out for definite forms on page 55
The construction of the redu

construction of for indefinite forms is an important
step in the formula of Gauss and Eisenstein in the large.

Let C _ be a particular primitive

representation in is a complement of
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C / (£ bt*)
-Or

T *• ■ Cn
-- 4tJi-tU - *[.

tfal -- \f] *»jl

-- /* %

For any general complement
hi -- Z $ +W.W7

<D

with integral and unimodular %0 the following equations

are true , M _bjo = *1 & -*4j0%0

=. %0 ^ ^0

isGiven C and M0 / i® fixed uniquely and ^ 

in the same class as • That is, the class of is
uniquely fixed and ^*0 is determined in I ( ^ ) ways if

is definite. If ^ is indefinite the E ( ^ ) has to be 

replaced by the measure of the unit group of ^ ♦ Also for

the number of primitive representations A. the notion of the 

measure of representation has to be used. This was introduced 
In paragraph 23, At this stage the method in Siegel j^ej 

be compared with that inj^sj to establish the formula of 

Gauss and Eisenstein in the large. Let clfc-. ? be

can
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a representation of bj Tf* • To a representation %
C of Li, if let U be a unit of *2T such that

/ v ii i ^ i

\j C -L * L©t %r he a matrix in Kif^ such
that (t has a determinant different from aero. Then put

(tij'tlz *._) = /7 ^ ^ ^
<3?„

so that =<%0

Then it shall be shown that
(£*)'*&*) Y% 1)

( y wJ
possesses a solution % in &>jx 8113 R - ^

lie sufficiently near to ^Jo and • Here lemma 1*

Chapter II is applied*

put
and

In order to solve the equation6 
7t s H P •* % o with unknown

. With the abbreviations 
t bi - \ o>vi|* + r»'-

■y'r' 7 1 ^
v ^Art V^V
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then jj}oj jo and we have further the equations ^ 

and * Here must be
sufficiently near to * *n the Cm-nWa-n+1) dimensional
space of pairs the set of points, for which (3)
is soluble, is chosen* By means of (3) the space is mapped to 
B{ ( the m(m-n)dimensional) of the % space* Any two points 
of the % space are called associated if for a certain 
unit TJ of the equation - If %/ is true. If B is
the reduced space of H in B* for this equivalence 

relations volume of B exists and is different from zero. Also
for a certain neighbourhood B of (rf} volume of B* in

no ‘ volume__of B . .the limit when B tends to \{0\ is the same as L
Is a primitive representation and ( ZT £ o ) is unimodular. The
construction of the measure J" ££ j yj) its existence and the

inter-relation with the reduced and are given by
lemmas 11 and 12, Siegel fj5 J . These reduced ^ and *J

are defined just as for definite forms. Refer back to the
equations (1) and (2). is called reduced once its class
( ^, ) is fixed. Of the possibilities for ^>0 ( which can be

measured by /^C^) ) one is chosen and to fix in

in. - £ 3' •* btoXQ with primitive £■ . Therefore it is
enough to consider the case when JZ is primitive. Let

be a complement of c . Then we have the following

28,

£' n-fLemma 1: Let L. ' p k. ~ t b® a primitive representation and 
be a complement of -C , that is ls unimodular

, . /
Put
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If U is a unit of if such that

ur'uu. 4 *. S 
n xt'j

defines a unit *o,

i/r-c , the equation,

& *-fy. (i <V)
is integral. If conversely
that the matrix $ defined by (5) is

IT of ^ such that ‘ 1/C - C -

is such a unit of ^ 0

fintegral,(4) gives a unit

Proofs If (/£-£■ then Ur'UU; 

the form (4) with integral &o j'*rOB

is of

Put

Then

>A' *<?.
? 4r# A / ^ ^c,

« ^ y ^

-v

/4 n
rt Ul„

-t *l)-cp
« v
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(4) and (8) give

^ .7

so that ^ ^ is

a unit of i^.0 satisfying (5).

If conversely ^Oo is a unit of ^ for
which the matrix determined hy (5) is integral then (*?)

holds with ■ -W = and (8) gives that

%Oe

is a unit of U,irf'U/ . The U defines, by 4, a unit of iF 

such that MC - /T

Lemma 2 : Let not m-n=2 and J F j I'f'l not a square of an 

element from the field of power series, happen simultaneously.

