List of Figures and Tables

Chapter 1 Introduction

	Figure 1.1:	Linear polymer.	12
	Figure 1.2:	Polymer with back bone chain and pendant.	12
	Figure 1.3:	Repeating structure.	13
	Figure 1.4:	Various types of polymers.	14
	Figure 1.5:	Fringed micelle concept for polymer morphology.	18
	Figure 1.6:	Models proposed for chain folding in single	20
		crystals of polymers.	
	Figure 1.7:	Specific Volume versus Temperature graph.	22
	Figure 1.8:	Model representations of the amorphous	24
		state: (a) interpenetrating coils, (b) and	
		(c) honeycomb and meander model,	
		(d) folded chain fringed micellar gràins	
•		and (e) fringed micellar domain structure.	
	Figure 1.9a:	Cross-sectional view of the structure of semi-	26
		crystalline polymers.	
	Figure 1.9b:	View from parallel to the machine-drawing plane of	26
		the structure of semi-crystalline polymers.	
	Figure 1.10:	Energy partitioning in SRIM.	47
	Figure 1.11:	SRIM calculated electronic (ionization) and nuclear	52
		(Phonons+vacancies) LET for 100 keV and 1MeV Ar	
	. *	ion irradiation of polypropylene.	
	Chapter 2	Instrumentation and Technique	
	Figure 2.1:	General layout plan of the cyclotron laboratory.	66
	Figure 2.2a:	Configuration of Dee chamber with the pole pieces.	68
	Tigure 2.2a.	The spaces are also shown.	00
	Figure 2.2b:	Profile of the clamp plate attached to the chamber.	68
	Figure 2.3:	Circuitry used for stabilizing the voltage of the	69
	i iguio 2.0.	DC generator for the main magnet and the analyzer.	
	Figure 2.4:	Variation of the magnetic field of the main magnet in the	69
	- 19010 - . 1.	chamber.	
	,		

Table 2.1:	The detailed characteristics of the machine are	73
	summarized as below.	

Chapter 3 Experimental Details

Table 3.1:	Some of the physical and chemical	106
	properties of the polymers used.	
Figure 3.1:	Two roll mill.	110
Table 3.2:	Thickness of the polymers used.	111
Table 3.3:	Range and energy loss of 3 MeV proton in polymer used.	115
Table 3.4:	Irradiation details of polymers.	116
Figure 3.2:	FTIR Spectrometer.	117
Figure 3.3:	Vickers' Microhardness Tester with computer setup.	119
Figure 3.4:	Scatch of Microscope-Vickers' Microhardness Tester.	119
Figure 3.5:	LCR meter.	122
Figure 3.6:	Schematic diagram of sample holder used in	122
	AC electrical conductivity measurement.	
Figure 3.7:	Sketch diagram of TGA measurement.	123
Figure 3.8:	Sketch diagram of DSC measurement.	124
Figure 3.8:	TGA/DSC measurement with computer setup.	126

Chapter 4 Results and Discussion

Figure 4:1:	FTIR spectra for pristine and irradiated polypropylene films.	131
Figure 4.2:	Conductivity versus Log f for pristine and irradiated	133
	polypropylene films.	
Figure 4.3:	tan δ versus Log f for pristine and irradiated	134
	polypropylene films.	
Figure 4.4:	Dielectric constant versus Log f for pristine and irradiated	134
	polypropylene films.	
Figure 4.5:	TGA themograms for pristine and irradiated	136
	polypropylene films.	
Figure 4.6:	In (In(m₀/m)) versus 10³/T (K⁻¹) for the pristine and irradiated polypropylene films.	136
Figure 4.7:	Optical micrographs of pristine and irradiated	138
	polypropylene films; (a) pristine, (b) 10 ¹³ ions/cm ²	

and (c) 10¹⁴ ions/cm².

.

