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SBAEXEB - II

REFINEMENT IN THE HHOB APPROXIMATION

INTRODUCTION :

In recent years numerous calculations, corresponding to 
nearly as many theoretical description, have been made of 
amplitude of high -energy collisions of charged particles with 
atomic targets. Collision process between electron and atom were 
studied particularly at intermediate and high energy region. The 
theoretical methods employed in the calculation of the 
differential cross section are reviewed by Burke and Wiliams 
(1977),Moiseiwitsch (1977), Bransden and Me Dowell (1977-1978), 
Callaway (1980) and so many. These methods were broadly classified 
as:
(a) expansion methods, (b) methods based on the construction of 
Optical potential, (c) the Born approximation and its extensions, 
(d) the distorted wave methods, (e) semiclassical methods, and 
(f) many body theory.

Theoretically the scattering problem was basicallly 
attempted with mainly two ideas:
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(O nature of the interaction (direct, static, exchange, 
polarisation ),
(it) validity (angular and energy regions) of the methods for 
cross section calculations.

Despite lot of work reported for the calculation of the 
differential cross section using various methods and numerical 
techniques for the computational work, it is observed that there 
still exists a wide gap between the theory and experiment results. 
Recent developments in the experimentation have made the 
availability of the diffrential data of electron and positron 
scattering by a variety of target atoms like hydrogen, helium, 
lithium, neon and argon and so on.

The advent of the latest electronic computers and their 

subsequent use in the calculation required in the theoretical 
techniques have made the testing more easier and faster. The 
combination of these powerful techniques with that of possible 
new experimentals checks have caused the continual activity in 
this area..

Having an experimental and theoretical impetus in the data, 
it is an appropriate time to extend the calculation by modifying 
or by refining the approximation in the method used.

There are several approximate methods described, but because 
of enormous complexity in describing and predicting the results 
of associated experiments, most of the cited works have had as 
their objective the determinations of accurate and computationally
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feasible theoretical procedures. Included among the sore 
successful methods are variations of traditional impact parameter 
studies (D.P.Dewangan (1975)), the simplified Born approximation 
(A.R. Holt, B.L. Moisewitsch (1968); A.R. Holt (1872); A.R. Holt, 
B. Santoso (1973); M.J. Woolings (1972)), Glauber (E. Gerjuoy, 
B.K. Thomas (1974); T.T. Glen (1976); J.E.- Golden, J.H. McGuire 
(1976)) and modified Glauber (L. Hambo, J.C.Y. Chen, T. Ishihara 
(1973); J.C.Y. Chen, C.J. Joachain, K.M. Watson (1972); W. 
Williamson, Jr. and G. Foster (1975); M.R. Flannery, K.J. McCann 
(1974); C.J. Joachain, R.- Vanderpoortan (1973)) approaches, 
calculations (S. Gol~tBian, Ml. 18. Hidalgo (1971), .A. B. Stauffer, (j . . 
Morgan (1975))j and the eikonal-Born series approaah (F.W. Byron, 
Jr. and C.J. Joachain (1973); F.W. Byron, Jr. and K.J. Latour 
(1976); F.W. Byron, Jr. and C.J. Joachain (1977)); C.J. Joachain, 
K.H. Winters, L. Cartiaux, R.M. Mentexaorenoc (1977); F.W. Byron, 
Jr. and C. J. Joachain (1973)).

These reviews are concerned with the current state of the 
theory of scattering of electrons by atoms. It emphasises the 
intermediate and high energy region, begining at the first 
excitation threshold and extending upward. The upper boundary of 
the intermediate energy region is not clearly defined; it is 
generally taken few times the ionisation threshold. The energy 
range just above the first excitation threshold has been 
considerable recent interest to both theorists and experimenters. 
It is well known that the differential cross section (DCS), for
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elastic scattering of electrons by most of the atoms possess deep 
minima at one oor more then one electron impact energy and
scattering angle {Kollath and Lucas).

The elastic differential cross section for hydrogen and 
helium exhibits a pronounced peak through out the intermediate 
energy region. Several approaches yields such a peak, but in order 
to describe it properly, it is essential to account for the 
polaraizability of the target atom.

The present study is aimed at suggesting yet another
description of high -energy collisions. Prompted by the work -and
success -of Byron and Joachain in their eikonal -Bora series
approach to medium -to high energy electron -atom collisions, and
constitutes an extension of the earlier work of Tates
(A.C. Yates (1974)). The primary purpose of the current analysis
is to develop an alternative high -energy expansion of
differential cross section in terms of the reciprocal powers of
k^ ( where hk^ is the momentum of the incident particle ),

- 2through 0 (k^ ) , which is computationally tractable, yet derived 
from analogously treated second and third Bora terms. Also the 
suggestion of anamalous behavior of the small -angle high -energy 
differential cross section in electron atom collisions
(C.B.O. Mohr (1969)) can also be described. In the present work 
we have given complete description of the high energy
approximation given by Yates (1974,1977,1979).

Electron hydrogen atom collision is one of the most



fundamental problem of the atomic physics and has been studied 
numerous time both theoretically and experimentally. One of the 
most important aspects involved is that agreements between 
experiments and even the most sophisticated theories are not found 
fully satisfactory. Motivated by the above and considering the 
simplicity of the approach and from the observation presented in 
this chapter, one can conclude that the present approach would be 
more useful in studying many aspects of the scattering involving 
different atoms. We first made an attempt to study the refinement 
applied to the HHOB approximations to study the elastic scattering 
of electrons by hydrogen atom as a test case. Having obtain 
success for the hydrogen atom as a test case, we further extend it 
for the atomic target like helium and lithium atom also.

Thus, the thrust of this chapter is aimed as to outline 
briefly this method, but more importantly to describe a new way 
to obtain accurate scattering information at intermediate and 
high energies. We first describe the HBOB approximation in detail 
than we study the refinement of the approximation. Having obtain 
the analytical integral equation, we apply it to study the 
different case described above. At the end of the chapter we 
discuss the results obtain through the refinement in the HHOB 
approximations. We have made adequate comparison in the form of 
graphs and tables. We compare the results with the various 
experimental and theoretical results available.
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HIGH ENERGY HIGHER ORDER BORN APPROXIMATION CHHOB THEORY) ;

■The HBOB (High Energy Higher Order Born) approxiaat ion has 
been shown to be a successful theoretical approach for analysing 
electron, positron scattering at intermediate and highenergies. 
There exists a vast literature which testifies the success of the 
HBOB theory. A review of the approximation, method used and the 
method of successful solution is given by A. C. Yates (1974, 1977, 
1979).

In arriving the final expression of the free particle 
scattering amplitude in the HHOB approximation, a well known 
generalized Born series description is introduced and then 
transformed into a more convenient form in the analysis of the 
HHOB theory.

To begin with, let us confined to the specific case of an 
electron scattering with a neutral N- atom.Atomic units are used 
throught,except otherwise will be stated.Let k^, and a = k^ - 
kj will denote respectively , the Initial and final momenta of the 
scattered electron, and the momentum transfer to the target as a 
result of the collision. We consider the non -relativistic 
collision. Since we are interested in the intermediate and high 
energy regions, we shall first neglect the effects of the Pauli 
principle between the incident and target electrons, we may ignore 
the spin of the projectile. The indices i and f therefore label



the momentum of the projectile together with the internal quantum 
numbers of the target. Corrections due to exchange is treated 
separately.

We begin with the Bora series, which , is obtained if one 
solves the Lippmann -Schwinger equation by the perturbation 
technique. Bence Bora series is a perturbative series in powers 
of the interaction potential. Consider the generalised Born 
series for the scattering amplitude which describes the collision 
of an electron with N -electron atom with the initial and 
final atomic states and energies given by (y^, E^) and , Ef) 
respectively is written. One can write the scattering amplitude 
from the Born series as,
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f i—>f
ce£n=l

t{n)
i-->f

where,
f i-->f ~ ” 2~fi X <**0 e la *0 Xg )

(1),

(2),

where rj, is the coordinate of the projectile electron and r± 
(i= 1, ... , s) is the position coordinate of the atomic electron.

The interaction potential between the incident electron and 
the target atom for N -electron is given by,

V z 1« _i_ _ »itl *i0 *0 (3),

with ri0 = | £ ± 1 0 I-
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The moat, convenient form for the second Born term i.e.

fi-->f can be obtained as follows.
Consider the three terms of the Born series from equation 

(1.27) and the interaction potential V or from (3) and the
Green’s function from equation (1.18) fro the evaluation of the 
second Born term of the Bom series. A more convenient form can be 
obtained by transforming the interaction variables ( .i^) to
the set (i^ ,Y>, with Y = t'j in the matrix elements of
second and third Bora terms, and replacing z by r^-, then the 

terms reducein the following form

(2)

(2)i-->f
1

-fr E J 0*0 ^ • ** V( *0 > hin
(4),

where,

rn = S <**0- ^ »ni<*0 "V > Qn < K>> (5)

where G^rjf) is the Green’s operator. The basic assumption
involved are introduced by the transformation of variable S> =
> ?_>k -- k^ in 1^ where,

xn = riff)3 v'% vni(%- V> (s + 2 -i«)
(6)

Since the difference of k*' and k^ is very small, one can 

assume that »nl is a slowly varying function over the distance of
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equation can be obtained as

dV o18v_ _ _ _
s +2s.. JEn-i€

daf [ 1 +
2a. fcn~ie 2a-

,-> - >3 eis r0

where D is the differential operator with respect to r,0 and
djp dsx dsydsa. In the above da integral, ds^ds^ integrals can be 
evaluated by the use of definitions of delta functions and the 
ds„ integral can be evaluated using the contour integral 
techniques for the first and second poles (Boas,1966). Then the 
closed fora of the da Integral can be written as

