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CELL DEATH

Living cells are equipped with highly efficient death machinery that is readily 

activated when they reach their duly allotted life span or are deemed to be ineffectual, 

redundant, or damaged. Until 1971, the term “necrosis” was used for all types of cell 

death. When Kerr et al, (1971) first observed a form of nonpathologic cell death in 

certain tissues, they termed it shrinkage necrosis.. As shrinkage necrosis became 

implicated in the control of organ homeostasis, it was renamed as apoptosis (Kerr et 

al, 1972). Over the last three decades, apoptotic cell death has been well 

characterized at both the genetic and biochemical levels.

1.1 Necrosis

Necrosis (from the Greek vexpoq, means "dead") is the premature death of cells and 

living tissue. Necrosis is caused by factors external to the cell or tissue, such as 

infection, toxins, or trauma. While apoptosis often provides beneficial effects to the 

organism, necrosis is almost always detrimental and can be fatal. Necrosis is a type of 

cell death caused by severe (non-physiological) physical and/or chemical insults and 

usually affecting groups of cells (Majno and Joris, 1995).

1.1.1 Morphology of Necrosis

The morphology of a necrotic cell is very distinct from that of a cell undergoing 

apoptosis, with ultrastructural changes occurring in both the cytoplasm and the 

nucleus. The main characteristic features are chromatin flocculation, swelling and 

degeneration of the entire cytoplasm and the mitochondrial matrix, blebbing of the 

plasma membrane, and eventual shedding of the cytoplasmic contents into the 

extracellular space (Figure 1.1) (Kerr et al, 1971). Unlike in apoptosis, the chromatin 

is not packed into discrete membrane-bound particles, but it forms many unevenly 

textured and irregularly shaped clumps, a feature that is being used for differentiating 

between the two modes of cell death (Trump et al, 1965). The mitochondria undergo 

inner membrane swelling, cristeolysis, and disintegration (Laiho et al, 1971). 

Polyribosomes are dissociated and dispersed throughout the cytoplasm, giving the 

cytoplasmic matrix a dense and granular appearance. Dilation and fragmentation of
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the cisterns of rough endoplasmic reticulum and Golgi apparatus are frequently 

observed (Trump et al., 1965).

1.1.2 Biochemical features of necrosis include loss of regulation of ion hemostasis, 

the process is uncontrolled and passive and does not require energy. Severely 

damaged cells do not form membrane-bound vesicles (apoptotic bodies such as 

observed during apoptosis), and thus release their cellular contents. This normally 

results in inflammatory reactions with oedema and damage to surrounding cells. 

These effects of necrosis are exacerbated during neuronal necrosis because 

neurotransmitters that are released by dying cells can cause excitotoxic injury and cell 

death to their neighbours. Random DNA fragmentation occurs after lysis. However, 

recent data from several studies indicate that discriminating between apoptosis and 

necrosis based on DNA fragmentation pattern is questionable, because both modes of 

cell death can occur in the absence or presence of DNA fragmentation (Dong et al., 

1997; Rich et al., 2000; Ueda and Shah, 2000). DNA fragmentation represents a point 

of no return from the path to cell death, because no more new cellular protein 

synthesis for cell survival can occur.

Necrosis
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Figure 1.2 Pathways leading to cell death. Healthy cells respond to death-inducing 

stimuli by initiating a variety of molecular pathways leading to cell death. Completion of the 

proper pathway is a critical cellular function to ensure that the appropriate outcome is 

ultimately achieved in a multicellular organism. Failure to die in response to particular stimuli 

can result in abortive embryogenesis and organ dysfunction and contributes to the initiation of 

cancer. Proinflammatory death is vital in triggering appropriate immune responses or, in the 

extreme, may cause tissue pathology and organ dysfunction. Therefore, pathway utilization 

can dramatically influence biological systems. Apoptosis is a pathway leading to cell death 

that features the activation of initiator caspases that activate effector caspases to cleave
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cellular substrates. Apoptotic cells demonstrate cytoplasmic and nuclear condensation, DNA 

damage, formation of apoptotic bodies, maintenance of an intact plasma membrane, and 

exposure of surface molecules targeting intact cell corpses for phagocytosis. In the absence of 

phagocytosis, apoptotic bodies may proceed to lysis and secondary or apoptotic necrosis. 

Autophagy features degradation of cellular components within the intact dying cell in 

autophagic vacuoles. The morphological characteristics of autophagy include vacuolization, 

degradation of cytoplasmic contents, and slight chromatin condensation. Autophagic cells can 

also be taken up by phagocytosis. Oncosis is the prelethal pathway leading to cell death 

accompanied by cellular and organelle swelling and membrane breakdown, with the eventual 

release of inflammatory cellular contents. Pyroptosis is a pathway to cell death mediated by 

the activation of caspase-1, a protease that also activates the inflammatory cytokines, IL-1B, 

and EL-18. This pathway is therefore inherently proinflammatory. Pyroptosis also features cell 

lysis and release of inflammatory cellular contents. Undoubtedly, other pathways exist that 

have not yet been described.

The process outlined above is also known as primary necrosis or oncosis (type 1 

necrosis). The presence of necrotic cells does not necessarily imply that they did not 

die by apoptosis. The term secondary necrosis (type 2 necrosis) refers to a process in 

which late stage apoptotic cells that failed to be engulfed by phagocytes or 

neighbouring cells undergo necrosis. Secondary necrosis, thus, is a post-apoptotic 

event. This process is seen in cultured cells that are undergoing cell death by 

apoptosis in vitro, induced, for example, by the absence of survival factor signals or 

activation of death receptors by different lethal signals. These cells, in the absence of 

phagocytic cells that could engulf them, ultimately cease to be metabolically active, 

lose membrane integrity, and release their cytoplasmic contents into the culture 

medium. Secondary necrosis can also occur in vivo, for example in autoimmune 

disorders associated with impaired clearance of apoptotic cells. Secondary necrosis 

may be seen also during massive local apoptosis when phagocytes and neighbouring 

cells may be unable to cope with the load of apoptotic cells. Therefore, the process 

plays a critical role in inflammation, tissue remodeling, and immune response 

regulation (Aderem and Underhill, 1999; Silva et al, 2008).
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Despite the idea that necrosis is an uncontrolled or default form of cell death, 

accumulating studies have suggested that this may not be true. Rather, it appears that 

necrotic cell death can be a regulated event that contributes to development and to the 

maintenance of organism homeostasis. Terms such as autolysis, oncosis (Majno and 

Joris, 1995), pyroptosis (Cookson and Brennan, 2001) and necrapoptosis (Lemasters, 

1999) have been used to describe modes of nonapoptotic cell death that display 

aspects of programmed cellular suicide. Evidences are there that metazoan cells can 

initiate their own death by necrosis. The genetic components of this programmed cell 

necrosis involve (1) gene products that function in the dying cell to induce an 

irreversible bioenergetic compromise that results in cell death, and (2) gene products 

that are selectively released into the extracellular environment to trigger a host 

response. The evolutionary advantage conferred by necrosis is that it allows cells to 

actively recruit a defensive response to regions of multicellular organisms that have 

sustained damage or invasion. Programmed cell necrosis can be a consequence of 

extracellular signaling or can be initiated as a form of cellular suicide in response to 

intracellular perturbations.

1.1.3 Physiological roles and significance of necrosis

The core events of necrosis are bioenergetic failure and rapid loss of plasma 

membrane integrity. These can result from defined molecular events that occur in the 

dying cell, including increased mitochondrial ROS production, channel-mediated 

calcium uptake, activation of nonapoptotic proteases, and/or enzymatic destruction of 

cofactors required for ATP production. In addition, these necrotic mediators are often 

induced in the dying cell simultaneously and potentiate each other's ability to initiate 

the demise of the cell. There are several physiological, pathological, and 

pharmacological conditions where necrosis may play an important role. Cell suicide 

by necrosis appears to have evolved to allow multicellular organisms to have an early 

warning system to recognize and adapt to events that might compromise the integrity 

of the organism as a whole. As such programmed cell necrosis plays a role in a 

number of disease processes including vascular-occlusive disease, neurodegenerative 

diseases, infection, inflammatory diseases, exposures to toxins, and cancer (Majno 

and Joris 1995; Proskuryakov et al. 2002; Yuan et al. 2003).
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1.1.4 Molecular mechanism of programmed cell necrosis

The fundamental feature that distinguishes most forms of necrosis from apoptosis is 

the rapid loss of cellular membrane potential. The inability to maintain these 

electrochemical potential results in cytoplasmic swelling, rupture of the plasma 

membrane, and cytolysis. This loss of membrane potential may be a consequence of 

cellular energy depletion, damage to membrane lipids, and/or loss of function of 

homeostatic ion pumps/channels. These defects can synergize in the induction of 

necrotic cell death. For example, defective ATP production and/or excessive ATP 

consumption can lead to a reduction in function of the ATP-dependent ion pumps on 

the plasma membrane. Perturbation of intracellular ion homeostasis can result in 

mitochondrial dysfunction and diminished ATP production.

1.1.4.1 Calcium as a mediator of necrotic cell death

Intracellular Ca2+ is an important signaling molecule for numerous cell responses 

including necrosis. In certain pathological conditions, extracellular ligands can induce 
Ca2+-dependent necrosis. One good example is the excitotoxic neuronal cell death 

induced by excitatory amino acids such as N-methyl-d-aspartate (NMDA) class of 

glutamate receptor.

In viable cells the plasma membrane and intracellular membranes are virtually 

impermeable to Ca2+. Under physiological conditions the Ca2+ concentration is ~ 1.2 

mM extracellularly, and ~0.1 pM in the cytosol. Most of intracellular Ca2+ is stored 

in the ER. When the ER Ca2+ is released into the cytosol, or the extracellular Ca2+ 

crosses the plasma membrane, cell death can be initiated due to the activation of Ca2+ 

dependent proteases and/or mitochondrial Ca2+ overload.

Ca2+ mediated necrosis has been the best characterized form of programmed necrosis. 

In Caenorhabditis elegans, gain-of-function (hyperactive) mutants of the DEG/ENaC 

family members MEC-4 and MEC-10 [MEC-4(d) and MEC-10(d)] induces necrosis 

of touch neurons (Driscoll and Chalfie 1991; Huang and Chalfie 1994). MEC-4(d)- 

induced neuronal cell death is independent of C. elegans apoptosis regulators,
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although genes required to remove the necrotic corpse are the same as those for the 
apoptotic corpse (Chung et al. 2000). Expression of MEC-4(d) induces Ca2+ influx 

and activates Ca2+ induced ER Ca2+ release that leads to necrosis (Xu et al., 2001; 

Bianchi et al., 2004) (Figure 1.3).

Ca2+

Figure 1.3 Calcium-mediated programmed necrosis. Intracellular calcium increases 

in response to the activation of ionotrophic glutamate receptors or through other calcium 

channels on the plasma membrane or the ER membrane. An intracellular calcium spike 
induces the activation of Ca2+-dependent proteases and stimulates mitochondrial TCA cycle 

activity and ROS production. If sustained, the resulting ROS leads to mPT (Mitochondrial 

permibility transition) that is dependent on CypD (cyclophilin D). mPT then leads to the loss 

of ATP production and necrosis.

Like many other insults, increased cytosolic Ca2+ can initiate either apoptosis or 

necrosis. The outcome of cell death is probably determined by the concentration of 
cytoplasmic Ca2+; low to moderate Ca2+ (20CM00 nM) triggers apoptosis, higher 

concentration of Ca2+ (>1 pM) is associated with necrosis (McConkey and Orrenius, 

1996). This may explain why Ca2+ released from the ER is mostly apoptotic, whereas 

Ca2+ influx through the plasma membrane is associated with necrosis. The 

mitochondrial metabolic status may also affect the sensitivity of mitochondria to Ca2+ 

poisoning and contribute to the determination of the death mode (Ankarcrona et al., 

1995).
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1.1.4.2 ROS-initiated necrosis

Cells in an aerobic environment are constantly generating ROS. Physiological levels 

of ROS can regulate transcription, serve as signaling molecules, and defend against 

pathogen infection. Excessive production of ROS leads to oxidative stress, damage of 

intracellular molecules and organelles, and ultimately necrosis.

ROS include a number of molecules derived from oxygen. They include molecules 

with an unpaired electron, often termed free radicals. Some major species include 

superoxide (02'), hydrogen peroxide (H2O2), hydroxyl radical (OH), nitric oxide 

(NO) and peroxynitrite. They are generated primarily in the electron-rich environment 

of the mitochondrial inner membrane, or through endogenous enzymes such as 

flavoenzymes, xanthine oxidase, NADPH-oxidase, glucose oxidase, nitric oxide 

synthase, or transition metals (Andreyev et al, 2005). ROS are neutralized by 

endogenous enzymes such as superoxide dismutase (SOD), glutathione peroxidase, 

catalase, thioredoxin reductase, or by reacting with a free radical scavenger such as 

the endogenous glutathione and exogenous antioxidants (Nordberg and Amer, 2001).

Mitochondria are a major source of ROS that can initiate necrosis. Excess 

mitochondrial ROS can damage nuclear DNA by causing cleavage of DNA strands, 

DNA-protein cross-linking, and oxidation of purines (Mamett, 2000). This may lead 

to DNA-damage response, including activation of p53 and PARP. While activation of 

p53 may cause apoptosis and cell cycle arrest, hyperactivation of PARP leads to 

necrosis. Inhibition of PARP activity with inhibitors or gene knockdown blocks 

necrosis induced by H2O2 (Yu el al, 2002). PARP-deficient animals are resistant to 

ischemia-reperfusion injury (Endres et al, 1997). ROS also modify lipids, as the 

double bonds in polyunsaturated fatty acids are excellent targets for ROS attacks. 

Lipid oxidation can lead to the loss of integrity of both the plasma membrane and 

intracellular membranes such as that of lysosomes and the ER, leading to an 
intracellular leak of proteases or an influx of Ca2+ and resulting in necrosis. Another 

target of ROS is amino acid residues with sulfur or proteins with sulfhydrl links. ROS 

can attack the disulfide bond, or break up the sulfhydrl links, thereby changing the 

function of the modified proteins. ROS-mediated protein modification contributes to
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necrosis through modifying Ca2+ channels. Thus emptying of intracellular calcium 

stores and/or alteration in intracellular calcium levels can modulate death in almost all 

cell types. These calcium fluxes are determined by the activity of membrane channels 

normally under tight control. The channels may be ligand activated or voltage 

dependent as well as being under the control of affector molecules such as 

calmodulin. It has become increasingly apparent that many calcium channels are 

affected by reactive oxygen or reactive nitrogen species; ROS/RNS. This may be part 

of the normal signaling pathways in the cell or by the action of exogenously generated 
ROS or RNS often by toxins. Both the ER and plasma membrane Ca2+ channels have 

been shown to be affected by ROS, and the resulting influx of Ca2+ can trigger 

necrosis (Waring, 2005).

1.1.4.3 Proteases involved in necrosis

A number of proteases have been implicated in necrosis. Calpains and cathepsins are 

the major proteases involved in necrosis. Genetic evidence for the involvement of 

these proteases in necrosis came from studies in C. elegans. RNAi silencing of CLP-1 

and TRA-3 (homologs of mammalian calpain proteases) and ASP-3 and ASP-4 

(homologs of mammalian cathepsin proteases) reduced the neuronal necrosis 

(Syntichaki et al, 2002).

1.1.4.3.1 Calpains

Calpains are a family of Ca2+-dependent cysteine proteases. Calpains reside in the 

cytosol in inactive form. In response to increased levels of cytosolic Ca2+, calpains 

translocate to the intracellular membranes and are activated by autoeatalytic 

hydrolysis. A number of calpain substrates have been identified including cytoskeletal 

proteins, membrane proteins, adhesion molecules, ion transporters, kinases, 

phosphatases, and phospholipases (Rami, 2003).

Calpain-mediated cleavage of the Na+/Ca2+ exchanger in the plasma membrane results 

in the sustained secondary intracellular Ca2+ overload and subsequent necrotic cell 

death (Bano et al, 2005). Calpain may also contribute to the activation of cathepsins
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by causing lysosomal membrane permeability (LMP), which can lead to release of 

lysosomal enzymes and necrotic cell death (Yamashima, 2004).