If B has, in the space of -bjj 7^ a content, then the

equation

determines a vfl space B
o ^rto the units U of * such that U C - £

which is reduced with respect

has a finite content
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Rroof; There exists a primitive matrix tfi"^ 311

integral matrix so that £ ■*- £,j %> • By the substitution

~f - b^i'b j ^^ yy ? the equation

4. * +&V3, i ^
Then JU\ is a ^hlt of Qo

3. = -y"'^ (■& - 5-0)

the %0 form, if $6 is integral,-a subgroup of finite index 
with respect to the full unit group of J^0 .

l^l * l fjr* j [*) m«n~2 and j being equal to
a square do not happen simultaneously. If runs through
such a space that it can be represented as a square in K/j^ 

the same holds for 9>C) | the 4]i and the 4j j also

the pairs ckj^vQ and j ^0 have the sme property.

Here |Tj cannot be extended as a power series in

the sense of Puiseux.

(Chevalley: algebraic functions of one variable)
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By the substitution
(£V

& 4

, u (i * 1
^-O and the eXj-That is ^ - f ^ 4 ^0 and the *5^. space is

mapped to the j%Q space and because of (8) and (9) by means

of the substitutions
*1 $1 4 -^o^vO - J J ^ 1 ^ ^ ^

4“' -y = ^6

goes over into the space* If ^u^-2. are two
associated points of the ^ space ^-x - 0x\.t
OT-Cj Uftf U=/" and for the values <£, j 

corresponding to and

UU, fi
^ K •><?,

where

and

u,

ft

from (4) ^ is determined uniquely so that ^ ^

is a given rep re sent ant of its left residue class modulo ~f 

Here *rj Is reduced. If ^ and ^ are both reduced is 
also called reduced* To call ^ actually reduced for indefinite 

forms it must be chosen from a certain reduced space. These 
spaces are dealt with in paragraph 25, of this chapter. The 
quantities B (ft ) and were already generalized
to (/"ft) and • The quantities B ( ^ ) and
C ( ^ ) have their corresponding generalisations Ag (^)

and 9 The next paragraph gives the
generalisations of the lemma 11 and 12, Siegel |sj .
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Hereafter It is assumed that it does not happen at the 

same time that m-n~2 and fff jfj is hot a square of an element 

from the field of power series.

We have one more lemma from Siegel (lemma 1S» £_6j )

♦Lemma 3 : Let T (B) he the content of the Space B in the 

space and f (B) the content of the space of ^ which satisfy^

Let B shrink to the pair • Then

11® ^ C&j - A fc'jS) 'fcrw £+jl^£6J - -A C }

L<mcn&. IB j W

where CrfJ% depends only on ftj and where 

depends only on and C

Proof: Put

(S'sJu^,) -r £

15 f 1 *Tit UJ

* This lemma and lemmas 16 and 19* Siegel jfVj are applied in the 

last paragraph of Chapter III and therefore discussed, in detail 

over there.



95

B-j is the spaee corresponding to

From the method of proof and the construction of the 
reduced spaces inparagraphs 24,25 and 26 it is clear that the 
orders of $?> j £> and the determinant of f~

are the only factors to be taken into consideration here*

urn iCjy -Kerfg -* fid > C*J
where Of,"? depends only the determinants of ^

and also on the order of C , V" ^ / V 68 J) tends to a
finite limit because it exists for the binary forms from the
thesis of Artin and it can be extended by induction exactly 
as \ie extended the definition of ^6 (jfjO

in paragraph 28.

We can next have the proof of the formula of Gauss and 
Eisenstein in the large for indefinite forms.

29. Formula Qi‘ Gauss and Bisensteln in the large :

The formula in the large reads

- /*/ t,f~*

Lv
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f means that Had and are in the same genus and
j runs through all the distinct genus representants of 

definite £ (m-n) , ^ (jif ) is the measure of the reduced

such that
7 7

is in the same genus as lT» ^ and are defined.

The second formula is the relation <ti1 > for quantities 

modulo J • It is

% lj>-> O
~M0

ft I x X 0
C£> (iJ

——

where ( ^ ) runs through all the class representants moduloJ, 
p £ is the measure of the reduced bj for which

M, ,, w.

y in+]Jis equivalent to f modulo J / f • j- is assumed 
to be a multiple of £/tfj l^)*} ^ in order to identify

* fy(6jl0 has the same
measure 3f ) because one can have a correspondence
between the class representants ( X ) and the genus representants

HJ-
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The reduced Jy, and have already been defined in

paragraphs 29~32.
SU^<JL[s^

For the proof we refere back to page-Shapie^-H*.