= A'! 'ri
* _ > _ > 2 S0 0 V , (r„- r„') r l «■ i D 310 ni'r0 0; 1 A Xq 2kn J

d{b0 ) B(z0)

= -2-k- C Inl n2 (7),

where, H(z0 ) is the heavyside function. D is thedifferential 
operator with respect to r0'. da integration is performed in a 
cylinderical polar coordinate system by choosing as a polar

equation can be 
further simplified by using the property of the the delta 
function,

axis and writing,r0’= b0-+z0'kn. The above

•rlH k*
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*nl = -c#/ e 1(ki ^ ** H(B0} 7ni(x0~ *0* dz0 « 0

now considering -the second part; i.e. I^g

rn2 = 2i' I df0 «1(ki' V l0' Tni<*0 -V> Er S(V> HU0>
n

integrating by parts yields into,

= -Ir </ <*0 Dx-[4(Sl0) »0» <■»> ] ®1<kl" v l0'Tm<*0-

■ i- dr0' z0 H<B0” C«1<kl' kn’10 Vnl(l0-r0')]t

again integrating by parts in the second term of the above 
expression. We have ,

= ~k (I ^‘WH ^ W *0> -

C J dl0-6 (bg-) z0U(z0) DX el(kl- V *0 Vnl<x^-r0 ) - J dig 

'5<&0 ) »0 «1(ir K'1 r0 vnl(r0 x„ ) ] l

= -2~i~ J <*0 4<V ) *0H<“0> Dx- «i(k±" k”)'r0 Vnl(r0‘ *0 >

2after the D , operation , the corresponding term of the I 
*0

I yields in I , ni n

and



*n = 2-k- -J*K H(*0> [1 + l-2f- DZr0-]n q

Vni(r0 ' *0 ’ lb £= 0 

where r»ln = kc
condition, -the above expression embodies -the central 
Approximation.

The evaluation of the scattering amplitude can be performed 
in the cylinderical coordinate system by choosing in such a way 
that the z - axis is always perpendicular to <j. . Thus a is two 
dimensional , and the position coordinate of the z + 1 electron
can be written as r^ = y , i = 0,1.... z. Where y is a

unit vector in the s -direction. Let X denotes the target
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coordinates. In order to simplify the 2nd order Bom term it is



necessary to take the fourier transform of interaction potential
(3).
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V(r0, ■ ,J:N) = J dp eijE‘ J” dpa e“ ipz Z0 V (p* P_> - >r1” 'rH>
(9),

where,
V<P>+ PZF » 1

_2. 2 2 .. 2n^( P% P“ )
E (e^j + ipsaj 
Jsi

1 )

(10).
The general font of the ^nj, (*0') in the above expression has 

been defined as,

= < vx) I vu> I Vxl > (11)-

Substituting ( 9,8) in the 2nd Born term (4), the 
coresponding second Born term can be written as

+CJ>fHEA = 2fik E J dj0 e ^ Vfn(*0) J dajj H(z0) 0
-co

C Vni(r0~ s0^> + 'll" D4Vnl< *0- *0> li0 =0 3 (12).

The infinite summation over atomic states can be treated, 
with varying degree of accuracy, by any one of the several 
approximate methods (Woolings and McDowell 1972; Byron and 
Joachain,1977; A. C. Yates,1978).

£ Vfn{x0} VniCz0~ ~ Vf(r0} ¥i(r0~ *0 } (13),
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Yates (1978)’ replaced ft±n= where AE is the average energy 
transferred to intermediate atomic states during the course of 
collision. The summation in the above equation runs over all the 
target states, except the ground state. AE is taken as the 
average excitation energy because the energy region to be deal is 
only the intermediate and high energy region. Hence,according to 
Yates{1974 -79) 2nd Born term can be defined as,

4e1 = ~£~i\ i «ia' *•> < i v< ^ , .. i

- >J dz^ H(z^) e_1/3i z0 [Tdg-E'y* .... i2 ) +

2k D^0 *0 * £i» 1^0 =0 ^ I >
(14).

On using equation (9) and carrying out D , operation, the*0
preceding result can be rewritten as,

fHEA :Mld2 - J <*®z J <** - J <*®'a < *f I + • **>

V(p + py ;x...i ) | y > J dp ~ B - ^***0

+00 - CO

+ oo-J d*s ei(Pa' Pz>Z0 < 1 +-:2k-;8 :> '<**0B<*0>
p#3+pa2^ *

e-KP' - ftt) ^

W'
t ij dB C 1 + ( p2+ ftf )> U^23(g -p -/^y ; P-tf^y)



38

In arriving at the final form of equation (15), it has been 
necessary to use the usual integral representations of the one 
-and two -dimensional 6 functions, and the additional result of 
B. Friedman (1969)

-co ,^ f dx e“aax H(x) = n 6 (a ) - 1 (P C-“>.

High energy approximation to the differential cross section
- 2is valid through 0(k^ ), is sought. Since the first Bora 

approximation tent is real and of zeroth order in K~*, the

imaginary part of the scattering amplitude is required only
- 1 - 2 through 0(k^ ) , whereas the real part is needed through 0(ki ).

Further, it should be apparant from equation (8) and definition
of ft^ that the leading k^ dependence of the various terms of
equation (15) will be of order, no lower than that explicitly
given. Also, except for a possible complex phase factor common to
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second Bora -berm. If ft ^ is set equal to zero in equations (16) 
vanishes, and the leading term of real part of f^^ is then 

*propertional to O(k^). Similarly, the imaginary part of f^^ 

identically becomes Glauber's estimate of the second Born term 
Yates (1973,1974). Where p is the principal value.

Similarly evaluation of the third Born term can also be 
performed, the differential cross section (DCS) for the direct 
scattering can be written from the expression of the scattering 
amplitude. The scattering amplitude in the HHOB theory is given 
as,
fHHOB = fi-->f + Rel1 fHEA + RelZ fHEA + Rel3 fHEA + 1 IlB fHKA

(20),
where the meanings of the symbols used In the above expression
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are given above and in Yates (1978). Which represents a wholly 
consistent approximation, treating all terms equivalently. Since 
the direct evaluation of the third Born term is extremely 
difficult, and in the light of the the above discussion concerning
the properties of the Born term at all angles by the corresponding 
Glauber third term.

Hence we write the expression of the scattering amplitude as,
lHB0B ,(D

i—>f + Rel f(2)HEA + Re2 f (2) , T AZ) A3)
ITCA 1 HKA GES

(21).
The differential cross section (DCS) for the elastic

-2scattering through 0(K^ ) for fixed q follows

def _ ' Kfc 
dO' " "Kj 1 FHHOB (22).

The total collisional cross sections are obtained using the 
Optical theorem (Taylor , 1972). The TCS’s expressed as,
<r-tot = ^2 Im f(W = 0) (23).

The assumption in high energy approximation (HEA) were made 
along with the small angle approximation of Glauber (1959). HKA 
concerned with the elucidation of character of second and third 
Born -terms for short wavelength ( k a >> 1) and for small momentum 
transfers (small angles). The partial expansion of equation (6) 
was necessitated by a desire to include a plausible and reasonably 
accurate discription of virtual excitations (target polarisation). 
It was also shown for elastic scattering of electrons by hydrogen
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atom, that when q —> 0 for large ki the real and imaginary parts 
of the second Born term approaches to the corresponding terms of 
the simplified Bona approximation (byron and Joachain, 1977). The 
difference between the HEA and simplified Born approximation is 
the term of order k^ when q = 0 in HEA. It was also concluded 

that the HEA provides an accurate diseription of-these terms for 
small q.

REFINEMENT IN THE HIGH ENERGY HIGHER ORDER BORN APPROXIMATION :

Inspired by the success of the HBOB theory applied to study 
the elastic scattering of electrons by a target atoms like 
hydrogen, helium and lithium ( Eao and Desai, 1982 ; Suja and 
Desai, 1988). In this section of we extend the same process but 
after applying certain refinement to the second Born term. We 
discuss the HBOB approximation by applying certain refinement in 
the expression of the second Born term in the HBOB theory. As a 
part of the refinement of the above procedure we include certain 
number of low lying energy states in the sum on n appearing in 
equation (12), and then we perform the sum of the remaining states 
according to Yates (1979). The proposed refinement is tested for 
the hydrogen, helium and lithium. We find that there has been a 
considerable amount of improvement in the cross sections when 
compared with the other theoretical and experimental results. 
Since we are considering the non -relativistic collision, we can
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neglect the Pauli principle as well a3, we can neglect the spin of 
the projectile electron. The effect of the exchange is treated 
separately using the Ochkur approximation (1963). First we derive 
the terms of the HBOB theory using the refinement. Then we study 
the effect of such refinement on the cross section. We first 
discuss the results obtain for the case of hydrogen atom and then 
we take up the helium problem in the similar way. At the end we 
discuss the results of the cross sections obtain for the case of 
lithium atom, where we treat the lithium atom as a three electron 
system. We have made an adequate comparison in the form of graphs 
and tables. As a part of the refinement by means of including 
certain low lying energy states in the calculation we rewrite the 
equation (12) as,

, , +oo
e fl % v«(v -j

E j eia,r0 Vfn(V H<*£> e

e^i'0 V0l(l0- 

Vnl<*0-

(25),

+

a a +O0= atk/ d*0 8 0 Vf0<V -J dz0 B(^) e

a . +00

Skt U dr0 ° 0 Vfn(V -J d«0 H(*0> «

2nik1 f 4*0 *l9'10 Tf0(x0) H(k') evs

W10z0 T0i(x0-

^1nz0'v[>i(r0- zfr) 

mV v01(r0- ze-h
It can be written further as
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= zni1 f <*0 «ia'10 vi0<V -J da0 ac^) «"’i0a0 70i(r0“ V+cO ^ 4 afioi

+ooalk1 J dr0 e l0 W ~J e l“Z0 «V> da0 v0i(r0^

2nik1 J d% «i9'r0 7f0<V dz0 H('0) «"’l°“0 ¥0i<*0■hag .!/?< Zs,*

._!_ r -4- +co2Hkt f ^ e ^ < '"f I 7(I0....V I VI > -J' dz0 B(s0>

< '"i I 7(*0- ^ ....V I '"i > + zRkj^ J" eiar0 < •’i

+coV(£0,...£s) dZg e-1/?inz0 < w± | Ttlg" Xr • • >Xa> I ^ >

+c®aikt -f 4*0 e a £0 < vf(X0..-ra) | v | WfCrg,...,^) > _J BU£)

dz£ e ^inz0 < Vi | v | y>± >

further,

-p<2) _ _i_IHEA " 20k r dx0 ela-*0 v00<x0... ,XN) ^r^0 v00(x0^ * 12nk.