1.1.4.3.2 Lysosomal enzymes

A critical point to determine the cell death mode is at the regulation of the lysosomal 

membrane permeabilization (LMP). One of the molecules that have been shown to 

regulate LMP is sphingosine, one of the membrane sphingolipid metabolites.

In response to cell death stimuli, the lysosomal enzyme sphingomyelinase is activated 

and converts sphingomyelin, the major sphingolipid, into ceramide. Ceramide can be 

further converted into sphingosine by ceramidase. Both ceramide and sphingosine 

have been shown to be important signaling molecules that induce apoptosis (Cuvillier, 

2002). In addition, sphingosine, which is also a detergent, has been shown to cause 

LMP and cell death in a dose-dependent manner. Sphingosine induces partial 

lysosomal rupture and apoptosis at low-to-moderate concentrations (<20 pM), and 

extensive lysosomal rupture and necrosis at high concentration (>20 pM) (Kagedal et 

al., 2001). Apoptosis, necrosis, and autophagic response can all be initiated from 

lysosomes. This places lysosomes as a critical control point for cell-fate 

determination; to which direction the cells go may be dependent on the magnitude of 

the LMP.

1.2 Apoptotic cell death or caspase-dependent PCD

The word Apoptosis is derived from a word of ancient Greek origin: mroTioTcicr 

(falling off). This literally means falling off or falling away as in leaves from a tree in 

autumn which incidentally also involves apoptosis. In all living organisms there is a 

harmonious balance between the synthesis of new cells and the destruction of existing 

cells under normal conditions. This balance is particularly vital in maintaining both 

proper function and structure within the organism. The complex events that 

encompass these processes take place in response to specific and controlled signals.
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Apoptosis is a physiological process that occurs via an extrinsic or intrinsic 

(mitochondrial) pathway. Both of these pathways involve caspase cascade, which 

eventuates in the death of the cell. This process is an essential part of normal 

physiological function and as a result approximately between 50 billion and 70 billion 

cells die each day due to apoptosis in the average human adult i.e. blood cells and 

those in epithelia lining organs such as the intestine. In a year, this amounts to the 

proliferation and subsequent destruction of a mass of cells equal to an individual's 

body weight. Apoptosis has always been recognized to be a pathway of highly 

orchestrated signalling events and is still often referred to as synonymous to 

programmed cell death (PCD). Apoptosis is highly coordinated and is generally 

thought to be mediated by active intrinsic mechanisms, although extrinsic factors can 

contribute (Bellamy et at, 1995; Chalmers-Redman et at, 1997; Schwarz el at, 
2000). Apoptosis is genetically controlled and is defined by cytoplasmic and nuclear 

shrinkage, chromatin margination and fragmentation, and breakdown of the cell into 

multiple spherical bodies that retain membrane integrity (Buja et at, 1993; Kerr et at, 

1972; Majno and Joris, 1995; Wyllie et at, 1980).

Role of Poly (ADP-Ribose) Polymerase during Cadmium induced cell death in Dictyostelium discoideum

1.2.1. Physiological roles and significance of apoptosis

Apoptosis occurs as an integral component of normal development of the embryo, 

maturation and cell turnover. A frequent example is the development of a tadpole into 

a frog. Its a homeostatic process which is carried out by cells of living organisms as a 

means of eliminating unwanted cells and to maintain cell population in tissue,and also 

the cells that have been exposed to injurious or infectious agents rendering them 

damaged and potentially dangerous to the rest of the organism.

This defense can occur as a response to viral or bacterial infection, damage to DNA, 

for example by mutagenic agents, genetic disorders, autoimmune disease and various 

other injurious agents. In the immune system cells infected by a virus may recognise 

the infectious agent triggering the process of apoptosis. Apoptosis acts to destroy the 

cell to prevent the virus from replicating and infecting further cells of the organism. 

On the contrary, too little apoptosis is of particular significance in the formation of
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cancer, essentially due to mutations in cancer cells that prevent them from undergoing 

apoptosis. Apoptosis has also been observed in plants, particularly higher plants. The 

xylem in plants consists of spaces that result from the death of cells that previously 

occupied those spaces, comparable to the digitization of the hand during 

embryological development (Elmore, 2007).

1.2.2 Morphology of apoptosis

Light and electron microscopy have identified the various morphological changes that 

occur during apoptosis (Hacker, 2000). During the early process of apoptosis, cell 

shrinkage and pyknosis are visible by light microscopy (Kerr et al, 1972). With cell 

shrinkage, the cells are smaller in size, the cytoplasm is dense and the organelles are 

more tightly packed. Pyknosis is the result of chromatin condensation and this is the 

most characteristic feature of apoptosis. Extensive plasma membrane blebbing occurs 

followed by karyorrhexis and separation of cell fragments into apoptotic bodies 

during a process called "budding." Apoptotic bodies consist of cytoplasm with tightly 

packed organelles with or without a nuclear fragment. The organelle integrity is still 

maintained and all of this is enclosed within an intact plasma membrane. These bodies 

are subsequently phagocytosed by macrophages, parenchymal cells, or neoplastic 

cells and degraded within phagolysosomes. Macrophages that engulf and digest 

apoptotic cells are called "tingible body macrophages" and are frequently found 

within the reactive germinal centers of lymphoid follicles or occasionally within the 

thymic cortex. The tingible bodies are the bits of nuclear debris from the apoptotic 

cells. There is essentially no inflammatory reaction associated with the process of 

apoptosis nor with the removal of apoptotic cells because: (1) apoptotic cells do not 

release their cellular constituents into the surrounding interstitial tissue; (2) they are 

quickly phagocytosed by surrounding cells thus likely preventing secondary necrosis; 

and, (3) the engulfing cells do not produce anti-inflammatory cytokines (Savill and 

Fadok, 2000; Kurosaka et al, 2003). In vitro, in the absence of phagocytosis, 

apoptotic bodies ultimately swell and lyse, and this terminal process of cell death has 

been termed "secondary necrosis". Secondary necrosis may occur in vivo in 

autoimmune disorders associated with impaired clearance of apoptotic cells (Wu et 

al, 2001).
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1.2.3 Biochemical features of apoptosis

Apoptotic cells exhibit several biochemical modifications such as protein cleavage, 

protein cross-linking, DNA breakdown, and phagocytic recognition (Hengartner, 

2000). Caspases are widely expressed in an inactive proenzyme form in most cells 

and once activated can often activate other procaspases, allowing initiation of a 

protease cascade. Some procaspases can also aggregate and autoactivate. This 

proteolytic cascade, in which one caspase can activate other caspases, amplifies the 

apoptotic signaling pathway and thus leads to rapid cell death.

Extensive protein cross-linking is another characteristic of apoptotic cells and is 

achieved through the expression and activation of tissue transglutaminase (Nemes et 
al, 1996). DNA breakdown by Ca2+-and Mg2+-dependent endonucleases or CAD 

(caspase activated DNase) also occurs, resulting in DNA fragments of 180 to 200 base 

pairs (Bortner et al, 1995). A characteristic “DNA ladder” can be visualized by 

agarose gel electrophoresis with an ethidium bromide stain and ultraviolet 

illumination.

Another biochemical feature is the expression of cell surface markers that result in the 

early phagocytic recognition of apoptotic cells by adjacent cells, permitting quick 

phagocytosis with minimal compromise to the surrounding tissue. This is achieved by 

the movement of the normal inward-facing phosphatidylserine of the cell’s lipid 

bilayer to expression on the outer layers of the plasma membrane (Bratton et al, 

1997). Although externalization of phosphatidylserine is . a well-known recognition 

ligand for phagocytes on the surface of the apoptotic cell, recent studies have shown 

that other proteins are also be exposed on the cell surface during apoptotic cell 

clearance. These include Annexin Y and calreticulin.

Annexin V is a recombinant phosphatidylserine-binding protein that interacts strongly 

and specifically with phosphatidylserine residues and can be used for the detection of 

apoptosis (Van Engeland et al, 1998; Arur et al, 2003). Calreticulin is a protein that
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binds to an LDL-receptor related protein on the engulfing cell and is suggested to 

cooperate with phosphatidylserine as a recognition signal (Gardai et al., 2005). The 

adhesive glycoprotein, thrombospondin-1, can be expressed on the outer surface of 
activated microvascular endothelial cells and, in conjunction with CD2+36, caspase-3- 

like proteases and other proteins, inducereceptor-mediated apoptosis (Jimenez el at, 

2000).

1.2.4 Molecular mechanism of apoptosis

The mechanisms of apoptosis are highly complex and sophisticated, involving an 

energy-dependent cascade of molecular events (Figure 1.4). To date, research 

indicates that there are two main apoptotic pathways: the extrinsic or death receptor 

pathway and the intrinsic or mitochondrial pathway. However, there is now evidence 

that the two pathways are linked and that molecules in one pathway can influence the 

other (Igney and Krammer, 2002). There is an additional pathway that involves T-cell 

mediated cytotoxicity and perforin-granzyme-dependent killing of the cell. The 

perforin/granzyme pathway can induce apoptosis via either granzyme B or granzyme 

A. The extrinsic, intrinsic, and granzyme B pathways converge on the same terminal, 

or execution pathway. This pathway is initiated by the cleavage of caspase-3 and 

results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins, cross- 

linking of proteins, formation of apoptotic bodies, expression of ligands for 

phagocytic cell receptors and finally uptake by phagocytic cells. The granzyme A 

pathway activates a parallel, caspase-independent cell death pathway via single 

stranded DNA damage (Martinvalet et at, 2005).

Caspases have proteolytic activity and are able to cleave proteins at aspartic acid 

residues, although different caspases have different specificities involving recognition 

of neighboring amino acids. Once caspases are initially activated, there seems to be an 

irreversible commitment towards cell death. To date, 14 major caspases have been 

identified and broadly categorized into initiators (caspase-2,-8,-9,-10), effectors or 

executioners (caspase-3 ,-6,-7) and inflammatory caspases (easpase-1,-4,-5) (Cohen, 

1997). The other caspases that have been identified include caspase-11, which is
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reported to regulate apoptosis and cytokine maturation during septic shock, caspase- 

12, which mediates endoplasmic-specific apoptosis and cytotoxicity by amyloid-|3, 

caspase-13, which is suggested to be a bovine gene, and caspase-14, which is highly 

expressed in embryonic tissues but not in adult tissues (Hu et al, 1998; Nakagawa et 

al, 2000, Koenig et al, 2001; Kang et al, 2002).
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Figure 1.4 Schematic representation of apoptotic events. The two main pathways of 

apoptosis are extrinsic and intrinsic as well as a perforin/granzym'e pathway. Each requires 

specific triggering signals to begin an energy-dependent cascade of molecular events. Each 

pathway activates its own initiator caspase (8, 9, 10) which in turn will activate the 

executioner caspase-3. However, granzyme A works in a caspase-independent fashion. The 

execution pathway results in characteristic cytomorphologicai features including cell 

shrinkage, chromatin condensation, formation of cytoplasmic blebs and apoptotic bodies and 

finally phagocytosis of the apoptotic bodies by adjacent parenchymal cells, neoplastic cells or 

macrophages.
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1.2.4.1 Extrinsic or death receptor-mediated pathway

Extrinsic signaling at the cell surface can be initiated by aggregation of Fas receptors 

when they bind to the multivalent Fas Ligand (FasL). Both the death receptor (DR) 

and the ligand exist as trimers and the ‘super clustering5 of DRs following ligation is 

required to promote aggregation of procaspase 8 molecules within the DISC (Fanzo et 

al, 2003). This aggregation brings the cytoplasmic domains of the membrane 

receptors into close proximity and induces a conformational change that allows the 

assembly of a signaling complex, the death inducing signaling complex (DISC), at the 

cytoplasmic tail of the receptors. The DISC comprises the receptors and ligand as well 

as an "adaptor" protein, Fas associated death domain protein (FADD), that binds 

through its C-terminal DD to the ligand-bound receptor and recruits procaspase-8. 

Procaspase-8 in turn binds to the DED of FADD via its own N-terminal DED 

domains. As a consequence of DISC formation at ligand-bound receptors, several 

molecules of procaspase-8 are brought into close proximity, resulting in high local 

concentration of procaspase-8 (Figures 1.5 and 1.6).

One . hypothesis suggests that the low intrinsic activity of procaspase-8 allows the 

procaspase-8 zymogens to cleave and activate each other (induced proximity 

activation; Hengartner, 2000). Induced proximity activation has also been proposed 

for human caspase-2 and nematode CED-3 (Hengartner, 2000). However, other 

studies have suggested that the activation of caspase-8 requires dimerization 

(Boatright et al., 2003). Active caspase-8 heterotetramers are released from death 

inducing signalling complex (DISC) and are free to cleave and activate the effector 

caspase, caspase-3. In some cells caspase-8 leads to an amplification loop that 

involves caspase-8 cleavage of the Bcl-2 protein family member, Bid. When Bid is 

cleaved it can induce Bax-mediated release of cytochrome c from the mitochondria, 

further committing the cell to the apoptosis fate.
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(Gougeon and Kroenter. 2003)

Figure 1.5 The extrinsic pathway is initiated by the binding of tumour-necrosis factor 

(TNF)-family death-receptor ligands to their cognate receptors. Through their death 

domains (DDs), multimerized receptors interact with the DDs of adaptor proteins, which 

also contain death-effector domains (DEDs) that facilitate binding to pro-caspase-8 and/or 

pro-caspase-10 to form the death-inducing signal complex (DISC). As part of the DISC, the 

pro-caspases are cleaved into their active forms and initiate the intrinsic pathway of 

apoptosis. BID (BH3-interacting domain death agonist) is then cleaved to produce truncated 

(t)BID and the effector caspase cascade is activated. Death-receptor-induced apoptosis can 

be blocked by FLIP (FLICE-Iike inhibitory protein), which inhibits the proteolytic 

processing of caspase-8.
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Figure 1.6 Regulation of Apoptosis by FADD and FLIP proteins. Left, top-, the 

structure of FADD protein, with two boxes indicating one DED domain and one DD domain, 

is shown. The numbers indicate the amino acid residue. Within the DED domain, nuclear 

export sequence (NES) and nuclear localization sequence (NLS) have been identified: they 

determine the nuclear localization of FADD either in the nucleus or in the cytoplasm. In the 

COOH terminal site two serine residues (Ser 191 and Ser 194), essential for FADD function, 

are indicated. Right, top: the structure of the three c-FLIP isoforms, FLIPl, FLIPs and FLIPR 

with their structural domains is shown.

1.2.4.2 Perforin/granzyme pathway

T-cell mediated cytotoxicity is a variant of type IV hypersensitivity where sensitized 
CD:+8+ cells kill antigen-bearing cells. These cytotoxic T lymphocytes (CTLs) are 

able to kill target cells via the extrinsic pathway and the FasL/FasR interaction is the 

predominant method of CTL-induced apoptosis (Brunner et al., 2003). However, they 

are also able to exert their cytotoxic effects on tumor cells and virus-infected cells via 

a novel pathway that involves secretion of the transmembrane pore-forming molecule

Chapter 1. Introduction 19



perforin with a subsequent exophytic release of cytoplasmic granules through the pore 

and into the target cell (Trapani and Smyth, 2002). The serine proteases granzyme A 

and granzyme B are the most important component within the granules (Pardo et al, 

2004).
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Granzyme B will cleave proteins at aspartate residues and will therefore activate 

procaspase-10 and can cleave factors like ICAD (Inhibitor of Caspase Activated 

DNAse) (Sakahira et al, 1998). Reports have also shown that granzyme B can utilize 

the mitochondrial pathway for amplification of the death signal by specific cleavage 

of Bid and induction of cytochrome c release (Barry and Bleackley, 2002; Russell and 

Ley, 2002). However, granzyme B can also directly activate caspase-3. In this way, 

the upstream signaling pathways are bypassed and there is direct induction of the 

execution phase of apoptosis.

It is suggested that both the mitochondrial pathway and direct activation of caspase-3 

are critical for granzyme B-induced killing (Goping et al, 2003). Recent findings 

indicate that this method of granzyme B cytotoxicity is critical as a control 

mechanism for T cell expansion of type 2 helper T (Th2) cells (Devadas et al, 2006). 

Moreover, findings indicate that neither death receptors nor caspases are involved 

with the T cell receptor-induced apoptosis of activated Th2 cells because blocking 

their ligands has no effect on apoptosis. On the other hand, Fas-Fas ligand interaction, 

adapter proteins with death domains and caspases are all involved in the apoptosis and 

regulation of cytotoxic Type 1 helper cells whereas granzyme B has no effect.