Just as in Siegel jej in order to derive the formula 

(11) initially two other formulae are derifedj namely

(ifis the measure of the primitive solutions £~ 
nonassociated with respect to the units of ^ in k and
/*6 (^) tiloSe ^i°h belong to the same class ( ^ ). is of

determinant |#*l . The above statement is explained
just as in Siegel fjsJ • After this is accomplished the next 

formula is

~”(0
/c ty.f)

1r' <d
Ot)

The definition of ^ , +j and the reduced y and -W 

give almost the complete statement as well as the proof of the 
formulae. The proof is really complete only after the summations 
are justified only with the help of Hasse-Witt theorem* Rest 
of the argument is as in %egel UJ •

-̂--
%

vE
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30. An alternative method to the above proof is to derive 
the formula (12) just as (11) with a restriction on the degrees

proceed to the limit. The procedure to the limit is justified 
once again only if we make use of the lemmas in paragraph 2? 
and the notions in 24-27 * So the proof practically comes to the 
same. The fact is that this latter procedure is not possible in 
the rational number field. It is not a very advantageous method 
either. Still it is interesting to notice this method.
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31, The method of induction for the proof of the main theorem 
is Just as in sieg©l jjTj pp5$7The proof is Just as for definite 

forms on pp 65=67 with no restriction on ^A-. Proof for the definite 
forms can be derived as a particular case,The results from Artin's 
thesis are exhibited as special cases of the more general results. 

This is already done for the definite forms.

For example it is not difficult to see from the definitions

that ,u

A if)
generalizes A C^Sf) from Chapter II*

A a (Yj 1)
Moreover one can see from the definition that in general lim V-,CQJ
is part of the contribution to A t (f modulo the units of
depending on the nature of £ . In the binary case when £ is a 

column matrix, say, and f~ -f and irjl 0^ are also

matrices of order onej also /H (2Q exists from the thesis of 

Artin because of the correspondence between the inequivalent integral 
representations of jfc* f % and the inequivalent integral

ideals with a given norm in K (YF) where j tT J - 3 • And
yU (-20 is nothing else but A o divided by the

measure of the unit group of K (^D) which is finite. Also 
A t<3 - i j j ^'^nter of such C" is finite

because of the above correspondence of ideals and representations*
It can be proved that J5 £CiTf\) Is finite because §(E-)l0to

Tic it) 6^j i (A ^)cm Proved to be finite even

directly. For forms of order greater than two this can be extended 

by induction and

„ - -z Cc,tJvcisj -/• Jlim times Ctf^
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as in lemma 3 can be proved as in Siegel £f>J using the usual 

' |5> -adic7 representation and the considerations already mentioned 

under lemmas 4 ij i3 J

The proofs of formulae (12), (13) and (14) are just as in 

Siegel [5j pp and after the proparation so far the formulae
for the definite case on pages l']~V ®sffl k© ©esily exhibited as 

particular cases of these formulae

Lemmas 16 Siegel /j5j Let | be a polynomial prime to / Tj 
and the highest po’aer of .f in |^l ~ / ^t)
If m put ■=. £ otIT /^l fit

according as m is even or odd and analogously T ~

/-2- ~ m (5a.or 3 , and «.? -t the formula

t c ah£,Y| *£i,r|1 -
+£1 M*)

]r>\ u/4 yu

to) ( |4 I'fJ 4(i-m

(j'i*rm; C
A\tu-Cn. j

i+ i^m Ma A
+ |Y| 4"’

/ modd,leven



32 A final reference to the thesis of Artin (for the time being)

One can look back now at the work done in pages 65-6?

A special reference to indefinite binary forms proceeds in the 
same way once we notice 4 0 exists for m=2, n=1.

£ When (t) is real j is the same as k-i)R.

where j£*| and €o is the fundamental unit which
generate the units of lT . log /2of is the volume of the 

fundamental space.

¥e can have the identity for the binary forms as before 
Case 11 Number of genera is 2,* j £ - (tvl

'/a1 & * a. $ tv2 4j (tfOiii)

)

%/x 5 Pi’*
c l LiJwJ Rx {‘‘If-JjflJ

= ^ ft.

R* -- J___ tu‘i ■

q.*»«4 (k-J)2

2 A-l
Case 2: Number of genera is
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This proves that f is constant and it is
independent of B. In general can he proved to be
bounded with Ql)^/ for an upper bound.

rri(r»e (o j^toodplx 

33. Theorem: f (i'') is a constant even -with respect to P

Broof: The proof is the same as in Siegel |5 J 563-567 and
Siegel [V] 255-256 after representing all the matrices concerned

in the Euclidean space by means of the ' j> -adic5 representation. 
The details are as follows.

The©

Let £1 be a polynomial diviable by ifp 1*1

if
U°

7~

as in equation (74) Siegel £j>J p 255. If 

integrable function of the matrix variable 1 in the 
it is true when Yj%- are in P that

is an 
/

T sp ace ,
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Now in/51 f f) 7 are in kc*-) they can be taken over to F

by means of the ^b-adic7 representation, Q is the closure of the 7 
space when **/ is represented in the Euclidean space, t is an 

integer which satisfies the property i 7 in Q when the

* f? -adic' representation of % is taken and is the
integral value of the polynomial 0- by means of the * -adic* 

representation ' The j> -adic representation is not necessary to 

write the integrals but their value remains, unaltered with the
i

* jf -adic representation.