J d£0 eia*£0 < V»0 dZg H(z0) VCXg -z£f;+O0 i/?, z‘

*i....-'ll’ i *0 > 4 J +Cp2nkt / ^0 e 10 v00{r0’ • ■ • ,xhj -J dz0

HtZg) © i 0 ^00^X0 ~ ^gF * X11 ‘ ' * ,XN^
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~ 2ffk J dx0 ®iS X® V00*X0’ ' ' ’XN* ~aS da0 V0i{x0~ *0** + 2Hk.
+00J dr0 oia’^0 < v„ | T(i0,...in) J ds£ BU£) e'^i^ VCIg- a^y;

Xl’ ■ ' 'XN* i ^0 > aTk1 / dX0 ® 3 10 V00*X0’ * • • ,XN^-0«J dz0 H^Z0i 

e_1/5lz0 d&0

now the first term of the above equation reduces to a form,

= ^v^e ^ <01 v 10> -r d’° <0|v,0>

further it can be written as

= mj 0-0 o^ V^a-e <0| ; <te e-is-Se ^*"dps

, „ _ +C0e-iPaa0 V(E + pay. JTi, —JCN) |0f> dz£ <0j J dp'

e"i]B,;b0_oJ'4t3Odp^ e'ipz(s0 ~%’) VC p’ + pzy; x1,...rN) | 0 >

#*► -fop= 21k/ dp J dp’ J <% ei(a"B"£’ )4i0 V^Ce + Pz7) _J* dz^

+oo +oo . , . , x . , ,-J dp2 -J dpz ® {Ps Pa )Z0 eiP2 B0 HCSgj)
using the properties of the Dirac delta functions properties, we 
have

, ^ A -fco= Sk1i'dEJdE- ‘a” 'ffllt + y) « (a - s - s') J ^
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+0Q +oo= dp (2n)2 V(p + PZF) J dp' <5(g - P - S’y^J d»0 J dps

.J^dp; V(p* +- p^y) (20) 6 (Pg) ds£ ei(ps~ pa} z0 H(a£)

This will only survive when p’ = 0 or p’ = p, i.e. property of the 
Dirac delta function. Bence,

___ i_ +oo +co
JSlk^2^ f ~J -J V00<* - *' -S

, p„y) ei(ps“ps>z0 B(z0> dp

dp* dBg

further,

, A +oo _ „ , ,
= -JiiJ to Jto' V^d. + p2y) J to0 V'* p^> « P> 0

®<P* p* ' 0 -J- d*0 H<V V dps -J dpi J *0
i(£ "JB ~~JB’ )

f ?n ^ ___ a ^0= ^k" J dp J dP’ Vggtp + Pgy) _J dz0 vm(m’ +Pzy) _J da^

+-cp +oo ~B(z0J -oj dps -oof dp2 6(3 - P -P') eipz ei(pa+pz y) z0

. . 2, _ , +oo +co +c«
= 2ffk“ I 0® Wp + PEy)J dZ0 J d”0 H<*0> -J dp. •' P='0

J dp; e_i(pz’(z0~ z0} V^g- P + P; y)

^k'1 J" dp V00<B '*'*$> ’ -4^0 e^lpsz0'ipi^/**d^ a(^)

+O0-Jdp; -Ip^0 w* - p- p^> -Jdp+O0
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= 81,4 J J dp dpg, V (A - jb + pa,y) V(p - pg,y) d<Pa»“ “ 8n3i<f> 

J dpa,(PB’- /5i>-1 J dp V(A - p + Pa,y) V(p - pa,y )

This will only survive for f?^= 0. Bence,

= P) <P J
!w(fi_:_p5:!!!-_W : Vy)

'" -*>;""
The contribution of the second term must be 

cosine varies from -1 to +1. Bence the second term 
zero. Finally,

J dp dpz,

zero. Since 
reduces to

fHEA = 01^ -f <*E0 e ^00^0’ • • *XN* »f dz0 ^00^*0 a0y^ +

J dx0 eiai0 < *0 I y<*0* • * • »%> -cj d»0 H(B0) e^i5^
v {x0~ Vy’ l Ve > - 20^/ d*0 e13*^ v00(x0* •XH)

HhCQ , ^-cj e_1/3il!0 H(e£) v00tx0 " z0y* x^.-.-.Xij) dz0*

Finally the above equation can be simplified further in the 
following form.

.(2) _ 4n? , r n(2) , _ _ _ . 4n3tHEA - k. 1 j °st ( a - P, P'> dp +' i J dp
X X

0<|> ( a - E - t>L y ; s + ; ) - «- 1 J d£

tO\ “ ,0gt ( a - p - /5±y ; p + y ) <p ;«»
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We use this equation and the form of the potential to get the
terms in the scattering amplitude through O(k^) for the
calculation of the differential cross sections (DCS)..We use the

....) given below,form of U^J(

(x, X ; y, Y ) < Vt | v (X, X) V( y, Y) I ^ >

We now use the form of interaction potential (3) and the 
corresponding wave function for the target atom to evaluate the 
above terms of the HHOB theory i.e., set of equations (2, 16, 17,
18,). The above equation is then written in the form of the
integral terms such as I^(...), 1^’(....) , Ig(...) and so on.
The evaluation of this integral i3 explained in detail in 
appendix.
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where D’ is the differential operator with respect to X’s. The X’s 
and r’a are the constants and they are defined for various target 
atoms in each section the values are also given. We now apply this 
refinement first to the hydrogen atom as a test case. Contribution 
of the imaginary term will be due to the term corresponding to 
ft = 0, static part plus the term corresponds to finite ft and also 
corresponds to direct interaction potential or Y after the 
refinement is given to the HBOB approximation. Similarly the real 
part will also have the contribution due to finite ft value, ft - 0 
and due to the interaction potential V or V^. Here the term 
corresponds to ft =0 will have the contribution corresponds to the
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static part. We use the Cox -Bonhamm parameters for the static 
part. We calculate the terms individually and then we perform the 
final sum. We employ certain numerical techniques for the 
evaluation of the integrals and to do the computational work. The 
value of ft is taken accurate measured experimentally.

Elastic scattering of electrons by the ground C1S> state of 
hydrogen atom :

Electron scattering from the atomic hydrogen (H; z = 1) is
one of the most basic problems in atomic physics. The wave 
function of the hydrogen is known exactly, so there can be no 
uncertainty in the amplitude arising from the use of bound state 
wave functions. In the present study we study the elastic 
scattering of electrons by hydrogen atom, at the incident 
energies ranging from 100 to 700 eV. We use the refined HBOB 
approximation. The exchange effects are included in the DCS 
calculation. We use the Ochkur approximation to calculate the 
exchange scattering amplitude. We use eqution (26) to calculate 
the differential cross section (DCS) and total cross section (TCS) 
in energy range mentioned above. First we consider the ground 
state wave function of the hydrogen atom as
wls{ £l > ' (nj3/.2 ;E*P *1 >

= A Exp ( - zx ) (27),
the product of the initial and final wave function is written as,



Dn(y) represent, the derivative with respect to y and n stands 

for the order of the corresponding derivatives. The interaction 
potential for the electron and target hydrogen atom can be written 

as,

_i0 (28),

where Xg and *1 ara the Position vectors for the incident
electron and the target.: hydrogen, atom. The first Bora term for the 
hydrogen atom can be written as,

,(1)
i—>f 2~ff X d£0 e ^ ^ ^fi*1®*

2~n J S <it0 ail -la'10 vd *'f ‘VW

Az an
<,*♦ yz)z

a (9Z+ 4 )Z

substituting value of y

(29)

This expression is the first Bora approximation for hydrogen 
atom. Now the imaginary pairfc and the real part of the second Born 
term is written in theform ofj
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lm 4!a = IT J <*» Uf?’ ' 9 - B - 0^ ; E ♦ )

3 ^ *a J ds < V'f(xi) |V(a - b - /^jr. xx) v (e + fljjr .x^l vi(x1)>

using the fourier transform of the V(......) given by-
equation (10) in the above matrix element, the above equation 
reduces to
= (n^)”1 J ds J dj^ [exp (i(a - eMij- ~ U C «*p +

- i ) v'jtXj) ^(Xj) I (|a - eIZ+ (p2+ ft\) 3 1 

= - A^nkjT1 D(Y) J ds [ <|a - b|2+ ft\) (p2+ ftf) ) _1 J dxx

|(”7j:l> [ exp(i(a ~ EVbj. ~i/3jL21) ~ U [exp{ip-fcj+ i “1 J

(30).
The typical solution of the dXj integral is given as,

J dxx ev"yxl(~yx,) eifl*.x1 >'ti_.fi. 4n
U2+ y2>

using this the above dx^ integral can be evaluated easily. 
Further, using the partial ' fraction techniques and after the 

canlcellation of the integrand having opposite sign and evaluation 

of the dp integral given in appendix, the closed form for the 

imaginary term can be written as,

(2)
HEA

4 A* 
~k D(y) [ 2IZ( y2) 2, 2q (q + y2) (^i,0)l

( 31).
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This integral terms appeared in the equation (31) are 

discussed in detail in the appendix. Equation (31) through 
refinement will have two more term one with the finite value of ft 
and with ft = 0 term. Where we use the Cox -Bonham parameters for 
the evaluation of the term. Bence we will have the correction due 
to this two terms i.e. finite ft value and for ft = 0 value as 
mentioned in equation (25). Contribution of real part of order

w N

CM -HCM
w

- ro wCM t
4

<£- 
'

CM
M (33)
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where D' is the differential, operator with respect to i?i- where 

the integrals I' s are defined in the appendix. The terms 

corresponding to ft - 0 ( static part) is treated using the Cox 

-Bonham parameter and the solution corresponds to ft = 0 are given 

in equation (26) in the form of integral term I^(....). We treat 
the calculation of the third term of GES i.e. f^g and the 

calculation of the exchange separately.