Granzyme A is also important in cytotoxic T cell induced apoptosis and activates 

caspase independent pathways. Once in the cell, granzyme A activates DNA nicking 

via DNAse NM23-H1, a tumor suppressor gene product (Fan et al, 2003). This 

DNAse has an important role in immune surveillance to prevent cancer through the 

induction of tumor cell apoptosis. The nucleosome assembly protein SET normally 

inhibits the NM23-H1 gene. Granzyme A protease cleaves the SET complex thus 

releasing inhibition of NM23-H1, resulting in apoptotic DNA degradation. In addition
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to inhibiting NM23-H1, the SET complex has important functions 

structure and DNA repair. The proteins that make up this complex (SET^ 

and HMG2) seem to work together to protect chromatin and DNA sT 

(Lieberman and Fan, 2003). Therefore, inactivation of this complex by granzyme A 

most likely also contributes to apoptosis by blocking the maintenance of DNA and 

chromatin structure integrity.

1.2.4.3 Intrinsic or Mitochondria mediated pathway

The intrinsic signaling pathways that initiate apoptosis involve a diverse array of non­

receptor mediated stimuli that produce intracellular signals that act directly on targets 

within the cell and are mitochondrial initiated events (Figure 1.7). The stimuli that 

initiate the intrinsic pathway produce intracellular signals that may act in either a 

positive or negative fashion. Negative signals involve the absence of certain growth 

factors, hormones and cytokines that can lead to failure of suppression of death 

programs, thereby triggering apoptosis. In other words, there is the withdrawal of 

factors, loss of apoptotic suppression, and subsequent activation of apoptosis. Other 

stimuli that act in a positive fashion include, but are not limited to. radiation, toxins, 

hypoxia, hyperthermia, viral infections, and free radicals.

All of these stimuli cause changes in the inner mitochondrial membrane that results in 

an opening of the mitochondrial permeability transition (MPT) pore, loss of the 

mitochondrial transmembrane potential and release of two main groups of normally 

sequestered pro-apoptotic proteins from the intermembrane space into the cytosol 

(Saelens et al., 2004). The first group consists of cytochrome c, Smac/DIABLO. and 

the serine protease HtrA2/Omi (Cai et al., 1998; Du et al., 2000; Loo et al., 2002; 

Garrido et al., 2005). These proteins activate the caspase-dependent mitochondrial 

pathway. Cytochrome c binds and activates Apaf-1 as well as procaspase-9. forming 

an “apoptosome” (Hill et al., 2004).

The clustering of procaspase-9 in this manner leads to caspase-9 activation. 

Smac/DIABLO and HtrA2/Omi are reported to promote apoptosis by inhibiting IAP
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(inhibitors of apoptosis proteins) activity (van Loo et al, 2002; Schimmer, 2004). 

Additional mitochondrial proteins have also been identified that interact with and 

suppress the action of IAP however gene knockout experiments suggest that binding 

to IAP alone may not be enough evidence to label a mitochondrial protein as “pro- 

apoptotic” (Ekert and Vaux, 2005).

The second group of pro-apoptotic proteins, AIF, endonuclease G and CAD, are 

released from the mitochondria during apoptosis, but this is a late event that occurs 

after the cell has committed to die. AIF leads to early form of nuclear condensation 

which is referred to as “stage I” condensation (Susin et al, 2000). Endonuclease G 

also translocates to the nucleus where it cleaves nuclear chromatin to produce 

oligonucleosomal DNA fragments (Li # al., 2001). AIF and endonuclease G both 

function in a caspase-independent manner. CAD is subsequently released from the 

mitochondria and translocates to the nucleus where, after cleavage by caspase-3, it 

leads to oligonucleosomal DNA fragmentation and a more pronounced and advanced 

chromatin condensation (Enari et al, 1998). This later and more pronounced 

chromatin condensation is referred to as “stage II” condensation (Susin et al, 2000).

The control and regulation of these apoptotic mitochondrial events occurs through 

members of the Bcl-2 family of proteins (Cory and Adams, 2002). The tumor 

suppressor protein p53 has a critical role in regulation of the Bcl-2 family of proteins, 

however the exact mechanisms have not yet been completely elucidated (Schuler and 

Green, 2001). The Bcl-2 family of proteins governs mitochondrial membrane 

permeability and can be either pro-apoptotic or anti-apoptotic. To date, a total of 25 

genes have been identified in the Bcl-2 family. Some of the anti-apoptotic proteins 

include Bcl-2, Bcl-x, Bcl-XL, Bcl-XS, Bcl-w, BAG, and some of the pro-apoptotic 

proteins include Bcl-10, Bax, Bak, Bid, Bad, Bim, Bik, and Blk. These proteins have 

special significance since they can determine if the cell commits to apoptosis or aborts 

the process. Bcl-2 family members are critical regulators of mitochondrial-dependent 

apoptosis, whereby pro- and anti-apoptotic family members control the permeability 

of the mitochondrial outer membrane to apoptogenic proteins. The initial events are 

thought to be the down-regulation of the anti-apoptotic mitochondrial membrane
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protein Bcl-2, and the activation of the pro-apoptotic Bcl-2 family member, Bax. Bax 

is activated directly by the p53 tumour suppressor protein following stress induction, 

or indirectly through the p53-activation of the Bcl-2 pro-apoptotic members, phorbol- 

12-myristate-13-acetate-induced protein 1 (Noxa) and PUMA, or thorough p53- 

independent mechanisms. The activation of Bax results in its movement from the 

cytosol to the mitochondrial membrane, where it oligomerises and embeds itself in the 

membrane to create a pore. The down-regulation of Bcl-2 is required to prevent it 

blocking Bax oligomerization. The formation of the Bax pore, as well as the 

consequent loss of mitochondrial membrane potential, causes proteins like 

cytochrome c and AIF to leak out of the mitochondria into the cytosol. Once in the 

cytosol, cytochrome c forms a complex with Apaf-1 (apoptosis protease activating 

factor) and caspase-9 called the apoptosome. The Apaf-1 activation of caspase-9 

within the apoptosome is a key event that triggers the activation of the caspase 

cascade, including caspases-3 and -7, which execute the cell death programme.

Small
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Figure 1.7 Mitochondrial involvement in apoptosis. A number of agents have been 
implicated in modulating mitochondrial integrity. Bel (Olson and Kumbiuili, 2001) an£j 

antiapoptotic), calcium, reactive oxygen species, and sphingolipid precursors and metabolites 

can all affect mitochondrial membrane depolarization. Intrinsic factors such as mitochondrial 

[Ca2+] and ADP/ATP ratio may affect mitochondrial sensitivity to externally applied stimuli. 

Consequences of mitochondrial involvement in apoptosis include release of catabolic and 

apoptogenic factors, and breakdown of oxidative phosphorylation (OxPhos).
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1.2.4.3.1 Apoptosome formation and pro-caspase 9 activation

Apaf-1 is a multidomain protein that consists of three functional regions, an N- 

terminal caspase-recruitment domain (CARD), a nucleotide-binding and 

oligomerization domain (NOD; also referred to as NB-ARC) and a string of WD40 

repeats in the C-terminal half of the protein. CARD domain is involved in homotypic 

interaction with CARD domain of caspase-9. The WD40 repeats are responsible for 

the binding of cytochrome c. The NB-ARC domain forms the centre of 

oligomerization and, therefore, apoptosome formation. In the absence of an apoptotic 

signal, Apaf-1 exists in a monomeric form. It is thought that in this form the WD40- 

repeat domains restrain Apaf-1 in an autoinhibited state. A likely scenario is that 

during the expression of Apaf-1, (d)ATP is incorporated into the latent (locked) form 

to generate the centre of the autoinhibited model (Kim et al, 2005; Yu et al, 2005). 

The binding of cytochrome c increases Apaf-1 affinity for dATP/ATP by about 10- 

fold, perhaps by opening up the nucleotide binding site or stabilizing the bound 

nucleotide to Apaf-1 (Jiang and Wang, 2000). The binding of nucleotide to the Apaf- 

1/eytocbrome c complex triggers its oligomerization to form the apoptosome, a 

multimeric Apaf-1 and cytochrome c complex (Zou et al., 1999). The CARD domains 

of Apaf-1 become exposed in the apoptosome, which subsequently recruit multiple 

procaspase-9 molecules to the complex and facilitate their autoactivation. Unlike the 

executioner caspases, the zymogen of caspase-9 is primarily a monomer at 

physiological concentration, a property it shares with other initiator caspases. Only 

the caspase-9 bound to the apoptosome is able to efficiently cleave and activate 

downstream executioner caspases such as caspase-3 (Rodriguez and Lazebnik, 1999).
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1.2.3.4 Execution of apoptosis by caspases

The extrinsic and intrinsic pathways both end at the point of the execution phase, 

considered the final pathway of apoptosis. It is the activation of the execution 

caspases that begins this phase of apoptosis. Execution caspases activate cytoplasmic 

endonuclease, which degrades nuclear material, and proteases that degrade the nuclear 

and cytoskeletal proteins. Caspase-3, caspase-6, and caspase-7 function as effector or 

“executioner” caspases (Slee et al, 2001).
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Caspase-3 is considered to be the most important of the executioner caspases and is 

activated by any of the initiator caspases (caspase-8, caspase-9, or caspase-10). 

Caspase-3 specifically activates the endonuclease CAD. In proliferating cells CAD is 

complexed with its inhibitor, ICAD. In apoptotic cells, activated caspase-3 cleaves 

ICAD to release CAD (Sakahira et ah, 1998). CAD then degrades chromosomal DNA 

within the nuclei and causes chromatin condensation. Caspase-3 also induces 

cytoskeletal reorganization and disintegration of the cell into apoptotic bodies. 

Gelsolin, an actin binding protein, has been identified as one of the key substrates of 

activated caspase-3. Gelsolin will typically act as a nucleus for actin polymerization 

and will also bind phosphatidylinositol biphosphate, linking actin organization and 

signal transduction. Caspase-3 will cleave gelsolin and the cleaved fragments of 

gelsolin, in turn, cleave actin filaments, in a calcium independent manner. These 

results in disruption of the cytoskeleton, intracellular transport, cell division, and 

signal transduction (Kothakota et ah, 1997).
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Phagocytic uptake of apoptotic cells is the last component of apoptosis. Phospholipid 

asymmetry and extemalization of phosphatidylserine on the surface of apoptotic cells 

and their fragments is the hallmark of this phase. Although the mechanism of 

phosphatidylserine translocation to the outer leaflet of the cell during apoptosis is not 

well understood, it has been associated with loss of aminophospholipid translocase 

activity and nonspecific flip-flop of phospholipids of various classes (Bratton et ah, 

1997). Research indicates that Fas, caspase-8, and caspase-3 are involved in the 

regulation of phosphatidylserine extemalization on oxidatively stressed erythrocytes 

however caspase-independent phosphatidylserine exposure occurs during apoptosis of 

primary T lymphocytes (Ferraro-Peyret et al., 2002; Mandal et ah, 2005). The 

appearance of phosphotidylserine on the outer leaflet of apoptotic cells then facilitates 

noninflammatory phagocytic recognition, allowing for their early uptake and disposal 

(Fadok et ah, 2001). This process of early and efficient uptake with no release of 

cellular constituents, results in essentially no inflammatory response.
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Figure 1.8 Activation of executioner caspases a | Activation of executioner caspases. 

Caspases are initially expressed as single-chain proteins that undergo an activation cleavage. 

An executioner caspase is typically cleaved twice, leading to the release of a short N-terminal 

peptide. The actual activation cleavage divides the catalytic unit into a large and small 

subunit. The position of the active-site Cys residue is indicated in orange.

b | Surface rendering of an executioner caspase, caspase-7, before and after activation 

cleavage. The same colour code as in panel a is used, and important loop regions are shown as 

ribbons. Cleavage releases strains on surface loops (red and orange) and the chains rearrange. 

The newly formed termini of the large and small subunits (orange) interact with each other 

across the other catalytic unit and with the red loops to align the substrate-binding pockets at 

the bottom of the active-site cleft. This results in a highly active caspase (right).

c | Although they can be cleaved (as revealed, for example, in their crystal structures), 

initiator caspases, such as caspase-9, show full activity in their uncleaved forms, which could 

be due to the long linker loops in between subunits. Their activity is regulated by dimerization 

instead of by cleavage. Initiator caspases exist as inactive monomers (left). Dimerization 

allows for the formation of a productive active site, shown here in the structure of cleaved, 

dimeric caspase-9 (right). Interestingly, only one of the two sites adopts the active form in the 

crystal structure of caspase-9.
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1.2.4 The discovery of metacaspases and paracaspases

At the end of 2000, distant caspase relatives were discovered in silico in plants, fungi, 

and protozoa and were designated metacaspases (Uren et al, 2000). The sequences of 

previously found caspase like proteins (paracaspases) in metazoans and in the slime 

mold D. discoideum had been used in an iterative PSI-BLAST search of plant- 

expressed sequence tags (Aravind et al, 1999). Paracaspases contain a prodomain 

consisting of a death domain and one or two Ig domains, whereas two types of 

metacaspases can be distinguished (Figure 1.9 A). Type I metacaspases have an N- 

terminal extension reminiscent of the prodomain in initiator and inflammatory 

caspases. Type II metacaspases lack such a prodomain but harbor a linker region 

between the putative large and small subunits (Uren et al, 2000; Vercammen et al, 

2004). Both meta- and paracaspases contain a conserved catalytic His/Cys dyad, and 

structure predictions show that they bear the core of the easpase/hemoglobinase fold 
(Figure 1.9 B), which is the determining structural feature of all clan CD2+ Cys 

proteases (Rawlings and Barrett, 1993; Aravind and Koonin, 2002).
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1.2.4.1 Metacaspases and cell death

In the Arabidopsis genome, nine metacaspase genes are present: three of type I 

(Arabidopsis thaliana metacaspase 1 [AtMCl] to AtMC3) and six of type II (AtMC4 

to AtMC9; Vercammen et al, 2004). Upon overproduction in Escherichia coli, type II 

metacaspases autoprocess and display a Cys-dependent proteolytic activity against 

synthetic Pl-Arg substrates, whereas AtMC9 also cleaves Pl-Lys substrates, albeit 

with low efficiency (Vercammen et al, 2004, 2006; Watanabe and Lam, 2005). Type 

I metacaspases from Arabidopsis do not autoprocess upon recombinant 

overproduction and, like mammalian initiator caspases, possibly require induced 

oligomerization within an activation platform (Fuentes-Prior and Salvesen, 2004).

A yeast strain (Saccharomyces cerevisiae) with a disrupted YCA1 gene (Aycal) was 

also shown to be threefold less sensitive to H2O2, and 125% of the cells escaped from 

aging-related cell death (Madeo et al, 2002). Interestingly, Extracts of FLC^-treated 

YCA1-overproducing yeast were highly active toward the synthetic caspase substrates
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1.2.4.2 Paracaspases and cell death

Paracaspases (human: MALT1) are related to caspases present in animals and slime 

mold, in contrast to metacaspases, which are present in plants, fungi, and 

"protists"(Uren et al., 2000). Paracaspases are more similar to caspases than 

metacaspases are, indicating that this group of proteases diverged from caspases from 

a common metacaspase ancestor.

Paracaspase has been first identified in a recurrent t(l I;18)(q21;q21) chromosomal 

translocation associated with a subset of MALT lymphoma. This leads to a fusion 

oncoprotein consisting of the carboxyl terminus of MALT 1 and the amino terminus of 

C-IAP2. Genetic ablation of the paracaspase gene is mice and biochemical studies 

have shown that paracaspase is a crucial protein for T and B lymphocytes activation. 