• • •

	and (c) 10 ⁻¹ lons/cm ⁻¹ .	
Figure 4.8:	FTIR spectra for pristine and irradiated	142
	polyimide/kapton films.	
Figure 4.9:	Conductivity versus Log f for pristine	144
	and irradiated polyimide/kapton films.	
Figure 4.10:	tan δ versus Log f for pristine and irradiated	144
	polyimide/kapton films.	
Figure 4.11:	Dielectric constant versus Log f for pristine and	145
	Irradiated polyimide/kapton films.	
Figure 4.12:	TGA thermograms for pristine and irradiated	146
	polyimide/kapton films.	
Figure 4.13:	DSC thermograms for pristine and irradiated	147
	polyimide/kapton films.	-
Figure 4.14:	Microhardness for pristine and irradiated	148
•	polyimide/kapton films.	
Figure 4.15:	Optical micrographs for pristine and irradiated	150
	polyimide/kapton films (a) pristine,(b) 10 ¹³ ions/cm ² ,	
	(c) 10^{14} ions/cm ² and (d) 10^{15} ions/cm ² .	
Figure 4.16:	FTIR spectra for pristine and irradiated	154
	polyethylene terephthalate films.	
Figure 4.17:	Conductivity versus Log f for pristine	156
	and irradiated polyethylene terephthalate films.	
Figure 4.18:	tan δ versus Log f for pristine and	157
	irradiated polyethylene terephthalate films.	
Figure 4.19:	Dielectric constant versus Log f for pristine and	157
	irradiated polyethylene terephthalate films.	
Figure 4.20:	TGA thermograms for pristine and irradiated	160
	Polyethylene terephthalate films.	
Figure 4.21:	In (In(m_0/m)) versus 10 ³ /T (K ⁻¹) for the pristine and irradiated	161
	polyethylene terephthalate films.	
Figure 4.22:	DSC thermograms for pristine and irradiated	161
;	polyethylene terephthalate films.	
Figure 4.23:	Microhardness for pristine and irradiated	162
	polyethylene terephthalate films.	
Figure 4.24:	Optical micrographs for pristine and irradiated	165
	polyethylene terephthalate films (a) pristine,	

.

Figure 4.25:	FTIR spectra for pristine and irradiated	168
0	polyether sulfone films.	
Figure 4.26:	Conductivity versus Log f for pristine and irradiated	170
	polyether sulfone films.	
Figure 4.27:	tan δ versus Log f for pristine and irradiated	170
	polyether sulfone films.	
Figure 4.28:	Dielectric constant versus Log f for pristine	170
	and irradiated polyether sulfone films.	
Figure 4.29:	TGA thermograms for pristine and irradiated	173
	polyether sulfone films.	
Figure 4.30:	DSC thermograms for pristine and irradiated	173
	polyether sulfone films.	
Figure 4.31:	Microhardness for pristine and irradiated	175
. .	polyether sulfone films.	٠
Figure 4.32:	Optical micrographs of pristine and irradiated	176
	polyether sulfone films (a) pristine, (b) 10 ¹³ ions/cm ² ,	
	(c) 10^{14} ions/cm ² and (d) 10^{15} ions/cm ² .	. ·
Figure 4.33:	FTIR spectra for pristine and irradiated	180
	polycarbonate films.	
Figure 4.34:	. Conductivity versus Log f for pristine and	181
	irradiated polycarbonate films.	
Figure 4.35:	tan δ versus Log f for pristine and irradiated	183
	polycarbonate films.	
Figure 4.36:	Dielectric constant versus Log f for pristine	183
	and irradiated polycarbonate films.	
Figure 4.37:	TGA thermograms for pristine and irradiated	185
	polycarbonate films.	
Figure 4.38:	In (In(m₀/m)) versus 10³/T (K⁻¹) for the pristine and irradiated polycarbonate films.	18
Figure 4.39:	DSC thermograms for pristine and irradiated	186
• ·	polycarbonate films.	
Figure 4.40:	Microhardness for pristine and irradiated	18
	polycarbonate films.	
Figure 4.41:	Optical micrographs of pristine and irradiated	189
	polycarbonate films (a) pristine, (b) 10 ¹³ ions/cm ² ,	

	(c) 10 ¹⁴ ions/cm ² and (d) 10 ¹⁵ ions/cm ² .	
Figure 4.42:	FTIR spectra for pristine and irradiated	191
	blend polymer films.	
Figure 4.43:	Conductivity versus Log f for pristine and	193
	irradiated polymer blend films.	
Figure 4.44:	tan ð versus Log f for pristine and irradiated	194
	blend polymer films.	
Figure 4.45:	Dielectric constant versus Log f for	195
	pristine and irradiated blend polymer films.	
Figure 4.46:	TGA thermograms for pristine and irradiated	197
	blend polymer films.	
Figure 4.47(a	a):In (In(m_0/m)) versus 10 ³ /T (K ⁻¹) for the pristine and irradiated	197
	blend polymer films.	
Figure 4.47(b	b):In (In(m₀/m)) versus 10³/T (K⁻¹) for the pristine and irradiated blend polymer films.	198
Figure 4.48:	DSC thermograms for pristine and irradiated	198
	blend polymer films.	
Figure 4.49:	Microhardness for pristine and irradiated	200
	blend polymer films.	
Figure 4.50:	Optical micrographs of pristine and irradiated	202
	blend polymer films (a) pristine, (b) 10 ¹³ ions/cm ² ,	• • •
	(c) 10^{14} ions/cm ² and (d) 10^{15} ions/cm ² .	