Calculation of the third term of GES c f C 33 ^ 
GES for hydrogen atom :

The third term of the GES is written using the expression of 

Yates(1974). It is written as follows :

i , 5'. ,
(3)ZGES - k-2 T 8 *i 1

where, A(T). =

3C > X“;~T2 [ 4 l ln C-i-l"--) j2 +-“ - A(T) 3

2 (log
2 n2T ) t "1 00

E T < !2 i - i and
n=l n

00?
" E ■ >. 9 , ■ T > 1 ; T = q/2. (34),

n=l n

which is a dimensionless vector. This expression is obtained after 

the cancellation of the diverging integrals given by Yates(1974). 

This is then reformulated in a convenient form for the present 
study. This term is a differential operator acting on a 

dimensionless vector T C = q/y)-,We introduce D(y) operator using 

the partial differentiation techniques, instead of T
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differentiation. The modified form of the above equation is 
written as,

(k72) D(y) (q2+ y2)-1 < 4 1 log )2 +
16 n qy

2 A(q, y j | y=2

„4 A2 -9= - n (k^) D(y) F(q,y)
further,
A(q,y2) = 2 (log(-3-))2 + -|2 £ ; q/y > 1.

(35),

Bence, finally we get the consistent picture of DCS through
0(k~2)

Calculation of exchange amplitude for hydrogen atom

We include the I»i tern of the exchange amplitude equation 
(i. 39) using Ochkur approximation (Joachain, 1975). The exchange
amplitude is written as,

’och £ 2 J drx eia*xi w±C rx) wj (rx>

8TIA 1—o D(y) -x---- ;
k« _ m «q + y

finally we get,

g _ 32 ____1___
och k2 q2 + y2 (36).
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It is obevious from the above equations that a consistent
calculation of small -angle electron -atom elastic differential

“2cross section through CKk^ ) requires the inclusion of the term
g . . Bence for the elastic scttering of electrons by atomic och
hydrogen we write differential cross section {DCS) as,

d5~ = 4 I fBEOB * goeiJ2 + 4 I fHHOB ~ goch I (37),

where the direct amplitude is obtained from equation (21) 

and e^Yx *-a ®iven (36). For electron -helium atom elastic 
scttering we have,

d<r , ^d .235 = I fBHOB “ goch I (38).

RESULTS MD PISgOSSIOH :

We choose the data both theoretically and experimentally for 
the comparison with our results in such a manner that the data’s 
are useful for the wide energy range and for sufficienlty large 
angular region. First we discuss our results with the experimental 
results than with the other theoretical methods. Thus the method 
throws the light on the improvements in the results obtained 
through the refinement in the HHOB theory. This method of our 
comparison makes explanation more simpler. Although there are some 
comparison where the data are not given in complete range. This is 
due to either inability of the particular method used or the data 
are not available for the comparison.
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We have used equations {26 ,28 ,31 to 37) of the scattering

amplitude to calculate the DCS for the hydrogen atom at
incident energies 100 to 700 eV in the angular range © < 14eP . We
use equation (21) i.e. expression of scattering amplitude in the
HHOB theory. We used the new value of the imaginary term, I»t term
of the real part through OCK^1) , 2nd part of the real part 

—2through ) after the refinement is applied to the HBOB theory.
We have used the value of the excitation energy DE = 0.05556 

a.u. as calculated by Joachain et al (1977 b) in the calculation 
of the 2nd Born term after the refinement is applied.

We compared our results in the tabular form as well as in a 
graphical form with the other theoretical and experimental results 
available. We compare our results with , EBS (Eikonal Born Series) 
method of Joachain et al (1977 b), simplified 2nd Bom 
approximation of Joachain et al (1977 a), TPE - two potential
Eikonal approximation results of Pundir et al. Our Results are 
also compared with the static approximation results of Joachain et 
al (1977 b), Optical model calculation of Joachain et al (1980). 
Results of Rao and Desai (1983) are also compared. Experimental 
results of bloyd et al (1974) and Williams (1975) are also 
compared.

We found in gengeral that there has been a considerable amount 
of improvement in the results obtain through the refinement in the 
HHOB theory. We find that for © £ 5(f - 7tf results are good in

agreement when it is compared with theoretical and experimental
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results. Our results agree very well with the EBS results of Byron
and Joachain (1977) in the angular range & £ 62P . As the incident
energy is taken greater then 300 eV the 2nd tern of the real part

_2of the 2nd Born term i.e. 0(k^ ) is very less in the angular 
region © £ 3fif. Contribution of the real term increases as o 
increases and is decreases with increase in the incident energy.

We found that contribution of the imaginary term and the 
first term of the real part of the 2nd Bom term has improved as a 
part of the refinement applied. We find that there has been a 
considerable amount of improvement in the results.

We found that effect of the refinement in the HHOB theory at 
Incident energy greater than 100 eV and in the angular region © £

is quite good. The effect of the exchange on the scattering 
amplitude is treated using the Ochkur approximation. Contribution 
of the first order exchange is almost negligible over the entire 
angular range. This is due to the fact that at large momentum 
transfer (i.e. fixed k^) there is a poor convergence of the real 
term and good convergence at higher incident energies (i.e. fixed 
* )•

Hence as expeceted there has been a considerable amount of 
improvement in the values of DCS and at various incident 
energies and in the angular range discussed above.

Hence by means of including certain low lying energy states 
in the calculation i.e. inclusion of s state ,p state and so on 
improves the results further.
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Table II. I represent; the values of various ter* of the
scattering amplitude in the refined HHOB theory for incident
energy 100 eV. DCS are compared with and without exchange. He
include the first order exchange in the calculation. Figure (II.I)
shows the present DCS (solid curve) along with the other
theoretical and experimental results. The solid curve is plotted
using table II.I. This curve is compared with the experimental
data of 0 - Van Vingerden et al (1977) and theoretical results of,
+ - EBS results of Byron and Joachain (1981), © - UEBS results of
Byron et al (1983), * - EOM (Elicit Optical Model) of Me C&rthy et

-2al (1981). One can observe the importance of the term 0(k^ ) when 
the curve is compared with the other results.

Figure II.II presents the DCS at incident energies 100 (set 
A), 200 (set B) and 400 (set C) eV in the angular range o < 64^ .
Where the results are compared with the theoretical results of A - 
CCSOPM ( Coupled - Channel Second Order Potential Model) of 
Bransden et al (1982), experimental results of Lloyd et al (1974), 
Williams (1975). The agreement between the experimental results 
are better then with the other theoretical results. Here we use 
the results given in the table II.II, II.III.

Figure (II.Ill, II.IV) shows the importance of the exchange
—2and the term of the order 0(k^ ) to obtain agreement. One can 

further include the second order or higher order exchange term to 
improve the results further.
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Table II.IV presents the comparison of the results of DCS in 
the energy range 100 eV after the refinement is applied. We find 
that there has been a considerable amount of improvement in the 
results as well as our results are found close to the EBS 
results.

Table II.V presents the result of the DCS for the energy 
range from 100 eV to 700 eV in the abgular range 0 to 60 deg. It 
can be observed that the present exchange corrections are small, 
at 9 i 5S^ (fixed energy) and at E £ 600 eV (fixed angle).

We have also plotted the results of DCS at different energy 
for further comparision and to testify the effect of the 
refinement in the BBOB theory. We have also compare our results at 
different energies with the various experimental and theoretical

methods available. We conclude that by means of including certain 
number of low lying energy state the accuracy can be improved
further.
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TABLE II.IV
Comparison of differential cross section in (a£ /sr) for 
elastic electron atomic -hydrogen scattering at 100 eV, as 
obtained from several approximation, namely, eikonal - Born 
series(EBS), Wallace {W),and Dniterised EBS (DEBS) and 
third -order optical model (GM) of Byron and Joachain 
(1981).
[ comparison is made with the exchange calculation ]

theta
deg.