It has an important role in the activation of the transcription factor NF-kB, in the 

production of interleukin-2 (IL-2) and in T and B lymphocytes proliferation (Ruefli- 

Brasse et al., 2003; Ruland et al, 2003). In addition, a role for paracaspase has been 

shown in the innate immune response mediated by the zymosan receptor Deetin-1 in 

macrophages and dendritic cells, and in response to the stimulation of certain G 

protein-coupled receptors (Wegener and Krappmann, 2007). Sequence analysis 

proposes that paracaspase has a N-terminal death domain, two central 

immunoglobulin-like domains involved in the binding to the B-cell lymphoma 10 

(Bel-10) protein and a caspase-like domain. However, alleged paracaspase of D. 

discoideum is a surprising element in this phylogenetic distribution because slime 

molds belong to the Protozoa kingdom. Phylogenetic analysis of the sequence of its 

putative catalytic p20 subunit reveals that it is almost equally related to that of 

caspases, metacaspases,. paracaspases, and their bacterial homologues, making its 

classification as a separate paracaspase not well founded. Also, its prodomain lacks a 

death domain and Ig domains, which is typical of animal paracaspases. Therefore, it is 

tempting to classify the D. discoideum protease as a metacaspase rather than a 

paracaspase (Cavalier-Smith, 2004; Vercammen et al, 2007).
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1.3 Paraptotic cell death or caspase-independent PCD

PCD can occur in complete absence of caspases, and other noncaspase 

proteases have been described to be able to execute PCD, It has become clear that 

inhibition of caspase activation does not necessarily protect against cell death stimuli 

but rather can even enhance underlying caspase independent death programs 

(Sperandio et al, 2000). Most commonly observed caspase independent cell death is 

paraptosis. The features of paraptosis differ from those of apoptosis and involve 

cytoplasmic vacuolation, mitochondrial swelling and absence of caspase activation or 

typical nuclear changes, including pyknosis and DNA fragmentation (Sperandio et al, 

2000; Wyllie and Golstein, 2001).

Table 1.1 Morphological features of Apoptosis, Necrosis and paraptosis: A 

comparison between three major forms of cell death.

Para meters ......... ...... Vcnisis - Paraptosis

Outset Shrinking of 
cytoplasm, 
condensation of 
nucleus.

Swelling of 
cytoplasm and 
mitochondria.

Cxloplasmic
vacuolisation

Plasma
membrane

Blebbing of plasma 
membrane without 
loss of integrity

Loss of membrane 
integrity “

Nuclear
chromatin

Aggregation of 
chromatin at the 
nuclear membrane.

Karyolysis Chromatin
condensation

Cytoplasmic
organelles

Last stage swelling Very early 
swelling

Last stage swelling in 
case of ER and 
mitochondria

Mitochondr
ia

Mitochondria 
become leaky due to 
pore formation 
involving proteins of 
the bcl-2 family.

Disintegration 
(swelling) of 
organelles

Mitochondria become 
leaky due to pore 
formation involving 
proteins of the bcl-2 
family

Fate of cell Formation of 
apoptotic body

Swelling and later 
disintegration

Absence of apoptotic 
body formation
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Table 1.2 Biochemical features of Apoptosis

Biot.umiial 1 intuits

Parameters Apoptosis vi'ro Pamptosi*.

Regulation Tightly regulated 
process involving 
activation and 
enzymatic steps.

Loss of regulation of 
ion homeostasis.

Energy
input

Energy (ATP)- . 
dependent (active 
process, does not occur 
at 4°C)

No energy requirement 
(passive process, also 
occurs at 4°C)

—

DNA Non-random mono- and 
oligonucleosomal length 
fragmentation of DNA 
(Ladder pattern after 
agarose gel 
electrophoresis)

Random digestion of 
DNA (smear of DNA 
after agarose gel 
electrophoresis)

Large scale
(>50kb
fragments)?

Timing Pre lytic DNA 
fragmentation

Post lytic DNA 
fragmentation (= late 
event in cell death)

-

Biochemical
events

Activation of caspase 
cascade (mainly 
caspase-3)

Absence of caspase-3 
activation but caspase 1 
activation may occur

AIF mediated 
but caspase 1 
activation may 
occur

PARP 
cleavage

Presence of PARP 
cleavage

Presence of PARP 
cleavage -

Table 1.3 Physiological impact of Apoptosis, Necrosis and paraptosis

,,...... Ssjss
Extent Localized effect that 

destroys individual cells
Affects groups of 
contiguous cells

-

Induction Physiological:
Induced by physiological 
stimuli (lack of 
growthfactors, changes in 
hormonal environment).

Physicochemical: Evoked by 
non-physiological 
disturbances (complement 
attack, lytic viruses, 
hypothermia, metabolic 
poisons, hypoxia, ischemica)

Phagocytos
is

Phagocytosis by adjacent 
cells or macrophages

Phagocytosis by 
macrophages

-

Immune
system

No inflammatory response Significant inflammatory 
response.

-

(Table contents from Susan et al, 2005, Zong et al., 2006, Wang et al, 2004, Sperandio et 

al., 2000).
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There is increasing evidence that this alternative, non-apoptotic PCD exists in parallel 

with apoptosis. For instance, T9 glioma cells expressing membrane macrophage 

colony-stimulating factor were killed by polymorphonuclear leukocytes and 

macrophages with vacuolization that begins with progressive swelling of 

mitochondria and the endoplasmic reticulum (ER).

Paraptosis has been described to be mediated by mitogen activated protein kinases 

(Sperandio et al., 2004) and can be triggered by the TNF receptor family member 

TAJ/TROY (Wang et al., 2004), the insulin like growth factor I receptor (Sperandio et 

al., 2004) and poly(ADP-ribose) polymerase (PARP) via DNA damage (Fig. 1.10). 

PARP mediated paraptosis involves utilization of NAD+ and depletion in energy 

levels, change in mitochondrial membrane potential, release of A1F and finally 

leading to cell death.

Transcription ■
Damage

Caspas e-independent

Repair

Oxyradicais, 
peroxinltrlte. 

alkylating agents 
irradiation

V*
Free PAR polymer 

and PAR-tioond proteins

Nuclear damage signal
NAD-+ ATP+ Nucleus

Excessive damage Mild damage

TPFNDS in Pharmacological Scinrinwis

(Hong et al., 2004)

Figure 1.10 Poly(ADP-ribose) polymerase 1 (PARP-1)
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Paraptosis mediated by mitogen activated protein kinases (MAPKs) is shown to be 

inhibited by AIP-1/Alix. The inhibition of cell death by AIP-l/Alix is specific for 

paraptosis, it does not affect apoptosis (Sperandio et ah, 2004). Engagement of at 

least two signaling pathways triggered by IGFIR, the MAPK/ERK and JNK 

pathways, occurred in paraptosis. Involvement of MAPK in paraptosis is surprising 

since this pathway has typically been associated with cell survival or proliferation 

rather than cell death (Chang and Karin, 2001). However, other groups have 

demonstrated that the activation of ERKs is necessary for cell death in different 

paradigms, such as neuronal cell death induced by glutamate (Mukherjee and 

Pasinetti, 2001). Further work is required to characterize the upstream activators and 

the downstream targets of MAPK involved in nonapoptotic PCD, and to discern the 

MAPK dependent signals that distinguish a trophic response from a PCD response.

Recent study has demonstrated that taxol (a potent anti cancer drug) induced 

paraptosis required neither protein synthesis nor the participation of MEK, JNK, and 

p38, which was different from the insulin like growth factor I receptor (IGFIR) 

induced paraptosis. Taxol induced morphological changes and motility of 

endoplasmic reticulum; massive vacuolization is observed which could be due to pore 

formation in ER membrane by Bcl-XL or BK channel activation (Sun el al., 2010). 

Accumulating evidence now suggest that necrosis like apoptosis can be executed by 

regulated mechanisms. Such cell death is termed as necroptosis. Necroptosis involves 

extensive network of genes and different pathways activated by RIP kinase (Hitomi et 

ah, 2008).

Paraptosis is mainly mediated by three proteins among others: Poly(ADP-ribose) 

polymerase (PARP), Poly(ADP-ribose) glycohydrolase (PARG) and Apoptosis 

inducing factor (AIF).

1.3.1 PolyfADP-ribose) polymerase (PARP)

Nuclear processes involving access to or modification of the genome, such as 

transcription and DNA repair, require a host of structural and regulatory proteins.
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Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein 

and a member of the PARP family, has a number of distinct biochemical activities 

that make it well suited for both structural and regulatory roles across the genome 

(Hassa and Hottiger, 2008; Kim et al, 2005; Schreiber et al, 2006). PARP-1 can bind 
to various DNA structures and nucleosomes, and it possesses an NAD+-dependent 

catalytic activity that synthesizes a negatively charged polymer on target proteins 

called poly(ADP-ribose) or PAR. Although historically studied in the context of DNA 

damage detection and repair, PARP-1 has more recently been linked to the regulation 

of chromatin structure and transcription, DNA methylation and imprinting, insulator 

activity, and chromosome organization aiongwith cell death.

13.1.1 PARP-1 Structure and Biochemical Activities

PARP-1 is a highly conserved protein of 116 kDa (D’Amours et al, 1999). Like 

many other chromatin- and transcription related proteins, it has a modular structure 

comprising multiple independently folded domains. The major functional units of 

PARP-1 are an amino-terminal DNA-binding domain (DBD), a central 
automodification domain (AMD), and a carboxyterminal catalytic domain (CD2+) 

(Hakme et al, 2008; Schreiber et al, 2006) (Figure 1.11 A). The DBD contains two 

Cys-Cys-His-Cys zinc fingers (Fl/Znl and FII/Zn2) that mediate binding to DNA, a 

newly discovered third zinc binding domain (FIII/Zn3) that mediates interdomain 

contacts important for DNA-dependent enzyme activation (Langelier et al, 2008, 

2010), a nuclear localization signal (NLS), and a caspase-3 cleavage site (Hakme et 

al, 2008; Schreiber et al, 2006). The AMD contains a BRCT (BRCA1 C terminus) 

fold, which mediates protein-protein interactions (e.g., with DNA repair enzymes). 
The CD2+, which is the most conserved domain across the PARP family, contains a 

PARP signature motif, which binds NAD+, as well as a “WGR” motif, which is 

named after the most conserved amino acid sequence in the motif (Trp, Gly, Arg) and 

has an unknown function. The structures of these domains and motifs are shown in 

Figure 1.1 IB. Together, the structural and functional domains of PARP-1 confer the 

activities required for the broad range of functions of PARP-1 in the nucleus.
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Figure 1.11 Structural and Functional Organization of PARP-1 and PARP-2 (A)

Schematic representation of human PARP-1 and PARP-2 with the functional domains noted 

in the text. (B) Structures of the six structural and functional domains in human PARP-1: FI 

(PDB 2DMJ), FII (PDB 2CS2), Fill (PDB 2RIQ), BRCT (PDB 2COK), WGR (PDB 2CR9), 

and catalytic domain.

1.3.1.2 Biochemistry of PARP-1 DNA Binding, Chromatin Binding, and 

Genomic Localization

Studies over the past few decades have shown that PARP-1 associates with chromatin 

in specific patterns that relate to its function (Kraus, 2008; Kraus and Lis, 2003; Tulin 

et al., 2003). This association is driven by interactions with DNA, nucleosomes, or 

other chromatin associated proteins, which are not mutually reflected in a recent 

structure-based classification of PARP family members into three groups based on 

their catalytic domains: (1) PARPs 1-5, which are bona fide PARPs containing a 

conserved glutamate (Glu 988 in PARP-1) that defines the PARP catalytic activity; 

(2) PARPs 6-8, 10-12, and 14-16, which are confirmed or putative mARTs; and (3) 

PARPs 9 and 13, which lack key NAD+-binding residues and the catalytic glutamate, 

and are likely to be inactive (Kleine et al., 2008).

PARP family members localize to various cellular compartments, including the 

nucleus, cytoplasm, mitochondria, and vault particles, although the subcellular
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localization and function of many of the PARPs are unknown (Ame et al, 2004; 

Hassa and Hottiger, 2008; Cookson et al., 1999). The primary nuclear PARPs are 

PARP-1, PARP-2 (the closest paralog to PARP-1), PARP-3, and tankyrases 1 and 2 

(PARP-5a and -5b) (Ame et al, 2004; Hakme et al, 2008; Hassa and Hottiger, 2008; 

Schreiber et al, 2006). PARP-1 binds to a variety of DNA structures, including 

single- and double-strand breaks, crossovers, cruciforms, and supercoils, as well as 

some specific double-stranded DNA sequences (Kraus, 2008; Kraus and Lis, 2003). 

PARP-1 also binds to nucleosomes in a specific manner, interacting with both DNA 

and histones at or near the dyad axis where the DNA enters and exits the nucleosome 

(Kim et al, 2004). Finally, PARP-1 can interact with a wide variety of chromatin- 

associated proteins, including components of the transcription machinery, sequence- 

specific DNA-binding transcription factors, chromatin-modifying enzymes, and 

histone variants (e.g., macroH2A) (Kim et al, 2005; Kraus, 2008; Kraus and Lis, 

2003; Tulin et al, 2003). Interactions with these proteins allow for indirect 

association of PARP-1 with chromatin. By binding to chromatin, PARP-1 can alter 

the structure of nucleosomes, as well as the composition or compaction state of 

chromatin (Kim et al, 2004; Kraus, 2008; Kraus and Lis, 2003; Langelier et al, 2010; 

Tulin et al, 2003; Wacker et al, 2007). This may occur through target protein 

modification by PARP-1’s enzymatic activity, as well as competition for binding sites 

on nucleosomes. For example, PARP-1 may displace the linker histone HI from 

nucleosomes by PARylating it or by competing for overlapping binding sites on the 

nucleosomes (Ju et al., 2006; Kim et al, 2004; Krishnakumar et al, 2008).

A recent genomic localization study has shown that PARP-1 binds at the promoters of 

most actively transcribed, genes (Krishnakumar et al, 2008). The binding of PARP-1 

at promoters correlates with the binding of Pol II, gene expression, and the presence 

of histone H3 lysine 4 trimethylation (H3K4me3), a histone modification that marks 

active promoters. PARP-1 also binds to chromatin outside of promoter regions, 

including enhancers (Krishnakumar et al, 2008). In response to genotoxic stress, 

PARP-1 relocalizes to sites of DNA damage (i.e., nicks, breaks) (Haince et al, 2008; 

Mortusewicz et al, 2007). Whether this DNA damage-induced relocalization results 

in a global redistribution of PARP-1 away from promoters, as was shown recently for
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the NAD+-dependent chromatin regulator Sirtl (Oberdoerffer et al, 2008), remains to 

be determined. This is an attractive model that fits well with the global reduction in 

transcription observed in response to DNA damage.

1.3.1.3 Catalytic Activity, Binding Partners and Targets

PAR is a large, negatively charged polymer that functions as a posttranslational 

modification, as well as a free polymer. Most of the PAR in the cell is produced by 

the catalytic activity of PARP-1, which catalyzes the polymerization of ADP-ribose 

units from donor NAD+ molecules on target proteins (D’Amours et al, 1999). The 

ADP-ribose units are linked to each other via glycosidic ribose-ribose bonds, and the 

resulting PAR polymers may be linear or branched (D’Amours et al, 1999).

PARP-1 catalytic activity is regulated through allosteric mechanisms involving a 

range of binding partners, including damaged DNA, histones, nucleosomes, and an 

assortment of nuclear proteins (D’Amours et al, 1999; Kraus and Lis, 2003; Tulin et 

al, 2003). PARP-1 catalytic activity is also regulated by posttranslational 

modifications; autoPARylation of PARP-1 inhibits its catalytic activity, while 

phosphorylation by Erkl/2 enhances its catalytic activity (Kauppinen et al, 2006). 

PARP-1 catalytic activity may also be regulated by nicotinamide mononucleotide 

adenylyltransferase-1 (NMNAT-1), a nuclear NAD+ synthase that interacts with 

PARP-1 and can produce NAD+ locally for use by nuclear enzymes that require 

NAD+, such as PARP-1 and Sirtl (Kim et al, 2004; Zhang et al, 2009). PARP-1, 

which has many protein binding partners in the nucleus, has been identified as a 

component of a wide variety of protein complexes, including those that (1) repair 

DNA damage (e.g., condensin I/XRCC1), (2) regulate transcription (e.g., Mediator, 

TLE corepressor), (3) function as insulators (e.g., CTCF), and (4) methylate DNA 

(e.g., DNMT-1) (Figure 5) (Caiafa et al, 2009; Caiafa and Zlatanova, 2009; El- 

Khamisy et al, 2003; Guastafierro et al, 2008; Hassa et al, 2005; Heale et al, 2006; 

Ju et al, 2004; Malanga and Althaus, 2005; Pavri et al, 2005; Pleschke et al, 2000; 

Zampieri et al, 2009). Many of these binding partners have been reported to be 

PARylated as targets of PARP-1 catalytic activity (Kim et al, 2005; Kraus, 2008;
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Kraus and Lis, 2003). Covalent attachment of PAR is thought to alter the activity of 

target proteins through both steric and charge effects, ultimately preventing protein- 

protein interactions, protein-nucleic acid interactions, enzymatic activity, or 

subcellular localization (Hassa and Hottiger, 2008; Schreiber et al., 2006).