Consider any integrable function F~ (k'lf , lT fixed,

of the continuous neal matrix variable % , where ^
/h; y4l >*>V

Take 0 the closure of the 7 space by means of the ' j> -adic* 
representation and the corresponding if space & 7

a'
= j f($ a. (*-,*) **

Q

A (1) _l__ _

j djt
A0 (t, l'**)

i 7

Je
v (T>)

which gives

' 4 * s ^
V Ao ?
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Therefore

ZL
•>w»\

f f'

z. _*lLx ^ V

• Whentaken with the proper meaning for £ > j ^ and 

the values A (ifj A0 are taken lT" and ?

are in ^-Cx3

A0 (f1^) ss a funotlon

I*/;*/ = w I ia as a function of
'f

¥e see that a *1, \ . --*v C**’n-*0 A
h°(?l4k*J ' $ Aa

Thus

I
>V\ n.

- 21.
!3 A*(lfj&t) *

^ 3 Is

~rr^( n-iiy
a (y,?j
a^t?j

('£)

Where Uq denotes the region obtained from & by the transforma

tion ^ Zf* c ^-2. *7 with Jacobian - |n^n"<9

It is here the ’ |? -adic* representation is useful. On multiplying 
and dividing this Expansion expression by J 4.T 

we see that
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I c/r V. a' fmK -- L A
j E ^£.1

t ^

These equations 16,17,18,19 give

•B A.C
7 a

Lim £ A (***) , ,0 ,

' ?-8, TpJZcvj

L ^
J£)<

ft;

becAuse

lim I_
*“ 7ix,£)

A £f >V
A,P'V/ r fa -/

ti
d

Summing over the genus representants of and dividing

by H (f)
llm Z- A (tj) j 

7^8, T~7F^ \ I vvo -J

7 Arf [£ji)
Puti- sw - * (*<V

1/ *“ ^3 * AJs!liP

In order to prove j is a constanfc it is enough to prove

that

€ ^ lim 21 (V"; f 7 , . ,m,v ----- - - ~ ^ y / J is a constan,fcy^- ^ a
l
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It is already evaluated for binary forms - definite and indefinite, 
In the equation 16 the summation is extended over all the lattice 

points r of the X spaoe such that f' C lies in & ,Instead only such lattice points £ are considered which satisfy

£ * E. (*»«< &)
for a given £ and Cl is a polynomial divisible by j^j If J

/ ____ _^ A* £ VC 1
/T = /Z0 ) } f ^t/j,

vCM

/<7 m *«v

as q —.4*o

As on page 225 Siegel |l6^f

£*r<l) "*cv* A * ^ I ^ l Vv

1*1.t
Similarly one can bring the equation (15) to this form.

^■>Vt tv

In order to prove that is a constant it is prove

21
? ?. CO
7~B.

^ v

tends to a constant
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Put - b and when the corresponding -adic* value is 
taken f is said to be in £}| £)

-r-^^ zl’” times a constant

L® * | .&/ mn-

where the constant depends on the nature of r .

If 40 is a polynomial representable by tT t§ in 3 

is representable by r in £)a and^a polynomial divisible
»y |tT| i3 ;
uj y ija 'Lhtj'i

if j~ divides 0- page 227 Siegel jt6 J

and

= «* w
m -)

P , 0
In order to prove that

N
'Tf °<.f (i, t) Cl 0 * 1 ' '

/* (*VJ

>vdNt
IW

IV I ^ 0
is a constant j W €ntn\ek

t 1

a constant
Ao 7
i

e-=»

^ , K pfefr Ao + evi i {■* « t. ”
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Now we take "fi = 2k and we apply the method on page- 228 [16] 

Siegel [16] . Here we make use of lemma 16, to write

fff,t)= “ 1-k1-k

d su irl
(d,^) = 1

T, d,t, &.0 k[x] B = T" (i- (-§-) Ifl k)
(f J 0J = l f

In order tojestimate ^Cif^prove thatJCO is equal to one it is 

enough to prove that

k(Jr^-0.lly ft* li'fKii: && ana

The rest of the argument is one page 230 Siegel [16] and pp 

255-256 Siegel [16].

235 Siegel [l6] . For odd orders of "Tit can be similarly derived 

and proved equal to have one simple value as in Siegel [16] page 236,

In the binary case and in the ternary case 0 mn can be so 
adjusted that ('$’") is always equal to one. This would have 

a siginificance even otherwise.

The details are a direct consequence of the principles in 

the equation Siegel [6] and the nature of B and^. •

r

The case k = 1 is already knownjwhen m is odd it is as in page