»tje&DO OH DIBS ODBS

5.0 4.81 4.73 4.46 4.78
10.0 2.63 2.57 2.40 2.59
20.0 9.41(-1) 9.02(-l) 8.46(-l) 9.32(-l)
30.0 3.96C-1) 3.75(-l) 3.50(-1) 3.78<-l)
40.0 1.88(-1) 1.77(-1) 1.63(-1) 1.80(-l)
50.0 9.92C-2) 9.28(-2) 8.43(-2) 9.56(-2)
60.0 5.79(-2) 5.37(-2) 4.80(-2) 5.57(-2)
70.0 3.68C-2) 3.36C-2) 2.96(-2) 3.43(-2)
80.0 2.52(-2) 2.25(-2) 1.96(-2) 2.39(-2)
90.0 1.83C-2) 1.60(-2) 1.38(-2) 1.71C-2)
100.0 1.40(-2) 1.19(-2) 1.02(-2) 1.23(-2)
120.0 9.37(-3) 7.51(-3) 6.43(-3) 8.43(-3)
140.0 7.20(-3) 5.50(-3) 4.72(-3) 6.68(-3)
160.0 6.20(-3) 4.59(-3) 3.96<-3) 5.81(-3)
180.0 5.91(-3) 4.33(-3) 3.73(-3) 4.89(-3)



TABLE II.V
65

Value of the diffrential cross section for elastic scattering of 
electrons by hydrogen atom. For various incident energy range 
from 100 to 700 eV. [expressed in a.u. ] Results given here 
includes exchange also.

E(ev) THETA (deg.)
5 10 20 30 40 50 60

100 4.355 2.441 0.970 0.339 0.216 0.1186 0.0886
200 2.128 1.1380 0.417 0.1689 0.0801 0.0426 0.0272
300 1.5109 0.8211 0.1710 0.05659 0.0240 0.01184 0.0076
400 1.197 0.6401 0.1698 0.0579 0.245 0.0119 0.0078
500 1.0549 0.5421 0.1298 0.04047 0.01657 0.0085 0.0051
600 0.9527 0.46591 0.10134 0.02936 0.01178 0.00600 0.0036
700 0.8794 0.40702 0.07988 0.02224 0.00879 0.00446 0.0026
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Fig II-H

e - H atom
E * 100 200 and 400 eV 
« . Van Wingerden etai 
• - Williams 
A-Bransden etal

Scattering angle 9 {deg)
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Fig H-HI

Scattering angle 8 (deg)
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Elastic Scattering of e by helium atom s

There is large amount of work reported for helium (z-2) such 
as (Bromberg, 1969 ; Crooks and Rudd, 1971 ; Bromberg, 1974 ; 
Jansen et al, 1974 ; Sethuraman et al, 1974 ; Me Conkey and 
Preston, 1975 ; Jansen et al, 1976 ; Byron and Joachain, 1977) 
and so many other, are also available for the comparision of 
present theory.

Inspired by the success for the hydrogen atom, we now extend 
our work in this section to study the elastic scattering of e by 
helium atom. We write the straight forward equation after the 
refinement is applied to the 2nd Born term.

From the theoretical point of view the situation is nearly 
identical to that of atomic hydrogen, with the only difference 
being that for helium we must rely on the approximate wave 
functions derived through different models and theories. The well 
known wave function for the ground state of helium atom is given 
by

*WI1' v =w w
- Ie_±_9)
' ( 4 n)1/2 !?_+_§) 

( 4 n )1/2 (39),
where
P = A exp (- y ’ij), J Q = B exp (- y ”X2>.
R = A exp (- y 'je2) , ; S = B exp (- y ’ ig).
The normalisation constants, and the exponential parameters
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are given as
A = 2.60505 ; B = 2.08144 ; y = 1.41 and y " = 2.61

The product of the initial and the final states for elastic 
scattering can be written as

xlv X2> V*t izx , x2) = j|"n2 E (P + Q)2 (R + S)2 ]

= rl“ff2' (p2r2 * qV hp««8)( ( pV * «¥) ♦

2 C PQS2+ Q2R S ) + 2 < P R2 Q t^RS )]
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this the other terms of the above terms of the product of the wave 
function can be written. We consider the above equation of the 
derivative form to obtain the scattering amplitudes 
(equation).

The interaction potential between the incident electron and 
the target helium atom can be written as

v = - -f- + _-.-_i-.__ + _ _!___ (42),
d r0 I ^ » x0 x2*

where Xgt X^ and are "th® position vectors of the incident 
electronand the target electrons with respect to the target 
nuclei. Substitution of the above two equation in the expression
for the scattering amplitude (equations........ ). We will get
the expression for imaginary and real term in the HBOB 
approximation as follows:

the term corresponds to the first Born term is

fi-->f = ” 2~ff / dx0 e M 10 vfi<x0* (43),

where

iN

CM03Of(UCMwCM+CM03CM

I to
 

5)
 iCMftMl ctj
im

n' N

toaOfcl
,

+CM03
CMOf

CMPi
CMCL,

CM

to to pf
l

Hj H- &

(44),
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= rl'n2 I I 4*1 **2 x2) Td *2*

where,

P2 R2 = A4 exp ( - y y ’C + rg))

Q2 S2 = B4 exp (- y y ” ( rx + r2))

P2 S2 = A2 B2 exp (- y ( y ,r1 + y ”r2))

4PQRS = 4 A2 B2 exp (- y y ' ’ ' Crx + r2))

2 P Q S2 = 2 B3 A exp(- y (y ”r2 + y ’’’r^)

2 P R2 Q = 2 A3 B exp (-y (y ’r2 + y ’’’r^)

here y = 2 and y " ’ = For the evaluation of the dr^
dXj and dr2 integrals in the equations ( 41 ) and ( 42 ) consider 
the typical term of the equation ( 42 ),
P2 S2 = A2 B2 exp (-y ( y ’rt+ y ” r2))

= V exp {-y ( M r^ + N r2)) (45),

substitution of this term for (.... ) terms in the equation ( 34)
We will obtain the closed form of equation ( 42) for the equations 
( 45 ).
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~ 2 n“T§"n2 J* fj ^ +

i v *d+ r i2i ] exp (-y ( Mr, + Nr„)

= 2~n <y”4HM ** > 3Jdr0 ®*P (la-Xg) [ ( M + -|-)exp C-y M r0)

+ { N + -*-) exp ( - N r0 y) ]

2V (y)-4(M»)-3 [ i^i.9^ + iSS*i_3h ,
{4M<!+ q^)* (AN4* q*)*

(46),

if M = N then
= 4 V (y)"4 <MN)~3 [ i§05i-95)2 3

(4M t qn* y = 2 (47).

using equation ( 46 ) and ( 47 ) we get the closedform of 
equation ( 43 ). The reduced form of this Born amplitude can be 
obtainerd as

fi-->f = C A* (y>"2{y )”6 + A2B2 (y)-2 <y y ~)"3+ (y ' y"'>“3

.,2^ 2x 2„2
C (4y2 * | f 1 1 ” B B3A

y p3 y2y,|6 y yl I » » 2

t t§giir±ar) j + j „s:a + _a;b‘ t ..a3 b„ ,11(4y2’+| ?
)3A___  + _A2B2

y y» > • ^1 >3 y, , , 6 y yl. > , 3
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r iiZlll.tS2) ,

(4y2’ * +| f
J C [ i§SL?-±-3?l 
k=l k (4Y)c Z + £ ? (48),

where C^’s and y^’3 3X6 constants given as 
C1 = 2.420884 ; C2 = 0.23336732 ; C3 = 1.33543 
yA = 1.41 ; y2 = 2.61 ; y3 = 2.01
Equation ( 48 ) represents the first Bom approximation for the 
elastic scattering of electron by helium atom process.

Now the imaginary part of the second Bom amplitude equation 
(18), for the interaction potential (equation, 42) can be
written as,
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C ~n~~ + -lo---- 51X11.Yi (|a - m\z+ __ BiXil__  > + BiXi)2(P2+4 + Yi

DlYal _ __ DlYil_ DIYzl __y2 " (U_- Bixajip-i + D<V »<VY“ (p^ + ftf + Y|) 1 ^

[ (|a - a|2 + ft\ + Y2 ) C p2 + f*2 + y|) 3 ~1 + C5iY^}25 C?-(-|}2 ) -
X 2

D(Y2) DCYjXja - p|2+ /?2 + Y2)_1 Y"1 - D(Y2)D(Yj) Y^p2* /?2+ Y2)"1 

+ dcy2) D(Yx) C|a - e|2 + (i\ + y2 r1(pa^J + tj1)) ] (51),

Substitution of (41) in equation (39) we get the close fora 
of equation (31) of the product of the wave function (30). Hence,

In f HEA
L¥l& _3e_

J —5--5~*“------o--iT tD(Y1) f~2 D(Y„)* (P2+ Z32) (|a ~ 3>| 2+ fth l \ 2

C 3?_+ 2Yz2
C ^T'yT ____ BiX*2____  ____ BIX* 2_ ) + DfY ,.1,(|a - p|2+ (*\+ if2) (P2+ ^ + ij|) 5 2 y2

D/Y ) C 9?_±_2Xf _ ____ BIXtl____'1>C^ c|«2
+ (*1 + Yp (P + /?“ + Yf)

_ _ BiXi.2_ _ )2 . rt2 . Y2, )i X1

^(Yj^K-i 2 - (|a " fi|2 +>2 + Yir1)D(Y2K|-2 ~ (p2 + /?2+ Y2)'1^

^D(Y2XyJ2 - (ja - e|2+ ft\ + y2Z>_1 D(Yi )Cy"2 (p2 + + Y2)"1 > ]

(52),
using the solution obtained for elastic scattering of e~ by
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hydrogen atom we can write the solution of the imaginary term as

= L&& [ _ -?3 D(Y ) - A D(Y1) + 2D{Y1) D(Y2]k T1 z T2 X2 1 X1 la

v (Yj , y2 ) (Y^r2 ] (53),

if “ Y2 "fciidx p

14dlf_k r
k 1 ?-3 D(Y„) Si'5-)2 + 2D(Y1)D(Y2) I4*(Y2,Y2) (Y9)~4 ]