Known or suspected targets of PARP-1 catalytic activity include histones, 

transcription factors, nuclear enzymes, and nuclear structural proteins. For example. 

PARP-1 can PARylate histones, especially HI. H2A. and H2B, which may play a role 

in the regulation of chromatin structure, although the extent of histone modification 

and its relevance to nuclear processes remains to be clarified (D’Amours et al., 1999; 

Kim et al., 2005; Kraus. 2008; Kraus and Lis, 2003). PARP-1 also PARylates a 

number of DNA repair proteins, including p53 (Kanai et al., 2007; Mendoza-Alvarez 

and Alvarez-Gonzalez, 2001), which is not surprising, given PARP-l’s well- 

characterized role in DNA repair. Although the functional significance of p53 

PARylation has been elusive, a recent study suggests that PARylation of p53 on 

specific sites (likely Glu 255, Asp 256, and Glu 268) can prevent p53 export from the 

nucleus by blocking its interaction with the nuclear export receptor Crml (Kanai et 

al., 2007). PARP-1 has also been reported to PARylate and alter the function of 

numerous other transcription factors, including CTCF, AP-1, YY1, and NF-kB 

(Kraus, 2008), as well as nuclear enzymes, such as aurora B kinase (Monaco et al., 

2005). thereby inhibiting their function. As these examples suggest. PARylation of 

target proteins by PARP-1 plays a central role in determining cellular functions of 

PARP-1.

1.3.1.4 Posttranslational Modifications of PARP-1

Like other nuclear proteins that play key roles in regulatory processes, PARP-1 is 

subject to a variety of covalent posttranslational modifications as endpoints of cellular 

signaling pathways. These include PARylation, acetylation, phosphorylation, 

ubiquitylation, and SUMOylation; the latter two were more recently discovered and 

are less well characterized (Cohen-Armon et al., 2007; Hassa et al., 2005; Kauppinen 

et al., 2006; Martin et al., 2009; Messner et al., 2009).
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PARylation: PARP-1 is PARylated by itself, PARP-2, and possibly other PARPs. 

Automodification of PARP-1 (i.e., auto-PARylation) may occur as an extensive 

addition of ADP-ribose in chains >200 units in length or as a more modest addition of 

a single unit or chains up to 20 units in length (i.e., mono- or oligoPARylation, 

respectively) (D’Amours et al, 1999; Mendoza-Alvarez and Alvarez-Gonzalez, 

1999). Whether this occurs primarily in cis or tram (i.e., intra- or intermolecularly, 

respectively) has been debated in the literature but is typically considered 

intermolecular (Altmeyer et al, 2009; Alvarez-Gonzalez and Mendoza-Alvarez, 

1995; Mendoza-Alvarez and Alvarez-Gonzalez, 1993, 1999). Extensive auto- 

PARylation of PARP-1 (e.g., in response to DNA damage) inhibits its DNA-binding 

and catalytic activities (D’Amours et al, 1999). Biochemical and cell-based assays 

have shown that activation and auto-PARylation of PARP-1 result in its release from 

chromatin (Kim et al, 2004; Petesch and Lis, 2008; Tulin and Spradling, 2003; 

Wacker et al, 2007). The effect of less-extensive auto-PARylation of PARP-1 is not 

clear; modestly modified PARP-1 may have altered activities but retain its association 

with chromatin.

Initial reports suggested that PARylation of PARP-1 occurred on as many as 28 

glutamate residues, primarily in the AMD and DBD (D’Amours et al, 1999; 

Schreiber et al, 2006). In contrast, a recent study has shown that the glutamate 

residues in the AMD are not required for PARylation of PARP-1 (Altmeyer et al., 

2009). Rather, based on amino acid substitutions (i.e., Lys to Arg), the authors 

conclude that at least three lysine residues in the AMD (Lys 498, 521, and 524) are 

sites of automodification on PARP-1 (Altmeyer et al, 2009).

Phosphorylation and Acetylation:

PARP-1 is phosphorylated by ERK1/2 at Ser 372 and Thr, 373, and JNK1 at 

undetermined sites (Kauppinen et al, 2006; Zhang et al, 2007). The former is 

required for maximal PARP-1 activation after DNA damage (Kauppinen et al, 2006), 

whereas the latter promotes sustained PARP-1 activation during H202-induced 

nonapoptotic cell death (Zhang et al, 2007). A recent proteomic analysis has
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identified additional phosphorylation sites in PARP-1, as well as sites in PARG, that 

will be good candidates for further functional analyses.

PARP-1 is acetylated by the acetyltransferases p300/CBP and PCAF (Hassa et al., 

2003, 2005; Rajamohan et al., 2009). The acetylation of PARP-1 is reversed by a 

number of deacetylases, including Sirtl (Hassa et al, 2005; Rajamohan et al, 2009). 

Acetylation of PARP-1 was first identified in the context of NF-kB dependent 

transcription, where it plays a critical role in regulating NF-kB target- genes in 

immune cells (Hassa et al, 2003, 2005). In eardiomyoeytes, PARP-1 is acetylated as 

an endpoint of stress responses, resulting in the DNA damage-independent activation 

of PARP-1 (Rajamohan et al, 2009). Acetylation of PARP-2 reduces its DNA- 

binding and enzymatic activities, and presumably the extent of auto-mono(ADP- 

ribosyl)ation (Haenni et al, 2008).

Functional Interplay with Sirtl: Recent studies have begun to elucidate a functional 

interplay between PARP-1 and the NAD+-dependent protein deacetylase Sirtl. Sirtl 

is an important regulator of metabolism, cell differentiation and senescence, stress 

responses, and cancer through the regulation of chromatin structure and gene 

expression (Zhang and Kraus, 2009). PARP-1 and Sirtl have been shown to function 

antagonistically; chemical activation of Sirtl leads to reduced PARP-1 activity, and 

knockout of Sirtl increases PARP-1 activity (Kolthur-Seetharam et al, 2006). PARP- 
1 and Sirtl are thought to compete for nuclear NAD+, and a byproduct of the reactions 

they catalyze, nicotinamide, can inhibit both of their activities (Kim et al, 2005; 

Zhang and Kraus, 2009). The interplay between PARP-1 and Sirtl, however, goes 

beyond simple competition for NAD+. As noted above, acetylation of PARP-1 by 

PCAF is required for stress-induced cell death pathways. Deacetylation of PARP-1 by 

Sirtl promotes ceil survival (Rajamohan et al, 2009). Unchecked PARP-1 activity in 

the absence of Sirtl results in apoptosis inducing factor-mediated cell death. In 

mammalian cells, Sirtl inhibits the expression of the PARP-1 gene, adding another 

layer of complexity to the functional interplay (Rajamohan et al, 2009).Interactions 

and Functions of PARP-1 in the Nucleus: PARP-1 interacts with and PARylates 

proteins involved in DNA repair, transcription, DNA methylation, and regulation of
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chromatin structure and histone modification to control physiological and 

pathological outcomes.

DNA Methylation:

Studies over the past decade have begun to link PARP-1 -dependent PARylation with 

DNA methylation, a stable epigenetic mark that can be passed to daughter cells upon 

cell division and is associated with the repression of gene expression (Attwood et al, 

2002; Caiafa and Zampieri, 2005). One of the ways in which PARP-1 affects DNA 

methylation is by regulating the expression and activity of the DNA methyltransferase 

Dnmtl (Caiafa et al., 2009; Caiafa and Zlatanova, 2009). PARP-1 binds to the 

promoter of the Dnmtl gene and protects it from DNA methylation-induced silencing 

in a PAR-dependent manner (Zampieri et al, 2009).

SUMOylation and Ubiquitvlation;

Recent studies have shown that PARP-1 is SUMOylated and ubiquitylated, 

modulating its role as a regulator of chromatin structure and transcription (Martin et 

al., 2009; Messner et al, 2009). PARP-1 interacts with and is SUMOylated by 

PIASy, a SUMO E3 ligase (Martin et al, 2009; Stilmann et al, 2009). PARP-1 

contributes in many unique ways to the molecular biology of nuclear processes, 

playing key roles in the maintenance of genomic integrity, the regulation of chromatin 

structure and transcription, and the establishment of DNA methylation patterns, as 

well as a host of other processes (e.g., mitotic apparatus function, cell death 

pathways) (Fig. 3.1.1.2) (Hassa and Hottiger, 2008; Kim et al, 2005). PIASy is 

recruited and released at the Hsp70 locus during the heat shock response with kinetics 

that mirror those of both PARP-1 and the SUMO-conjugating enzyme Ubc9 (Martin 

et al., 2009). Interestingly, the SUMO-targeted ubiquitin ligase RNF4 poly 

ubiquitylates dPARP (Droshophila PARP) and presumably causes its clearance from 

the Hsp70 promoter via degradation (Martin et al, 2009). These results fit well with 

the fact that dPARP regulates the chromatin structure at the Drosophila Hsp70 locus 

upon heat shock (Petesch and Lis, 2008; Tulin and Spradling, 2003).
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1.3.1.5 PARP-1 and NAB+ metabolism

As the ADP-ribose donor for PARP-l-catalyzed PARylation reactions, NAD+ plays a 

central role in determining the function and activity of PARP-1. The synthesis of 

NAD+ occurs in multiple cellular compartments, including the nucleus, which may be 

the most relevant source of NAD+ for PARP-1 (Berger et al, 2004; Rongvaux el al, 

2003). In mammals, NAD+ is synthesized de novo from tryptophan, as well as through 

a salvage pathway leading from nicotinamide and catalyzed by the enzymes 

nicotinamide phosphoribosyl transferase (NAMPT) and nicotinamide mononucleotide 

adenylyltransferase (NMNAT; NMNAT-1 is the nuclear form) (Berger et al, 2004; 

Rongvaux et al, 2003) (Figure 4). Interestingly, nicotinamide is a natural endogenous 

inhibitor of PARP-1 (and Sirtl). Thus, the salvage pathway supports PARP-1 activity 

by depleting nicotinamide and producing NAD+.

The enzymatic activities of PARP-1, NAMPT, and NMNAT are functionally linked. 

Stress-induced cell death due to PARP-1-dependent NAD+ depletion in 

cardiomyocytes can be reversed by overexpression of NAMPT (Pillai et al, 2005), 
supporting the conclusion that NAMPT catalyzes a rate-limiting step in NAD+ 

synthesis (Revollo et al, 2004). Furthermore, in addition to producing NAD+ to 

support PARP-1 catalytic activity, NMNAT-1 also stimulates PARP-1 catalytic 

activity by binding to activated, automodified PARP-1 (Berger et al, 2007). A recent 

study has shown that Sirtl recruits NMNAT-1 to target gene promoters, presumably 

to supply NAD+ for protein deacetylase reactions at the promoter (Zhang et al, 2009). 

It is likely that a similar mechanism involving PARP-1 and NMNAT-1 supports 

PARylation of proteins at the promoters of PARP-1-regulated genes. As noted above, 

the enzymatic activities of PARP-1 and Sirtl may also be linked through competition 

for limiting supplies of nuclear NAD+ (Zhang et al, 2009). Difficulty in accurately 

determining the concentrations of nuclear NAD+, however, has hampered verification 

of this conclusion. Although functional interplay between PARP-1 and NAD+- 

metabolizing enzymes in the nucleus has been established, the molecular mechanisms 

remain to be clarified.
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13.1.7 PARP-1 overactivation depletes NAB+

Based on what is known regarding bioenergetics, NAD+ depletion causes ATP 

depletion; and the resulting drop in cellular energy leads to cell demise (D'Amours et 
al, 1999; Chiarugi, 2005). NAD+ is known to be a cofactor in several cellular 

metabolic processes needed for generating ATP such as glycolysis and the 

tricarboxylic acid cycle (DAmours et al, 1999). In addition, NAD+ resynthesis 

requires at least 2-4 molecules of ATP while NAD+ depletion blocks glyceraldehyde 

3-dehydrogenase activity leading to the cell investing ATP in glycolysis, but without 

the return in NAD+ (D'Amours et al, 1999; Szabo and Dawson, 1998; Sheline and 

Wei, 2006). Thus, in support of the suicide hypothesis, PARP-1 activation leads to a 

block in the glycolysis. Indeed, replenishment of glycolytic and tricarboxylic acid 

cycle (TCA cycle) intermediates and - substrates such as alpha-ketoglutarate or 

pyruvate, are neuroprotective (Chiarugi, 2005; Ying et al, 2002). Also, administering 
NAD+ to cells or overexpression of NAD+ biosynthetic genes seem to rescue PARP-1 

dependent cell death, suggesting that indeed, the NAD+ decline associated with 

PAJRP-l overactivation can cause cell demise (Chiarugi, 2005). However, NAD+ 

replenishment probably prevents cell death through SIRT1 (Hassa et al, 2006).

Recent findings suggest that the compartmentalization of NAD+ within cells also must 

be considered when evaluating death induced by NAD+ depletion. The mitochondrial 

pool of NAD+ appears to be more relevant for cell death rather than the cytosolic and 

nuclear pools, as cell death is rescued upon preservation of NAE>+ in the mitochondria 

by cyclosporin A, or replenishment of NAD+ by overepression of the biosynthetic 

nicotinic acid mononucleotide adenylyltransferase (NAMNT) (Alano et al, 2007; 

Yang et al, 2007). Thb drop in NAD+ levels following;# ARP-1 overactivation 

reflects whole cell NAD+. Thus, conclusions made from these studies need to be re­

examined in light of the recent finding that the mitochondrial levels of NAD+ remain 

at physiological levels following genotoxic stress and can support viability even when 

nuclear and cytoplasmic pools of NAD+ are depleted (Yang et al, 2007). Since 

overexpression of NAMNT leads to only a partial rescue of cell death (Alano et al, 

2007), thus PARP-1-dependent cell death may not exclusively depend on 
mitochondrial NAD+ depletion. Reduction in cell death by cyclosporin A may also
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not be attributed solely to NAD+ preservation in the mitochondria, as it blocks 

mitochondrial permeability transition, which in itself is an important player in cell 

death signaling.

1.3.2 PoIvfADP-ribose) glveohvdrolase 1PARG)

PAR in some respects, resembles single-stranded nucleic acid polymers (D’Amours et 
al, 1999). As described above, it functions as a covalent posttranslational 

modification, as well as a protein-binding matrix. Much of the focus on PAR to date 

has been on its synthesis and degradation, both of which occur on the timescale of 

minutes in the cell.

PAR is synthesized rapidly in response to a variety, of physiological (e.g., hormone 

signaling) and stress-related (e.g., heat shock, DNA damage) stimuli (D5 Amours et 
al., 1999; Hakme et at, 2008). As noted above, these stimuli ultimately result in the 

allosteric activation of PARP-1 catalytic activity, which in turn can lead to the auto- 

PARylation, as well as the transmodification of other protein targets. If extensive, 

auto-PARylation can inhibit PARP-1 enzymatic activity, which can block further 

PAR synthesis (D’Amours et at, 1999; Hakme et al, 2008). Very rapidly after 

synthesis (within seconds to minutes), PAR is degraded to ADP-ribose monomers, 

which may have signaling functions in the nucleus (Gagne et at, 2006; Min and 

Wang, 2009). Structurally different types of PAR are degraded at different rates (i.e., 

short more rapidly than long, linear more rapidly than branched), which may 

influence their biological functions (Hassa and Hottiger, 2008).

Most PAR in the cell is degraded by the enzyme PARG, an enzyme with both exo- 

and endoglycosidase activities (actually a family of isoforms all encoded by the same 

gene) (Gagne et at, 2006; Min and Wang, 2009) (Figure 4). In mice, targeted deletion 

of the 110 kl)a PARG isoforms results in increased lethality in response to genotoxin 

exposure and septic shock relative to wild-type animals (Cortes et al, 2004). Mice 

with complete deletion of all PARG isoforms are embryonic lethal. Trophoblast stem 

cells from these animals are viable only when cultured in the presence of a PARP

Chapter J. Introduction 44



Role of Poly (ADP-Ribose) Polymerase during Cadmium induced cell death in Dictyostelium discoideum

inhibitor, and they exhibit reduced growth, accumulation of PAR, and increased 

sensitivity to genotoxic stress (Koh et al, 2004).