(54),

2 2where the quantities H(Y1) and I4 (Y“ , Y2 ) are given as

B(Y1) = 2IX {ft2 , Y2) ”5“a”5 V< fti • 0)
q + Yj

and

;( Y2 , Y2 ) = j
2a a2

_4e_
(|a - ja| + 0jL + Yj) (p + ^ + y2)

using the same treatment applied to the hydrogen atom process and 
the results derived in the appendix the closed form of the above 
equation can further be simplified in the following way to have 
the final fora of the imaginary term of the 2nd Born term,

1m f <§> = (H V1 t -H^lM -:i~3 ♦ 8 £*3 ] D(T1) SiXU2t2n2 
;2:

( 4 |~3 + 4 --|-3 + 8 ™3 5 D(Y») Si-|^2 - C 16 --|-2 + 8 3
1 2 1 1 • * 1 3 c 1 2 * 3 1 1
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+ 8 > D(Y3) + 2 A4 DCYj) D(Y^) (Y^-4 Ig’(Y2 , Y2)

+ 2 B4 D(Y2) D(Y2) (Y2)-4 I4’(y|, Y2) + 8 A2BZ D(Y3)D(Y3) (Ygf4 

I4’(Y2, Y2) + 4 A2B2 D(Yx) D(Y2) CY^)'2 I4'(Y2, Y2) + 8 B3A

D(Y2) D(Yg) (Y2Y3f2 I4'(Y2 , Y2) +8 A3B D(Y3) D^) (YjYg)"2

= (n ^r1 E C - Ak D(Yk) H(Yk) Y^1 + B^ D(Yk) D(Yk) (Yk Yk)"2 
k=l,2,3 
3=1,2,3

V(Yk * Y£> + ®kj D(Yk> D(Yj) {YkYj) Z V(Yk ’ ^ 5 1 t55)*

where A^a , Bk^r a and Yk's , B^j a are constant given as,
Y± =2.82 , &x = 13.573 , B11 = 92.1074 , B12 = 117.604
Y2 = 5.22 , A2 = 8.665 B22 = 37.5392 , B23 = 187.931
Yg = 4.02 , A3 = 21.689 , B33 = 235.208 , B31 = 294.376

Now to evaluate the real part of the 2nd Born term of
can be written as equation (16). The basic difference between

the evaluation of the imaginary and real term is the evaluation of
the principal value integral dp’ evaluation of the dj*. and dx0
integrals are same as the imaginary part. Replacing ft x in equation
(50) by p and using the results obtained for hydrogen atom we can z
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Re2 f (2)HEA “2 D’(P J -J
+co dpz

(p2+
__ P2S,;

p + p„y) i&o;.
ABy comparing the results terms of the amplitude (equations 

55,57) with the equations derived for the hydrogen atom case 
(equations 31,33), we can directly write the closed fora of 
equation (58) of the wave functions product equation (40).

Re2 f (2)HEA
2= ^*5-5 d* t |-3 D(y ) H"(y„) + ”3 D(y.) H’ * (y.) 

2 yl 2 * y2 L 1

- D(yi) D(y2) 2 2 yl y2
(59)

2 2where H’’(Yg) and I^y^, ) are given as,
I, (ft,, 0) U(ft, ,yT)H"‘V = :V;S:- + -a--Vl-U + yj) ^

lz l . yf)

and +co dp „ 2 2.2 2 4E (P + P2)
X5(yl’ y2} = (P -cJ (p ) J #r„" 72“7“ 2~“27 ' 27~2, "2,z- < 7* (|a-E| + Pa+ y±) (p +Pa+

+cc dp d£ (P2+ p2)
-oof (p^ (3.) J (|a-p|2+ p2+ y2) (pZ+ p2+ y2)

X3^i’ yf> ~ X4«y?* y2> <yf+ yl> + X3 ^i* y2>

2The above three terms are obtained by adding abd deducing
2 2 2 and y2 in the preceding two terms of I&(yj, y2), and making use of

the prevous results. Using equation (59), the real part (58) can
be obtained through the equations (40,49).



Re2 f(2)HEA = (2n kp
SsfcW

Bk1
D(yk)D(yj)

yk yk

D'tAkD(yk) H"(yk)

-.22.r5(7k,7jL ,

82
2 D(yk) D(yk)

2 2 yk yj
(60)

How to got the closed form of the terms corresponds to
-2imaginary and real through 0(k^ ) we use the relation

a - e - ft^yi e + ft^y, x^xp =

^^(Xj^.Xg) l ^(a - e - ft±y, Xj.Xg) V(e + ft±y, x^Xg) I ypxj.Xg)

> - < y'jCrjTg) I V(a - E ~ft±y, xp j ^(r^g) > < ^(r^) |

V(E + ft^y, r2) I ^f<ri»r2^ (61).
How the imaginary (equation,49) and real parts (equation, 58) 

can be derived. The closed form of the imaginary part in the 
elastic scattering of electrons by helium atom can be obtained a3,

Im fHEA = J 4B ~ £ ~ft±y> B + ft.y, r.,r„),(2)xi 1 2J (62)

= rfkJ dp
2. 37~ 7 27 ^2(|a~E| + ftp iv* ftp: I d*i J d*2 [

kis-h, -Kp-b, + fttzi°]

v± vt J dxt J dx2 exp(i(|a - e |-b2 + 3 ¥± ¥t (63).

Substituting the product of initial and final states of 
Hartree -Fock wave functions (equations,40 ,41) and following the 
procedure of dXj », dr2 and dp , the closed form of the above 
equation (63) can be written as
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l4 iyf, y\-> > 1

and

Ee2 f= {fl2k2)_1 £ A. D’
1 1=1 1HEA

V(r?r,0)
D(yi) "~2 ”~2~

(q^ + yp
? ? -i(20 kp

*ij D-D^) D(yj) (7j)-2 [ I2</52, ,.2) - I4<y2, y2, ]

All the constants A. y, and A±i ’ '5y can be obtained

(65)

E
1=1,3
3=1.3
(66).

from

the equation (39) ,
A1 = 6-7863* 

yl = 2-82’
lll
12
13

46.0537, 

29.4009, 

73.5939,

A2 = 4.3324, 

y2 - 5.22,

A22 = 18.7696, 

A21 = 29.4009,

Ag = 10.845 

y3 = 4.02

23 46.9327,

33

31

32

117.60431

73.5939
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34
We use equations (64,65,66 and 38) in equation (22) for the 

calculation of the differential cross section for the process to 
study the elastic scattering of electrons by helium atom. We also 
perform the calculation of the term corresponds to ft - 0 and for 
finite value of ft as it is done for the hydrogen atom after the 

refinement is applied for the above said process. We also 
calculate the third term in GES i.e. f^Eg and the exchange term 

«ooh iD the Oohkar approximation which is described as follows:

Calculation of third term in GES (fC3>GES ) for helium atom :

We use the expression of scattering amplitude obtained in 
Glauber Eikonal Series method given as,

iDf ( a k ) = 2TJk n -1- f -4E1 oGES 1 (D k)n n ! J PI** _E|Z

< vt\- B(pt) B(bb_1)... B(|a - p|) | >

Considering the product of the wave function of the helium atom 

and the interaction potential of helium atom in the calculation 
we can simplify the albove term.

Singh and Tripathi (1980) evaluated the 3rd term of GES for 
elastic and inelastic scattering of e by helium atom. We use the 
simplified form of the same as,

* 3 <" V* t *31 + *32 1
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where X31 and Xg2 are well defined quantities given by Singh and 
Tripathi (1980).

Calculation of the exchange amplitude for helium atom :

We use the equation (39) and Ochkur approximation ( Joachain, 
1975) for the evaluation of the exchange amplitude for He atom. We 
write the straight form as follows :

BOch = - 32 <kirZ < ^ * 4 >~2'

RESULTES AND DISCUSSION :
Results obtained through the refinement in the HBOB theory 

for the differential cross sections are compared with the two sets 
of measurements vis., those of Bromberg (1969,1974) and Jansen 
etal (1976) and theoretical results of Dewangan and Walters (1977) 
of DWBSA method, EBS and UEBS resultes of Byron and Joachain 
(1974, 1976). We also compare experimental results of Crooks and 
Rudd, Yuskovic et al and Jost etal. Theoretical results of the 
optical eikonal method of Byron and Joachian are also compared. We 
also compare theoretical results of Rao and Desai and Suja and 
Desai. The choice for choosing these groups of data are that, 
firstly they tend to support one another and together cover a 
large energy range (100 eV to 3 KeV) and, secondly the systematica 
of the improvements in agreements between these data and our 
results as the energy is increased, and therefore the comparison 
is made in this manner.
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We find in general that for the incident energy E 2: 200 eV

gives better results and it improves further as the energy of
incidence is increased further. We find that our results agrees
well with the EBS results as compare to the results of Rao and
Desai (1983) and Suja and Desai (1987). Further due to the
refinement results at large scattering angle also improves further 
as compare to the earlier methods^ When the results obtained 
through the refinement is compared with the optical model they 
found to differ. This may be due to the fact that optical model 
treats the static potential (which is very important in large 
angle scattering) exactly to all orders of perturbation theory, 
the optical model results should be preferred at large angles, 
while the results obtained through the refinement in the HBOB 
theory agrees well over the entire energy range. As the energy of 
incidence increases further the accuracy also inareses further.

As the energy of incidence is increased the contribution of 
the 2nd term of the real part of the 2nd term is getting less.

The effect of the exchange is treated separately using the 
Oohkur approximation. The difference between our results, EBS 
results and optical model results are mainly due to large angle 
behaviour of differential cross sections. Further, due to 
refinement the contribution of the imaginary term is significant 
for the energy E 2: 200 eV.

Tables II.VI, II.VII shows the behaviour of the individual 
terms of the HHOB approximation at 200 eV and 400 eV respectively.
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In table II.71I we compare our results with the results of Singh 
and Tripathi (1980) and results of Rao and Desai (1983). We find 
that there is remarkable difference in the results. But when it 
compared with theoretical result of the optical model of Byron and 
Joachain (1977) and the experimental results of Crooks and Rudd 
(1971), Bromberg etal (1974) , Sethuraman etal (1974), we find 
that there is good amount of improvements in the results for 
E 2 200 eY. We also compare our results with the results of IBS 
method, results of Jansen etal, HHOB method and the results of 
Suja and Desai in the table II.VIII. We find that our results 
agrees well with these methods. We also compare our results for 
1 t 400 eV in the table II.IX and II.XI with the experimental 
results and the other theoretical results available.

We have also compared our results in the graphical manner 
also. Figure II.V shows the values of the differential cross 
section for the energy of incidence 200 eV. We find that there is 
a good amount of improvement in the results. We have compared our 
resuls with the experimental and theoretical results for the 
angular range 10 to 130 deg. Similarly firgure II.VI shows the 
results for 200 eV as well as for 400 eV. Here also we compare our 
results with the theoretical and other experimental results also.

In figure II.VII the results are plotted for the energy of 
incidence 200 eV and 400 eV respectively. Hence looking to the 
comparison we can say that through refinement i.e. by including 
certain low lying energy states in the calculation results can be 
improved upon. We also calculate the differential cross section
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for the energy of incidence 100 eV to 700 eV which is given in

othe table II.XIII. Results are expressed in /sr. We also 
conclude at the same time that the effects of the higher order 
terms of the exchange can improve the results further.

Hence looking to the easiness in computing the results 
through the refinement in the HHOB theory and the improvement 
obtained in the results we extend our method to study the elastic 
scattering of electrons by lithium atom followed in the following 
section of this chapter.
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TABLE II.VIII
Differential Cross Section (in ajj/Sr ) for the elastic scattering for

e~ - He atom at incident energy E = 200 eV.
Angle 
(Deg.)

Present
results

Jansen 
et al

Crooks i 
Rudd

& HHOB EBS Suja &
Desai

10.0 1.338 1.08 1.93 1.3113 1.34 1.3249
20.0 5.78(-l) 5.28(-l) 7.18( -1) 6.0973(-1) 5.83(-l) 6.114K-1)
30.0 2.80(-l) 2.81(-1) 3.25( -1) 3.1266(-1) 2.88(-l) 3.1662(-1)
40.0 1.52{-1) 1.51(-1) — 1.8634(-1) 1.54C-1) 1.7582(-1)
50.0 8.78C-2) 8.85(-2) 1.08( -1) 1.0794(-1) 8.81(-2) 1.0400(-1)

TABLE II. IX
rtDifferential Cross Section (in a£ /Sr ) for the elastic scattering for

e“- He atom at incident energy E = 400 eV.
Angle
(Deg.)

Present
results

Jansen 
et al

Bromberg HHOB EBS Suja & 
Desai

10.0 7.71(~1) 7.87C-1) 8.10(-1) 6.7601(-1) 7.61(-1) 6.8589(-l)
20.0 3.72C-1) 3.65C-1) 3.67C-1) 1.3190(-1) 3.79(-l) 2.8982(-1)
30.0 1.83(-1) 2.47C-1) 1.76C-1) 1.3190(-1) 1.78(-1) 1.2847(-1)
40.0 8.89(-2) 1.69(-l) 8.85(-2) 6.6050C-2) 8.79{-2) 6.1727(-2)
50.0 4.98C-2) 9.85(-2) 4.81(-2) 3.7670(-2) 4.76(-2) 3.5025(-2)
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TABLE II.X
Comparison of the differential cross sections for elastic 
electron -helium atom scattering at an incident -electron energy of 200 eV. [ expressed in «$/ sr. ]

theta
deg.

5.0
10.0

20.0

30.0
50.0
70.0
90.0
110.0
130.0

Present Theoretical Experimental
results EBS

method
Optical
Eikonal

Croock & 
Rudd

Vuskovic 
et al

Jost 
et al

1.81 2.12 2.97 — — 2.36
1.338 1.34 1.28 1.93 1.72 1.50
5.78(-1) 5.83(-l) 5.81(-1) 7.13(-1) 3.63(-l) 6.07(-l)
2.80(~1) 2.88C-1) 2.90<-l) 3.25(-l) 1.41(-1) 3.20{-l)
8.78(-2) 8.76C-2) 8.42(-2) 1.03(-1) 6.08(-2) 1.00(-1)
3.43{-2) 3.61(-2) 3.08{-2) 4.23(-2) 2.39(-2) 4.1K-2)
1.75C-2) 1.97(-2) 1.41(-2) 2.33(-2) 1.45(-2) 2.00(-2)
l.ll(-2) 1.32(-2) 7.85(-3) 1.41(-2) 9.47(-3) t1.21(-2)
7.96(-3) 1.01(-2) 5.17(-3) 1.05(-2) 7.37(-3) 8.57(-3)
6.88(-3) 8.60{-3) 3.95(-3) 8.43C-3) 6.43(-3) —150.0
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TABLE II.XI .
Comparison of the differential cross sections for elastic 
electron -helium atom scattering at an incident -electron energy of 400 eV. [ expressed in a^/ sr. ]

theta Present Theoretical Experimental
deg. results EBS Optical Crooek & Chamberlain Jost

method likonal Rudd et al et al
5.0 1.10 1.18 1.14 — 1.04 1.39
10.0 7.71(-1) 6.89(~1) 6.75(-l) 7.61C-1) 6.22C-1) 8.93(-1)
20.0 2.72(-1) 2.85C-1) 2.82(-l) 3.17(-1) 2.37(-l) 3.64(-l)
30.0 1.83(-1) 1.23C-1) 1.20(-1) 1.41(-1) 9.48(-2) 1.55C-1)
50.0 3.41(-2) 2.96C-2) 2.78(-2) 3.34(-2) — 3.57C-2)
70.0 1.06(-2) 1.09(-2) 9.29(-3) 1.17(-2) — 1.21(-2)
90.0 4.78C-3) 5.34(-3) 4.16(-3) 6.60(-3) — 5.18C-3)
110.0 3.72(-3) 3.37(-3) 3.10(-3) 3.33(-3) — 3.00(-3)
130.0

t
2.26(-3) ,2.44(-3) 1.55(-3) 2.32(-3) — 1.96(-3)

150.0 1.89<-3) 2.00(-3) 1.20(-3) 1.83(-3) — —
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TABLE II. XII
Comparison of various theoretical and experimental 
differential cross sections for elastic electron - 
helium scattering at inicdent -electron energy 200 eV. 
Results expressed in /sr.

Experimental values
theta
deg.

OM
BJ
1977

Crooks and 
Rudd
1971

Bromberg
1974

Sethuraman 
et al 
1974

Ours

5.0 1.98 — 1.73 1.81
10.0 1.25 1.93 1.12 ■-- 1.338
20.0 5.75 < —1) 7.13(-1) 5.27(-l) — 5.78(-l)
30.0 2.91(-1) 3.25(-l) 2.76(-l) 2.63{-l) 2.80(-l)
40.0 1.55(-1) — 1.52(-1) 1.57(-1) 1.52C-1)
50.0 8.86(-2) 1.03(-1) 8l91(-l) 9.30(-2) 8.78(-2)
60.0 5,43(-2) — 5.57C-2) 5.38(-2) 4.89(-2)
70.0 3.57(-2) 4.23(-2) 3.72(-2) 3.57(-2) 3.43(-2)
80.0 2.49(-21 2.63(-2) 2.47(-2) 2.5K-2)
90.0 1.84(-2) 2.33(-2) 1.90(-2) 1.77(-2) 1.75(-2)
100.0 1.42(-2) — 1.45(-2) 1.40(-2) 1.36(-2)
110.0 1.14{-2) 1.41(-2) 1.18C-2) 1.15(-2) 1.1K-2)
120.0 9.51(~3) — — 9.80C-3) 8.89(-3)
130.0 8.20{-3) 1.05(-2) — 8.00(-3) 7.96(-3)
140.0 7.28(-3) — — 6.80(-3) 7.12(-3)
150.0 6.65(-3) 8.43(-3) — 6.00(-3) 6.89(-3)
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TABLE II.XIIA
Values of differential cross section for e - He elastic 
scattering at various incident energies and scattering angles, [expressed in «q /sr3-

theta ENERGY (eV)deg. 100 200 300 400 500 700
5.0 2.93 1.68 1.55 1.38 1.09 8.90C-1)
10.0 1.98 1.338 1.01 7.71C-1) 5.89C-1) 5.0K-1)
20.0 1.38 5.78(-l) 5.43C-1) 3.72(-l) 3.32C-1) 3.02C-1)
30.0 6.78{-l) 2.80(-l> 3.89(-l) 1.83(-1) 1.30{-1) 1.02(-1)
40.0 4.34(-l) 1.52(-l) l.ll(-l) 8.89(-2) 7.89C-2) 8.89(-2)
50.0 2.56(-l) 8.78(-2) 8.47{-2) 4.98{~2) 3.78(-2) 4.92(-2)
60.0 1.68(~1) 5.69(-2) 4.39{-2) 3.21(-2) 2.0K-2) 1.0K-2)
70.0 1.43{-1) 4.01(-2) 2.21(-2) 2.06(-2) 1.01(-2) 8.32{-3)
80.0 1.01(-1) 3.32(-2) 1.54{-2) 1.56(-2) 8.65(-3) 7.11{~3)
90.0 7.85(-2) 2.32(-2) 1.01{-2) 1,06{-2) 5.68(-3) 4.32(-3)
100.0 6.45{-2) 1.68(-2) 7.59C-3) 6.01(~3) 4.93(-3) 2.89C-3)
120.0 4.56{-2) 1.0K-2) 6.81(-3) 5.89(-3) 3.33{-3) 1.02C-3)
140.0 4.01(-2) 9.43(-3) 5.11(-3) 4.03(-3) 1.23(-3) 8.89(-4)
160.0 3.67{-2) 7.54{-3) 3.89(-3) 2.65(-3) 9.99{~4) 6.43{-4)
180.0 3.01(-2) 6.23(-3) 2.56(-3) 1.89(-3) 8.53(-4) 5.59(-4)
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Fig II*V

e“- He atom 
E » 200 ev
• -Registar etal
♦ -Byron and Joachain
* - Bromberg 
—-Present result

Scattering angle 0(deg)
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Fig H-VU

e - He atom 
E = 200 and 400 eY 
a-b-Present results

Scattering angle 9 (deg)
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e~-LI .elastic scattering using the refinement in the HHOB theory :

The study of electron - alkali atom - collision became an 
interesting area in the recent years both theoreticllay and 
experimentally. Among them is the discovery of alkali atoms in the 
atmosphere. The theoretical work was stimulated in the 
intermediate and high energy range due to availability of the 
experimental results of Wiliams and Crowe (1976). The part played 
by the alkali atoms in the Magneto -hydrodynamics is very 
important in the present day of energy crisis.