In Drosophila, increasing or decreasing dPARG levels phenocopies dPARP mutation, 

supporting a role for dPARG in removing PAR and, perhaps, facilitating multiple 

cycles of catalysis by individual PARP molecules (Tulin et al, 2006). The available 

data highlight the importance of PAR catabolism for embryonic development, the 

maintenance of normal physiological states, and protection against genotoxic stress 

(Cortes et al, 2004; Fisher et al, 2007; Koh et al, 2004).

Recently, the enzyme ADP-ribose-protein-hydrolase-3 (ARH3) was also shown to 

possesses intrinsic PARG activity (Oka et al, 2006), suggesting that the mammalian 

genome may encode additional proteins with PARG activities. Other enzymatic 

activities, such as poly- and mono(ADP-ribosyl) protein hydrolase, as well as 

mono(ADP-ribosyl) protein lyase, may also act to remove PAR polymers and ADP- 

ribose monomers from target proteins (Hassa and Hottiger, 2008). In contrast to 

PARP, little is known about the role of PARG in cell function. There are, however, at 

least two mechanisms by which PARG could influence PARP-mediated cell death. 
First, PARG inhibition could slow the turnover of PAR and thereby limit NAD+ 

depletion. Second, PARG inhibition could prevent the removal of PAR from PARP1. 

Because PARP1 is inhibited by extensive poly(ADP-ribosyl)ation, PARG inhibitors 

could thereby indirectly inhibit PARP1 activity. Report has shown that the PARG 

inhibitor gallotannin can markedly reduce death of astrocytes after oxidative stress 

(Alano et al, 2004).

1.3.3 PARP-1 overactivation induces AIF (Apoptosis inducing factor) release

PARP-1 overactivation leading to AIF release from the mitochondria was first 

demonstrated by Yu et al (2002). In this study, PARP-1 KO mouse embryonic 

fibroblasts and neurons fail to release AIF. Furthermore, PARP-1 dependent cell 

death is reduced when AIF depleting antibodies are delivered into the cells. Most 

importantly, AIF translocation has been well-documented in several experimental
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models of PARP-1 mediated cell death. AIF was purified from supernatants of 

mitochondria induced to undergo permeability transition (Susin et al., 1996). This 

ubiquitously-expressed mitochondrial protein was isolated for its ability to translocate 

to nucleus and cause fragmentation of DNA into ~50-300kb pieces (Joza et al., 2001). 

Its a 67-kDa protein that is believed to be converted to a 57-kDa protein upon 

cleavage of its putative mitochondrial localization sequence (Susin et al., 1999). 

However, recent studies indicate that it is processed to a 62-kDa form upon cleavage 

of its mitochondrial localization sequence, and it is only processed to the 57- kDa 

form after a cell death stimulus (Otera et al., 2005; Cao et al., 2007) (Figure 1.13). 

Analysis of its sequence and its crystal structure reveal a glutathione reductase-like 

fold with an FAD-binding domain and an NADH binding domain as well as a C- 

terminal domain composed of five antiparallel beta-strands and two alphahelices 

(Mate et al., 2002). The structure of the AIF protein reveals an overall positive 

electrostatic potential and homology to Bph4, a ferredoxin reductase in a dioxygenase 

from bacteria (Mate et al., 2002). Analysis of recombinant AIF reveals NADH 

oxidase activity that can catalyze formation of superoxide anions (Vahsen et al., 

2004) further suggesting a role for AIF in redox processes within the mitochondria.
Human AIF "FAD-blndlng- FAD binamg

Mouse AIF

DNA binding

\ DNA binding

C. c/eyans WAH-1
NADH binding

yeast AIF1p

— - . wph-o.„o„.u (Porter and Urbano, 2006)

Figure 1.12 Evolutionary conservation of functional domains in AIF family 

proteins The different functional domains of AIF or AIF-like homologues are shown color- 

coded for four species only. MLS, mitochondrial localization signal (yellow). Note that 

although yeast AIF-1 is located in mitochondria, a putative MLS has not been identified. 

NLS, nuclear localization signal (red); FAD, flavin adenine dinucleotidebinding regions 

(green); NADH-binding region (brown); DNA-binding region (blue) determines the pro- 

apoptotic function, which has been mapped for mammalian AIFs only. The NLS is always 

embedded in the FAD-binding domain. Yeast and C. elegans AIF homologues have only one 

putative NLS.
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Figure 1.13 PARP-1 overactivation leads to cell death. In the presence of death 

stimuli such as excessive DNA damage (1), PARP-1 overactivation (2) leads to the release of 

the death effector AIF from the mitochondria (3). The biochemical events mediating this 

nuclear-mitochondrial crosstalk are not completely known. Excess free or protein-bound 

complex PAR polymer may move from the nuclei to the cytosol where it disrupts protein- 

protein interactions. Since loss of mitochondrial membrane potential was observed in PARP-1 

mediated cell death. PAR possibly binds cytosolic or mitochondrial proteins with roles in AIF 

release, mitochondrial embrane permeabilization or mitochondrial function. Other events 

downstream of PARP-1 overactivation include calpain activation, and Bax translocation to 

the mitochondria. These events appear to be important for AIF release: calpain is 

hypothesized to cleave AIF which is then released from mitochondria through pores formed 

by Bax.
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The exact function of AIF in the mitochondria has been further clarified through the 

use of genetic knockdowns and conditional deletion of AIF. Harlequin (Hq) mutant 

mice contain a proviral insertion in the AIF gene that results in an 80% reduction of 

AIF protein levels (Joza et al, 2001). Neonatal Hq mice exhibited 18% less 

respiratory chain complex I and 30% less catalase compared with WT mice (Zhu et 

al, 2007). These mice develop a late-onset degeneration in the cerebellar granule 

cells and retinal ganglion cells (Joza et al., 2005). In addition, there is marked 

oxidative stress in the brain and retina (Klein et al, 2002), suggesting that AIF acts as 

a free radical scavenger in the mitochondria (Klein et al, 2002). Later studies point 

that this increased levels of reactive oxygen radicals in Hq mice may be due to a role 

for AIF in the complex I activity of the electron transport chain (Vahsen et al, 2004; 

Miramar et al, 2001). This notion was. confirmed by conditional deletion of AIF 

specifically in cardiac and skeletal muscle of mice, which resulted in impaired activity 

and decreased protein expression of mitochondrial complex I (Joza et al, 2005). In 

addition to a role for AIF in redox processes, conditionally deleting AIF in embryonic 

telencephalon produced neurons with fragmented mitochondria, abnormal cristae 

structure and decreased survival (Cheung et al, 2006).

Similar to cytochrome c, AIF assumes a deadly role once released from the 

mitochondria. Whereas cytochrome c is known to kill by the canonical apoptotic 

pathway of apoptosome formation (van Loo et al, 2002), the mechanism by which 

AIF kills is not clear. Translocation of AIF to the nucleus induces chromatin 

condensation and DNA fragmentation possibly through cyclophilin A, even in the 

presence of caspase inhibitors (Loeffler et al, 2001; Susin et al, 1999; Joza et al, 

2001; Wang et al, 2002). This nuclear apoptosis can be blocked by inhibition of 

cysteine proteases (Yuste et al, 2005) and overexpression of hsp70 (Ravagnan et al, 

2001; Matsumori et al, 2005). Translocation of AIF into the nucleus, and not its loss 

from the mitochondria, kills cells (Cheung et al, 2006).

PAR is known to mediate cell death in part by inducing AIF release (Yu et al, 2006). 

PAR releases AIF from the mitochondria in vitro when PAR generated from MNNG- 

treated nuclei is incubated with isolated mitochondria (Yu et al, 2006). Moreover,
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delivery of PAR into the cell induces AIF translocation and cell death (Andrabi et al, 

2006; Yu et al, 2006). Cell death is mediated specifically by PAR because AIF 

release is abolished when PAR is catabolized by PARG or phosphodiesterase I (PDI) 

which degrade PAR polymers (Figure 1.14). In addition, overexpression of PARG 

prevents NMDA-induced AIF translocation (Andrabi et al, 2006; Yu et al, 2006).

Cd2+ is a toxic metal with no known biological function. It is increasingly important 

as an environmental hazard to both humans and wild life, and it exemplifies the 
double edge nature of many toxic substances. Cd2+ has been known to interefere in 

processes like cell death and tumorogenesis.

1.4 Molecular and cellular mechanisms of cadmium (Cd2+) 

carcinogenesis

Cd2+ is an occupationally and environmentally important toxic element that is present 

in air, soil, sediment, and water. Non-occupational exposure is mainly from the diet 

and smoking (Satarug and Moore, 2004), with an estimated individual daily 

consumption of 30pg in the USA, and considerably higher in China and Japan 
(Joseph, 2009). Cd2+ accumulates in the human body with a long biological half-life 

of 2-3 decades. Its targets of toxicity include lung, liver, kidney, bone, cardiovascular 
system, and immune system (Fowler, 2009), where Cd2+-induced cell death leads to 

loss of function. However, Cd2+ also acts as a cancer promoter through mitogenic 

effects on gene expression (reviewed in (Joseph, 2009, Beyersmann and Hechtenberg, 

1997). It causes transformation in cultured cell lines (DiPaolo and Casto, 1979, 

Achanzar et al, 2001) and produces malignant tumours in testes, prostate, lungs, 

pancreas and liver of experimental animals (Waalkes, 2003; Waalkes et al, 1992). It 

is considered a human carcinogen by the International Agency for Research on 

Cancer (IARC) (International Angency for Research on Cancer) and occupational 

exposure has been associated with cancers of lung and possibly prostate, kidney, and 

pancreas (Waalkes, 2003). In addition to effects on gene expression and DNA repair, 
Cd2+ carcinogenesis probably involves inhibition of apoptosis (Joseph, 2009; 

Achanzar et al, 2001; Achanzar 2002).
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1.4.1 Cd2+ as a carcinogen

Cd2+ is a weak mutagen and a poor initiator of cancer (Waalkes, 2003). It interacts 

weakly with DNA and may act through epigenetic and (or) other mechanisms, 

including mitogenic effects on gene expression, inhibition of DNA repair, and 

inhibition of apoptosis (Waalkes, 2003), probably adaptive mechanisms in chronic 

low-dose exposure lead to lower ROS and apoptotic tolerance, thereby allowing 

proliferation of damaged cells with aberrant gene expression (Liu et at, 2009). On the 
other hand, higher levels of Cd2+ that produce increased expression of genes of 

oxidative stress in rat lung epithelia are associated with apoptotic death of more than 

half the cells (Hart et at, 1999).

Role of Poly (ADP-Ribose) Polymerase during Cadmium induced cell death in Dicfyostelium discoidetm

Both oxidative stress and inhibition of repair of oxidative DNA damage undoubtedly 

play a role in Cd2+ carcinogenesis (Waisberg et at, 2003; Liu et at, 2009). Although 

Cd2+ does not redox cycle and therefore does not directly promote Fenton chemistry, 

it nevertheless increases cellular levels of reactive oxygen species (ROS) (Lieberthal 

et at, 1998; Oh and Lim, 2006). Depletion of antioxidant defences might seem a 
plausible mechanism, but Cd2+ also facilitates adaptive increases in levels of 

glutathione, the Cd2+-binding protein metallothionein, and catalase that are protective 

against peroxidative damage (Liu et at, 2009; Lieberthal et at, 1998; Oh and Lim, 

2006; Templeton and Cherian, 1991; Chin and Templeton, 1993). Displacement of 

Fenton-active metals from other sites and inhibition of mitochondrial electron 

transport are also plausible mechanisms (Templeton and Cherian, 1991). Disruption 

of mitochondrial function itself may be a more important factor than ROS production 

in Cd2+-induced cell death (Oh and Lim, 2006; Lopez et at, 2006). Cd2+-induced 

oxidative damage to thiol groups of a number of cellular proteins can lead to 

denatuxation and targeting for proteasomal degradation (Figueiredo-Pereira et at, 

1998).

1.4.2 Inhibition of DNA repair

Another possible mechanism of Cd2+ induced carcinogenesis is inhibition of repair 

pathways like base-excision repair, nucleotide-excision repair, recombinational repair
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and mismatch repair. As to base-excision repair, low concentrations of Cd 

not generate oxidative base modifications as such, have been demonstrate 

the repair of oxidative damage in mammalian cells (Dally and Hartwf 

Regarding nucleotide-excision repair. Cd2 inhibited the removal of thymine 

generated by UV-irradiation by interfering with the first step of this repair pathway, 
i.e. the incision at the DNA lesion. Cd2+ at low concentrations inhibited the specific 

binding of repair proteins to damaged DNA. Furthermore, Cd2t inhibited the bacterial 

repair enzyme formamido-pyrimidine-glycosylase and the specific DNA binding of 

the mammalian protein XPA that is essential for DNA damage recognition during 

nucleotide-excision repair (Asmuss et al., 2000). Both proteins are members of the 
family of zinc-finger proteins, and the inhibitory effect of Cd2" was assigned to a 

substitution of zinc by Cd2+ (Flartwig. 2001). Increased Cd2+ exposure were 

associated with reduced 8-oxoguanine repair and also inversely correlated with levels 
of DNA strand breaks in lymphocytes of Cd2" exposed workers (Hengstler et al., 

2003). As to mismatch repair. Jin et al (2003) found that chronic exposure of yeast to 
environmentally relevant Cd2" resulted in extreme hypermutability because Cd2" 

reduced the capacity for mismatch repair, and in extracts of human cells Cd2 

inhibited at least one step leading to mismatch removal.

The elimination of a premutagenic modification of a nucleoside triphosphate 
precursor of DNA was also inhibited by Cd2". Oxidation of dGTP produces 8-oxo- 

dGTP which is misincorporated into DNA and causes AT—>CG transversions. Cells 

are protected against 8-oxo-dGTP by antimutagenic 8-oxo-dGTPases. Both bacterial 
and human dGTPases were inhibited by Cd2" in a dose-dependent manner, providing 

a further mechanism that may contribute to the mutagenic and carcinogenic potential 
of this metal (Bialkowski and Kasprzak. 1998). Because Cd2 is only weakly 

mutagenic as such but inhibits the repair of DNA lesions formed spontaneously or 

caused by other agents, the generation of genetic instability seems to be a major 

mechanism contributing to the carcinogenicity of this metal.
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1.4.3 Cd2+ and cell proliferation

A recent report had shown that effects of Cd2+ on signaling through Ca2+, eAMP, NO, 

NF-kB, and developmental pathways such as Wnt signaling, in addition to kinases 

(Thevenod, 2009). Three major mitogen-activated protein kinases (MAPKs) exist in 

mammalian cells, namely Erk, Jnk, and p38 kinase (Chang et al, 2001). In general, 

Erk is activated by growth factor receptors and stimulates cell proliferation, whereas 

Jnk and p38 are responsive to genotoxic agents and stresses (Tibbies and Woodgett, 

1999; Garrington and Johnson, 1999; Chuang et al., 2000; Wada and Penninger, 

2004). Cd2+ has been shown to activate each of these pathway (Chuang et al, 2000; 

Hung et al, 1998), albeit with differential effects in different cell types. Cd2+ (1.5pM 

for up to 60 min) activated Erkl/2 and p38, but not Jnk, in chicken hepatoma cells 

(Elbirt et al, 1998). Higher concentrations of Cd2+ (>100 pM for 3 h) persistently 

activated all three kinases in human lung carcinoma cells (Chuang et al, 2000; 

Chuang and Yang, 2001), whereas at lower concentrations Erk activity was decreased 

and Jnk was only transiently increased, with no effect on p38 (Chuang and Yang, 
2001). Activation of p38 was confirmed at lOOpM Cd2+ in rat brain tumour cells, but 

was absent at 60pM, whereas the opposite was true of Erkl/2 (Hung et al., 1998). In 
addition to activating the MAPKs, Cd2+ is also found to activate Ca2+/calmodulin- 

dependent protein kinase-II (CaMK-II) in mouse mesangial cells (Liu and Templeton, 

2008 and Liu and Templeton, 2007). The CaMKs are a family of broadspecificity 
kinases that serve as general integrators of Ca2+ signalling (Hook and Means, 2001; 

Hudmon and Schulman, 2002). They have been linked to oncogene induction in 

several cell lines (Misra et al, 1994; Antoine et al, 1996). A general mechanism by 
which Cd2+ may increase the activity of multiple kinases is by increasing ROS, which 

in turn oxidize thiol groups on kinase-regulating phosphatises. It also seems possible 
that Cd2+ inactivates multiple phosphatases by direct interaction with their thiol 

groups.

1.4.4 Inhibition of apoptosis

Cd2+ was found to suppress apoptosis induced by chromium in CHO cells (Shimada et 

al, 1998). Evidence has been presented that Cd2+ inhibits caspase-3 in this context 

(Yuan et al, 2000). However, the IC50 for caspase-3 inhibition by Cd2+ is 8.7pM in
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intact CHO cells and significantly greater (31 pM) in a cell-free system (Yuan et al, 
2000). Thus, even if caspase inhibition contributes to suppression of apoptosis by 

Cd2+ in intact cells, additional anti-apoptotic mechanisms must contribute.

Transformation of cells by Cd2+ may itself be associated with a decrease in apoptotic 

potential. When human prostatic epithelia are transformed by Cd2+, they show a 

decreased apoptotic potential that may in part result from decreased caspase 

expression, and an increase in the ratio of Bcl-2/Bax due to a decrease in pro- 

apoptotic Bax and an increase in anti-apoptotic Bcl-2 expression (Achanzar et al, 
2002). In this model, Cd2+ may select for cells defective in apoptosis (Achanzar et al, 
2000). After implicating oxidative stress in Cd2+-induced apoptosis in lung epithelia 

(Hart et al, 1999). Hart et al. subsequently showed a decreased apoptotic response to 

oxidative stress in Cd2+-adapted cells (Hart et al., 1999).

Cd2+ (lOpM, 8h) suppressed chromatin condensation, DNA laddering, and caspase-3 

activation in response to both the extrinsic (TNF-alpha induced) and intrinsic stimuli 

(camptothecin) in mesangial cells (Gunawardana et al, 2006). It also inhibited 

caspase-8 and -9 activities, decreased levels of tBid, and suppressed release of pro- 

apoptotic cytochrome c from mitochondria (Gunawardana et al, 2006). These results 
suggest that under some circumstances Cd2+ may act as a general inhibitor of caspase 

activation, but may also have other anti-apoptotic effects through factors affecting 

mitochondrial stability.

1.4.5 Cd2+-induced necrosis

Cd2+ may initiate necrotic death through multiple mechanisms, such as ROS 

production and depletion of antioxidant defences (leading to lipid peroxidation and 

membrane damage), and enzyme inhibition (contributing to loss of ATP production 

and ionic regulation of the intracellular environment). Acute, but not chronic, 
parenteral Cd2+ exposure causes hemorrhagic necrosis in rat testes and the testes of 

non-human primates. Acute oral administration causes necrosis of the gastric and 
intestinal mucosa. In general, concentrations of greater than 50pM Cd2+ cause
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necrosis both in vivo and in vitro, while low concentrations cause apoptosis (Lee and 
Thevenod, 2008). In the present study also this dose dependent effect of Cd2+ has 

been observed on the unicellular eukaryote, D. discoideum.

As noted above, Cd2+ can induce proximal tubular necrosis in the kidney (Squibb and 
Fowler, 1984; Aughey et al, 1984). However, direct evidence of Cd2+ induced renal 

cell necrosis is not abundant. Both acute and chronic effects of Cd2+ on the kidney in 

animal studies, and chronic effects in humans, are characterized by cell loss and 

dysfunction with inflammation leading to interstitial nephritis and fibrosis, and 

proximal tubular degeneration with chronic proteinuria and tubular dysfunction 

characteristic of Faneoni syndrome (Lee and Thevenod, 2008). In cultured mesangial 

cells, treatment with Cd2+C12 in the range of 0.1~20pM for various periods of time 

and under various conditions leads to loss of viable cells almost exclusively by non- 

necrotic mechanisms (Liu and Templeton, 2008; Xiao et al., 2009 ; Liu and 

Templeton, 2007).

1.4.6 Induction of apoptosis

Cd2+ has been shown to induce apoptosis (programmed cell death) in various organs 

of rats in vivo (Habeebu et al, 1998; Xu et al, 1996, 1999), and in vitro in several 

mammalian cell systems (El Azzouzi et al, 1994; Hamada et al, 1996; Fujimaki et 

al, 2000; Watjen et al, 2002), and intemucleosomal DNA fragmentation in isolated 
bovine liver nuclei (Lohmann and Beyersmann, 1993). Cd2+ seems to induce 

apoptosis by a mitochondria-dependent pathway because activation of caspase-9 was 
observed in Cd2+-treated HL60 leukemia cells and C6 rat glioma cells (Watjen et al, 

2001). At variance, Cd2+ has been shown to induce apoptosis in normal human lung 

cells by a mechanism that was mediated by mitochondria but independent of caspase 

activity (Shih et al, 2003); a mechanism very similar to this has been observed in our 

study. Further evidence for a mediation by mitochondria is the protection against
*“> i

Cd -induced apoptosis by the antiapoptotic protein Bcl-2 (Biagioli et al, 2001; Kim 

et al, 2000) and the induction of the proapoptotic protein Bax by Cd in primary 

epithelial lung cells (Lag et al, 2002).
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After subcutaneous injection of Cd2' in rats, programmed cell death was induced in 

testes but not prostate (Xu et ah, 1999). The induction of apoptosis in testes was 

negatively correlated with expression of p53. Since p53 is a tumor suppressor gene, 
the latter result is interpreted as a possible enhancement of the risk of Cd2+ 

tumorigenesis. In accordance with these findings, Meplan et al (1999) found that in 
human breast cancer MCF7 cells, Cd2+ inactivated the p53 protein by disrupting its 

native structure and inhibiting its DNA binding ability. In this system, Cd2+ down- 

regulated the transcriptional activation of a reporter gene coupled to the p53 promoter 

and impaired the induction of p53 in response to DNA damaging agents. In contrast to 

cells of the reproductive tract, alveolar cells from rat lungs exhibited increased p53 

and Bax expression in response to Cd2+ (Lag et al, 2002). At variance with this 

observation, some antioxidants (N-acetyl-l-cysteine or butylated hydroxyanisole) 
inhibited the induction of apoptosis by Cd2+ in human promonocytic U-937 cells 

(Galan et al, 2001) and glutathione or catalase prevented Cd2+-induced apoptosis in 

rat C6 glioma cells (Watjen and Beyersmann, 2004). In human myeloid cells, catalase 

attenuated the generation of apoptosis by various antitumor drugs but potentiated the 

induction of apoptosis by heat-shock or Cd2+ (Sancho et al., 2003), and depletion of 

catalase suppressed Cd2+-elicited apoptosis in a human lung tumor cell line. These 

seemingly controversial results can be interpreted in terms of different interference of 

Cd with cellular signalling pathways. Some evidence for the participation of 
oxidative stress in Cd2+-induced apoptosis was also described by Hart et al (1999) 

who observed an increase in protein-bound glutathione in response to Cd2+ exposure 

of a rat lung epithelial cell line.

In all cell systems tested so far, Cd2+ induced cytoprotective proteins including 

metallothioneins, y-glutamyl cysteine synthetase and glutathione-S-transferase (Hart 

et al, 1999). Alveolar epithelial cells adapted to Cd2+ exhibited a decreased 

sensitivity to induction of apoptosis by hydrogen peroxide (Eneman et al, 2000). In 
Chinese hamster ovary cells, Cd2+ even protected against programmed cell death that 

was triggered by the prooxidant metal ion chromate (Shimada et al, 1998). 

Comparing various cell lines, a negative correlation was observed between
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metallothionein induction and the extent of apoptosis induced by Cd2+ (Shimoda et 

al., 2001) or etoposide (Shimoda et al, 2003).

No uniform picture emerges with respect to the cellular signaling pathways involved 
in Cd2+-induced apoptosis. In CL3 human lung cancer cells, Cd2+ activated the protein 

kinases ERK and p38-MAPK (Chao and Yang, 2001) and JNK. In these cells,
i

inhibition of ERK enhanced the extent of apoptosis induced by Cd , whereas 

inhibition of p38-MAPK decreased it, suggesting that ERK favors survival and p38- 
MAPK decreases genomic stability. In a human T lymphoblastoid cell line, Cd2+ 

activated the protein kinases ERK, p38-MAPK and JNK by phosphorylation (Iryo et 

al, 2000). These authors found that inhibition of ERK, but not inhibition of p38- 
MAPK, suppressed Cd2+-induced apoptosis. At variance, inhibition of p38-MAPK 

protected against Cd2+-induced apoptosis in porcine kidney epithelial cells. Hence, 

depending on the cell system studied activation of protein kinases by Cd2+ may either 

favor or counteract programmed cell death.

The induction of apoptosis by Cd2+ is not necessarily protective against malignant 

transformation. Achanzar et al (2000) treated normal human prostate cells with Cd2+ 

and observed the induction of the proto-oncogenes c-jun and c-myc, and the tumor 

suppressor gene p53. Only a fraction of the cells was committed to apoptosis whereas 

35% of the cells exhibited increased metallothionein and stayed viable, suggesting a 

selection of apoptosis-defective cells. Further evidence for an acquired apoptotic 
resistance of the Cd2+-adapted fraction of prostate cells is indicated by the down- 

regulation of apoptotic caspases and the increased expression of the antiapoptotic 

protein Bel-2 (Achanzar et al, 2002). Taking into account the inhibition of repair of 
DNA damage by Cd2+, Cd2+-adaptation may inhibit apoptosis, allow the accumulation 

of critical mutations and favor the clonal expansion of pre-neoplastic cells towards 

tumor development (Hart et al, 2001).
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1.4.7 Reactive oxygen species and interference with the cellular antioxidant 

system

Various studies have shown that Cd2+ carcinogenicity seems to be crucially mediated 

by the production of reactive oxygen species. Cd2+ is known to induce the production 

of hydroxyl radicals, superoxide anions, nitric oxide and hydrogen peroxide (Galan et 
al, 2001; Stohs et al, 2001). Cd2+ also increases the levels of lipid peroxidation in 

liver (El-Maraghy et al, 2001) and liver mitochondria of exposed rats (Casalino et al, 

1997) and in cultured rat hepatocytes (Muller, 1986). These findings reinforce the 

conclusions from the data on Cd2+-induced ROS generation. The level of 

malondialdehyde is decreased if the exposure is maintained for 2 weeks (El-Maraghy 

et al, 2001) suggesting an adaptative response.
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Short-term exposure to Cd2+ has been shown to decrease the activities of almost all of 

these enzymes in vitro and in vivo, whereas with more elevated doses and extended 

exposure also enhancement of activities was found, probably because of adaptive 

induction of genes. Cd2+ can decrease the cellular glutathione content (which is 

known to scavenge intracellular reactive oxygen species by a direct reaction, or via 

the GSH peroxidase/GSH system), or the activities of superoxide dismutase (which 

catalyses the conversion of the superoxide anion radical to molecular oxygen and 

H2O2 and thus protects against superoxide-induced damage), glutathione peroxidase 

(which converts H2O2 and lipid peroxides to H20 and unreactive hydroxyl fatty acids, 

respectively) and catalase (which catalyses the conversion of H2O2 to water and 

molecular oxygen) (El-Maraghy et al, 2001; Ochi et al, 1987; Tatrai et al, 2001). 
The decrease in the activity and/or intracellular levels of antioxidants caused by Cd2+, 

together with the generation of radicals that are produced during normal metabolism, 

may explain the increase in lipid peroxidation and DNA damage in cells.

1.4.8 Gene regulation and signal transduction

Dysregulation of gene expression is regarded as a major factor in a multi-stage model 

of chemical carcinogenesis. Especially the induction of cellular proto-oncogenes 

(Hanahan and Weinberg, 2000) and stimulation of proliferation of committed cells
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(Cohen, 1998) have been shown to play critical roles in the promotion stage after an 

initiating mutational event. On the other hand, induction of stress response genes is 

regarded as a protective mechanism providing detoxification both by heavy metal 
binding and generation of antioxidant substances. Implications in Cd2+ carcinogenesis 

and possible mechanisms involved are discussed below.

Immediate early response genes (IEGs)

Immediate early response genes (IEGs) are protooncogenes that undergo early 

transcriptional activation when quiescent cells are exposed to mitogenic substances 
such as Cd2+. The IEGs most studied with respect to their involvement in the toxicity 

and carcinogenesis of Cd2+ are c-fos, c-jun and c-myc. Cd2+-induced overexpression 

of these genes has been noticed in rat L6 myoblasts (Jin and Ringertz, 1990; Abshire 
et al., 1996a,b), in rat kidney NRK-49F'ceils (Tang and Enger, 1993), in pig kidney 

LLC-PK1 cells (Matsuoka and Call, 1995), in rat and human mesangial cells 

(Templeton et al, 1998; Wang and Templeton, 1998), in human prostate epithelial 

cells (Achanzar et al, 2000) and in BALB/c-3T3 cells (Joseph et al, 2001).

Metaliothionein genes

Genes encoding for metaliothionein (a low molecular weight protein containing about 
30% cysteine) are the most studied genes with respect to the potential of Cd2+ to 

induce gene expression. Similar to the IEGs, subtoxic concentrations of this metal 

result in rapid and significant induction of MT in vitro and in vivo. Metallothioneins 
sequester Cd2+ with high affinity resulting in decreased availability of Cd2+ capable of 

interacting with cellular targets to elicit toxicity, including carcinogenicity. Lack of 
expression of MT protein, under basal and Cd2+-stimulated conditions, has been 

regarded as one of the major underlying causes of tissue susceptibility to Cd2+ toxicity 

and/or carcinogenicity. An inverse relationship has in general been noticed between 
MT content and sensitivity of cultured cells and tissues of animals to Cd2+ (Waalkes 

et al, 1992) and between basal or induced MT levels in human tumor cell lines and 

susceptibility to apoptosis (Shimoda et al, 2003).

Heat-shock genes

Heat-shock proteins are cellular chaperones that are induced by hyperthermia and 

other environmental stresses such as exposure to toxic chemicals. Induction of HSPs
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is generally considered as an adaptive response enabling cells to perform functions 

essential for survival under conditions of stress, including those induced by exposure 
to Cd2+. Within the cells, Cd2+ induces the generation of denatured or abnormal 

proteins by reacting with vicinal thiol groups or by substituting for zinc in proteins; 

this has been recognized as the signal for the induction of HSPs (Parsell, 1994). 
Exposure of cells or whole animals to Cd2+ results in a significant induction of 

HSP10, HSP32, HSP40, HSP60, HSP70, HSP89, HSP90, and HSP110 genes. 
Induction of heat-shock genes in general occurs at Cd2+ concentrations more elevated 

than those effective in IEG induction, but HSP induction still may precede organ 

toxicity of this metal (Goering et al, 1993).

Transcription factors

The potential of Cd2+ to influence the activity of several transcription factors leading 

to deregulation of gene expression has been demonstrated in vitro. The proto­

oncogenes c-fos and c-jun code for proteins which are members of the AP-1 element 

that functions as a transcriptional factor regulating the expression of a large number of 

genes controlling cell growth and division (Angel and Karin, 1991). As described 
above, Cd2+ is a powerful inducer of c-fos and c-jun and this has been considered as a 

major mechanism for Cd2+-induced cell transformation and tumorigenesis. Several 

other transcription factors, for example, metal regulatory transcription factor 1 

(MTF1), upstream stimulator factor (USF), nuclear factor kB (NF-kB), and NF-E2- 
related factor (NRF2) are activated by exposure to Cd2+ resulting in modulation of 

gene expression (Alam et al, 2000; Li et at, 1998; Misra et al, 2002; Smirnova et 
ah, 2000; Thevenod et al, 2000). In contrast, exposure of cells to Cd2+ resulted in the 

suppression of the DNA binding activities of the transcription factors hypoxia- 

inducible factor-1 (HIE-1) (Chun et al, 2000; Obara et al, 2003) and Spl. HIF-1 is 

involved in the control of expression of the erythropoietin gene, whereas Spl plays a 

key role in cell cycle proliferation and its inactivation leads to cell death.

Translation factors

Recently, the effect of Cd2+ on the expression of genes regulating translation has been 

reported (Joseph et al, 2002). The whole process of protein synthesis or translation 

(initiation, elongation and termination of peptide chain synthesis) is regulated by the 

expression of several genes, collectively called translation factors. Two such genes,
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translation initiation factor 3 (TIF3) and translation elongation factor-18 (TEF-15), 

were found to be overexpressed in BALB/c-3T3 cells that were transformed by 

exposure to Cd2+C12 (Joseph et al, 2002). Cloning the Cd2+NAs for TIF3 and TEF-18 

and expression of the encoded proteins by transfection in mammalian cells resulted in 

transformation and tumorigenesis illustrating the oncogenic potential of both TIF3 

and TEF-15. Furthermore, inhibition of the overexpressed TIF3 and TEF-18 by 
employing the corresponding antisense mRNAs in the Cd2+-transformed BALB/c-3T3 

cells resulted in a significant reversal of the transformed phenotype of the cells. These 

results support the hypothesis that cell transformation and tumorigenesis induced by 
Cd2+ may be, at least in part, mediated through the overexpression of translation 

factors (Joseph et al, 2002). Further experimental evidence, especially from animal 

experiments, is required to support this conclusion.

Miscellaneous genes

Recently developed techniques such as differential display and microarray analysis 

have facilitated the identification of a large number of genes exhibiting alterations in 
expression in response to exposure to Cd2+. Liao and Freedman (1998) studied the 

ability of this metal to affect gene transcription in the nematode Caenorhabditis 
elegans by differential display analysis. Forty-nine Cd2+NAs whose steady-state levels 

of expression changed two to six-fold in response to Cd2+ exposure were identified. In 

addition to the genes involved in stress response, genes for collagen, rRNAs, pyruvate 

carboxylase, DNA gyrase, B-adrenergic receptor kinase, human hypothetical protein 

KIAA0174, for several novel proteins were identified.

1.4.9 Mechanisms of Cd2+-induced alterations in gene expression

The actual mechanisms responsible for Cd2+ induced deregulation of gene expression 

are better understood now than in the recent past. Several possible mechanisms, 

including effects on secondary messengers such as reactive oxygen species (ROS) and
'y,intracellular Ca , transcription factors, cellular signal transduction cascades involving 

kinases, and DNA-cytosine methylation are considered to be responsible for the Cd2+- 

induced deregulation of gene expression.
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1.5 Dictyostelium discoideum

D. discoideum often referred to as “slime mold” or “social amoeba”, is one of the 

simplest studied eukaryotes that possesses true multicellularity (Raper, 1984). The 

cellular slime molds were formerly considered to be 'lower fungi.' Although they 

superficially resemble fungi in certain respect they are included in the Kingdom 

Protista. Individual cells resemble small amoebae and move and feed in an amoeboid 

manner, thus they are called 'myxamoebae' (to distinguish them from true amoebae). 

D. discoideum was first discovered in 1935 in a forest in North Carolina and has since 

been found, along with similar genera, in many such environments around the world. 

D. discoideum can be found in soil and moist litter leaves. The primary diet of D. 

discoideum consists of bacteria such as Klebsiella, E.coli etc. that are found in soil. 

These bacteria secrete folic acid which attracts amoebae. Under good nutritive 

conditions amoebae remain unicellular and grow as primitive animal like cells either 

on bacteria (wild type) or in a semi defined growth medium used for the axenic 

laboratory strains.

D. discoideum development

D. discoideum has an intriguing way of becoming multicellular, under nutrient 

depleted conditions. This represents a novel developmental transition which is 

absent in most other multicellular lineages. The process involves the aggregation 

of individual cells followed by well orchestrated movements to spatially organize 

the cell types. Starvation initiates the creation of biochemical machinery which 

includes glycoproteins and adenylyl cyclases (Gilbert. 2006). The glycoproteins 

allow for cell-cell adhesion and adenylyl cyclases synthesize cyclic AMP. Cyclic 

AMP is secreted by the amoebae to attract neighboring cells to a central location. 

As they move towards the signal, they bump into each other and stick together by 

the use of glycoprotein adhesion molecules.

Starving cells stream together by chemotaxis towards autocrine signals and form 

aggregates that contain 10? cells, to form a multicellular massC\he mound (tight
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aggregate). The driving force behind this process is chemotaxis towards a pulsatile 

source of extracellular cAMP (Roos et al, 1975). When cells form an aggregate. 

cAMP concentration is thought to rise to the micromolar range (Abe et al., 1983). 

During aggregation, oscillatory waves of cAMP are generated from the center of 

the aggregating territory and are propagated toward neighboring cells. Initially, 

amoebae move as individual cells towards the signal, however, as they reach near 

the source and cell density increases, cells coalesce into multicellular streams.

A transcriptional cascade is activated, leading to the emergence of different cell

types that self organize within the aggregate (Firtel. 1995; Kimmel and Firtel,

1991; Loomis, 1996). After about 6-8 hours of starvation, a flat loose aggregate is

formed with indistinct borders. A sheath of mucopolysaccharide and cellulose is

laid on a group of cells to form a tight aggregate or mound (Wilkins and Williams,

1995). During development, 20% cells differentiate into prestalk and the

remaining 80% differentiate to form prespore cell types, in specified ways, and

form a slug. The relative proportion of prestalk cells within slugs varies between

10% to 30% depending on the slug size and shape (Rafols et al., 2001).

Differentiation inducing factor (DIF) induces stalk cell differentiation in D.

discoideum and acts as the morphogen in the generation of the prestalk/prespore

pattern during development (Masento et al.. 1988). The slug undergoes transient

or prolonged migration depending on the environmental conditions. Recent work
has focused\hat spatial gradients of DIF do^ not act as the primary signal for cell

type choice (Thompson and Kay, 2000). Rather, the choice of cell type appears to

rest on a basis that is quite the opposite of morphogen dependent spontaneous

patterning, namelv the existence of functional differences^ in the form of
/

preexisting heterogeneities, between the members of an apparently homogeneous 

cell mass.

Fate of the cells is predetermined during unicellular form only. Pre aggregation 

amoebae can differ in many ways, which include nutritional status, cell size, cell 

cycle phase at starvation, cellular calcium content (Nanjundiah. 1997) and 

sensitivity to DIF-1. The cell cycle phase at starvation has also been implicated in
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determining the fate i.e. amoebae in S and early G2 phases at starvation exhibit a 

prestalk tendency (Weijer et al., 1984, MCd~+onald and Durston, 1984, Gomer 

and Firtel, 1987). Thus Calcium concentration and the cell cycle phase at the time 
of starvation decide the cell fate. High (Ca2+) levels during S-phase is not required 

for cell cycle progression but for cell type choice mechanism at the onset of 

starvation, and these cells tend to follow the prestalk pathway while cells with low 
Ca2+ levels tend to form prespore (Azhar et al., 1997; Saran, 1999). Cell fate in D. 

discoideum is thus decided based on intercellular heterogeneity as the primary 

factor behind cell fate choice.

(1. bp. blogspot.com/.../sl600/slime+mold+03.jpg)

Figure 1.14 Life cycle of D. Discoideum

After a variable period of migration, the slug settles at one place and cells near the tip 

form a sheath within which the cells expand and vacuolize to form the stalk, and then 

extends vertically. The posterior end spreads out with the anterior end raised in the 

air, forming what is called the "Mexican hat," and the culmination stage begins. The
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prestalk cells and prespore cells switch positions in the culmination stage in order to 

form the mature fruiting body. The anterior end of the Mexican hat forms a cellulose 

tube, which allows the more posterior cells to move outside of the tube to the top, and 

the prestalk cells move down. This rearrangement forms the stalk of the fruiting body 

made up of the cells from the anterior end of the slug, and the cells from the posterior 

end of the slug are on the top and now form the spores of the fruiting body. Thus 

spore is supported by a skeleton of dead cells that are arranged as a stalk and a basal 

disc, which anchors the stalk to the substratum.

When the spores are dispersed, under favorable conditions, they germinate by 

splitting the spore case longitudinally and escaping as small but normal amoebae. 

This complex series of stages give a two Told selective advantage to the organism i.e. 

to permit the dispersal of cells from an area in which they are starving and to provide 

a dormant stage to resist unfavorable conditions.

Molecular aspects of D. discoideum development

The process of aggregation bridges the feeding unicellular form of D. discoideum to a 

starving multicellular form. Many biosynthetic genes expressed at growth stage are 

downregulated and genes involved in development are upregulated (Mir et al., 2007). 

Amino acid starvation represses the development of these amoebae (Marin, 1976). 

Recent investigations have revealed several components involved in regulating the 

initiation of development (Souza et al, 1999; Kon et al, 2000; Zeng et al, 2000), 

however little information exists on how the cells exactly sense starvation and in 

particular amino acid deprivation. Studies have now implicated the Target of 

Rapamycin (TOR) pathway in the process of sensing these two nutrients (Lee et al, 

2005).

Cell cycle arrest

Upon amino acid depletion, D. discoideum cells undergo cell cycle arrest. YakA, a 

serine/threonine protein kinase governs this transition by regulating the cell cycle, 

repressing growth phase genes and inducing developmental genes. yakA is induced by
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starvation and its expression is controlled by an extracellular prestarvation factor 

(PSF) that accumulates during vegetative growth.

Yak A mediates the initiation of development by repressing pufA expression. PufA, a 

translational regulator inhibits catalytic subunit of cAMP-dependent protein kinase A 

(PKA-C) translation by binding to a region at the 3’end of the PKA-C mRNA (Souza 

et al, 1999). Thus, YakA acts as a regulator switch between vegetative and 

developmental gene expression by relieving the negative control on PKA-C 

expression, which in turn activates DdMyb2 transcription factor and all further 

downstream events which include activation of adenylyl cyclase leading to production 

of the differentiation inducing signal cAMP. The adenylyl cyclase gene acaA is one 

of the first genes expressed upon starvation (Fig. 1.23). ACA produces extracellular 

cAMP that induces chemotaxis and aggregation in neighboring cells. Intercellular 

signaling by secreted cAMP then induces the expression of another set of genes for 

further stages of development. Therefore the components that mediate the induction of 

adenylyl cyclase have the central role in the growth/development transition in D. 

discoideum.

Dictyostelium vegetative cells

1
Amino Acid Starvation

PSF

Starvation sensing

DdMyb2

acaA (initial)

(Mir et al, 2007)

Figure 1.15 Signaling during initiation of D. discoideum development
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Cell death occurs in many places along the phylogenetic tree other than in animals. 

Investigation of cell death in other organisms may reveal phenomenological 

convergence or molecular conservation and then yield invaluable comparative 

information (Golstein, 1998). The slime mold D. discoideum is an early conditional 

multicellular organism that shows developmental cell death. It has been observed by 

many workers that D. discoideum demonstrates cell death mechanism similar to that 

seen in some of the higher eukaryotes. Another ontogenic reason being the relatively 

simple pattern of development in this organism facilitates the study of cell death that 

occurs during development. There are methods that allow triggering in vitro 

differentiation without morphogenesis and thus facilitate the isolation of dying cells 

for study (Kay et al, 1987). 7^

Role of Poly (ADP-Ribose) Polymerase diurmg Cadmium mducefl'cell death in Dictyostdium discoideum

D. discoideum during starvation induced developmental process exhibits PCD in the 

20% stalk cell population. D. discoideum exhibits caspase independent type of cell 

death (paraptosis) during its development which occurs even in the presence of 

caspase inhibitors. Paraptosis is characterized by the absence of oligonucleosomal 

DNA fragmentation. Developmental cell death requires starvation and presence of 

DIF (Comillon et al, 1994). D. discoideum cells in conditioned medium undergo cell 

death that shares essential features with mammalian cell apoptosis. This involves a 

loss of mitochondrial membrane potential ('Pm), resulting in the release of AIF from 

the mitochondria (Amoult et al, 2001). Stationary phase cells also exhibit similar 

kind of features (Tatischef et al., 2001). It has been documented that D. discoideum 

undergoes an ‘apparent’ caspase independent programmed cell death (Olie et al, 

1998). The stalk cells show massive vacuolization, ; prominent cytoplasmic 

condensation and focal chromatin condensation (Olie et al, 1998). The D. discoideum 

vacuolar cell death pathway does not require cellulose synthesis and includes early 

actin rearrangements (F-actin segregation, then depolymerization); contemporary with 

irreversibility, corresponding to the emergence and demise of highly polarized paddle 

cells (Levraud et al, 2003). Contradictory observations have been made for the cell 

death in stalk cell in the presence of caspase inhibitors. Simbulan et al, (1999) 

showed no effect on stalk cell death while on the other hand though caspase inhibitors
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did not inhibit cell death they were observed to impair development in D. discoideum. 

Also these inhibitors show dose dependent increase in percent of stalkless fruiting 

bodies (Olie et at, 1998).

According to Kawli et at, (2002) there is no intemucleosomal cleavage of DNA in D. 

discoideum. However, nuclear condensation and peripheralization does occur in stalk 

cells. It was also shown that the fraction of cells showing caspase 3 like activity 

increases and reaches a maximum of around 25 % in the slug stage correlating with 

proportion of stalk cells (Kawli et at, 2002). Thus, cell death in D. discoideum shows 

some, but not all, features of apoptotic cell death as recognized in other multicellular 

systems. The molecular mechanism underlying this kind of cell death is yet to be 

understood (Kawli et al., 2002).

Blast search results suggested that D. discoideum has a paracaspase gene, no 

metacasapase and a caspase gene. The paracaspase null mutants showed undiminished 

cell death in vivo and in vitro, in addition paracaspase inactivation led to no alteration 

in development. Thus programmed cell death does not require paracaspase (Bouffay 

et al., 2004). As D. discoideum shares ancestry in some of the molecular mechanisms 

of cell death with mammalian cells and thus is a good model system to characterize 

paraptotic cell death. Thus the social amoeba D. discoideum, a powerful paradigm 

provides clear insight into the regulation of growth and development. In view to this 

D. discoideum is an excellent model system to study the role of PARP and PARG in 

caspase independent cell death. D. discoideum has potential PARP genes (Otto et at, 

2005). Our lab has established the role of PARP in D. discoideum development 

(Rajawat et al., 2011).

Previous work done in the lab

Our lab studies describe the events during oxidative stress induced PARP mediated 

cell death in D. discoideum when the action of PARP is intercepted by PARP 

inhibitor benzamide as well as by PARP antisense (Rajawat, 2010). Our lab is first to 

report the involvement of PARP and the downstream events during oxidative stress
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induced cell death and development in D. discoideum. It was demonstrated that 

oxidative stress induced cell death is also partially rescued by PARG inhibition. We 

put forth that D. discoideum exhibits paraptosis which is mediated by PARP. PARP 

and AIF are the major players governing D. discoideum cell death kinetics during 

paraptosis and necrosis induced by oxidative stress ((Rajawat, 2010; Mir, 2011).

Similarly, cell death induced by different stresses such as UV-C, staurosporine (STS), 

starvation and the interception by benzamide, a PARP inhibitor were also studied. 

STS induced paraptosis is also characterized by AIF mediated DNA fragmentation 

however, it was not affected with PARP inhibition. Thus PARP is a dispensable 

player of paraptosis (Mir, 2011).

Besides cell death developmental studies were also carried out. Constitutive down- 

regulation of PARP resulted in blocked development at slug formation while no effect 

was observed on growth. Studies on long term effects of PARP inhibition on D. 

discoideum development under oxidative stress demonstrated that second generation 

cells showed normal development signifying that PARP inhibition has no deleterious 

effect on D. discoideum development (Rajawat et al., 2007; 2011). Based on these 

results our lab has proposed that presence of PARP is essential for complex 

differentiation and its function may be linked to multicellularity.

D. discoideum shows differential effects of oxidative and UV-C stress on 

development and spore germination as oxidative stress induced changes could be 

rescued by PARP inhibition, however many of the UV-C induced changes were not 

affected by PARP inhibition. Thus D. discoideum exhibits differential behavior to 

different stresses. In current study we are interested to observe the response of D. 
discoideum to Cd2+ stress and to find the link for nuclear-mitochondrial cross talk 

during PARP mediated cell death.
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Thus the objectives of this study were,

1) Mechanism of Cadmium induced cell death in Dictyostelium discoideum

2) The role of poly (ADP-ribose) polymerase during Cadmium induced cell death
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