It is a known fact that the methods which applies well to the 
elastic scattering by the light atoms will not be too effective in 
the alkali atoms. It is due to the pecular nature of the alkali 
atoms. It is because of the quasi degeneracy of the ground and 
first excited states, there exists a strong coupling between these 
states. The large polarisability of the alkali atoms can be 
accounted mainly due to this coupling. The outermost electron in 
this atom is loosely bound S-electron hence the increased activity 
of these atoms. The; absorption effect (removal of electrons from 
the elastic to the inelastic channel) also plays a important role 
in the alkali atom scattering. But, the Li atom being the first 
member of the alkali atoms, the above discussed deviations from 
the closed shell atoms will be a least case. Because of this it 
gives an oppurtinity to test the theoretical model which applies 
well to the lighter atoms like hydrogen and helium atom. There has
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been many attempts made to study the elastic e - Li atom 
scattering in the intermediate and high energy region. Sarkar etal 
(1973) used eikonal approximation to study the e -Li elastic 
scattering for a wide energy range 0.8 e? to 500 eV. Gregory and 
Fink (1974) solved the relativistic Dirac equation to calculate 
DCS and TCS in the energy range 100 eV to 1.5 KeV. Chan and Chang 
(1976) applied Glauber approximation to obtain DCS at 100 eV, 200 
eV and 400 eV. Vanderpoorten (1976) used a local optical potential 
consisting of static, polarisation, absorption and exchange 
effects to evaluate the DCS at 54.4 eV and 60 eV, Mukherjee and 
Sural (1979) used integral approach to the second order potential 
(SOP) to calculate DCS aiid TECS at 10 eV to 200 eV. Gien (1981) 
investigated the exchange effects in the frozen core Glauber 
approximation at 20 eV to 1000 eV. Tayal etal (1981) have 
calculated the DCS and TECS using corrected static approximation 
and in an approximation which combines the contribution of the non 

static parts of the higher order terms in the Glauber 
approximation with the static part treated exactly for the enrgy 
range varying from 10 eV to 200 eV. Wadhera (1982) used first Born 
approximation along with the polarised Bora amplitude to obtain 
integrated elastic cross sections from 500 eV to 1000 eV. Dhal 
(1982) used two potential formation in which the close encounter 
collision are treated exactly and the polarisation, exchange and 
absorption effects are treated through the optical eikonal 
approximation at 60 eVy 200 e,V and 400 eV. Rao and Desai (1983b)
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used the high energy higher order Bom (HHOB) approximation along 
with the Glauber eikonal series (GES) to calculate the DCS from 50 
eV to 1000 eV and TCS from 100 eV to 700 eV. Tayal (1984) applied 
corrected static approximation to obtain TCS from 10 eV to 200 eV. 
Vijayshri (1985) evaluated the DCS and TCS using modified 
Glauber approximation (MGA) 20 eV to 1000 eV. They used the two 
models mainly, the single particle scattering model (SPSM) and the 
inert core (IC) model. They ignored the multiple scattering 
effects. Chandraprabha (1985) used modified Glauber eikonal series 
(MGES) and (GES) to calculate DCS in the energy region lying in 
between 100 eV to 800 eV. Yadav and Roy (1987) have calculated the 
DCS using the Coulomb -projected -Born approximation with Junker’s 
modification to obtain the DCS for energy region 10 eV to 20 eV. 
Amongs all discussed above mentioned work, the results of 
Vanderpoorten (1976) and MGA (SPSM) of Vijayshri (1985) are 
reasonaly close to the experimental data. Suja and Desai (1988) 
used the extension of Rao and Desai (1983b) theory of HHOB 
approximation. Where the Li was taken as a three electron system. 
Where the long range polarisation and absorption effects are 
accounted.

Inspired by the success of applying the refinement in the 
HHOB theory we now extend the same for the lithium atom to study 
the elastic scattering process. The differential cross section are 
calculated in the energy range 100 eV to 700 eV . Here we also 
consider the Lithium atom as three electron system. The wave
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function for -the ground state of Li atom has been considered as 

that of Veselov et al (1961) as quoted by Chan and Chang (1976),

V - (3|)l/2 a et [ <P1S1, <t>lsr *2SI ] (67),

3
j a.v^ i _ i- ^ \ 1/2with #1S - C-fl- ) e

, _ r______ §ft________ ,
2S n(e?- aft +

1/2
Cl } r 0^r

(68),

(69),

where a = 2.694 and ft- 0.767. This wave function gives an energy 

of -7.414 a.u. against the experimental value of -7.478 a.u..

V y = I det <*1SI , #1ST ) I 2
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(79),

substitution of ¥ from (9,10) and v' w from (70) we can write,

U*2)( a - b + ft±y ; e + ft^y ) = 4n4(|a- b| 2+ r*2) (P2+ /^)

m [ dWv3 *L(V *L(I2WL(r3> - *?Pl> *24i2>

3 3£2£r3) ^^3) ] E E [e^'^j + ipszj - 1) [ eiBvbi+ ipzz - 1 ]

(80).
carrying out the integration of { 78) and using (80) we can write 
the imaginary term as follows:

Ia fHEA = fjTk [ ~3 + + 4!|2 mP <-*-£-> >
11 ki cX2 + q2} 2 & X2 x2^+ |

2„2„2 2 2 2,W+ 32 «-C- -y*- -yc ) -?2 I(<.VJ.yJ)

16«3C- - I (q2 y2. ft?) + 8N2 DOFC- -0-^-2 I (q?

+ 64 N2a2 C- 2 *>*-*"*-> | 2 I^2,^) * 2| C 4 6 B2
11 2 13

,26BB* ?B'2 2 „2 „2. _ _4_„ .,8 B B’ 12 Bi* * 1 _ .
X3 X32 x2K-^+—-xO^-4-
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+ B c- s-V -x;2<- i-rf-t2 - 2BB'<- -i-pa a a x t 2 -f-^2

+ B’2 -1^2 -I;2 a~*z -x1-2 ii^M-^ 1 ’
o o (81)

where, y2 = f?2 + X2 _2 — -2 , v 2 , 2_ , v 2 ^^2 • ^ + **g find

R - r .<2^1/2 r _____ 32--
C n 5 n (a2 -oV +(?) J 1/2 and B - = C~§> B.

Integrals of the form 1^ <..... > Is, defined In the appendix. Here

ft^ = AE^k^, AE the excitation energy. Here for lithium atom
AE = 0.08825 is taken, which was calculated by Vijayshri (1985).

(2)Further, the terms corresponding to real part i.e. Rel f^,^ can be
written as follows

Rel f (2)HEA Rel .(2)HEA + Rel 2 f (2)HEA (82) ,

where,

Rel 1 f (2)HEA
4_n'
k; <P J dp J

-co
♦■<=0 dp.

ft 0 (2)fi (83),

Rel 2 f (2)HEA (84)

Where symbols have their usual meanings as defined earlier. Again
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c" ~h r2(q2' " 32 0,6 c_ v&h2 c" A: 5 -x1-2
« 6 1111

* 64 «e<- •>}i2 c- gf- ^2 I2<q2,^,x2.>.|>

3„6 , d64 <xwir C- 37-) r -^2 DOP C~
dXl X1 ~"'Z '2

#£? -%i I4(q^i2'xi’ xl> -z

<-*6 <B2- -P?t -P- f I (q?/52 0) i

A3 3 X3 2 i
2 „ ,n2_ 6BB. ,, a T_2 (B x~> a?r5

---J2 I fa2 /92 X2> + §£tlx g2 i2(q' 'V V * r3 0 N2 1XV* x2''*' ,Ji* /v3; T ~k?- d-fi* ~LZ 12{q* ^20'X32> > 2
o(a#)d

a|-> -(i^-)2 V^l-0'^ )+!?(- 3-^-A2 C 75> ±

I4(q? ftZ,>■?,*.% ) 4 46Bl2 c- I (i\ ,0 ,x23 ) - 2 B B-
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The integrals Ig { . . . ) and 1^ (.... ) are evaluated in the
appendix. The terms corresponding to ft =0 and for finite value of 
ft is calculated using the equation (25), where the use of the 
Cox -Bonham parameters are used to evaluate the terms like Is for 
r a and X - s. The values of Cox and Bonham (1967) parameters for 
the lithium atom i.e. values of ra and X-g are given as follows: 

1.3215, r2 f -0,2273, r3 = 1.3369, r4 = 1.4070,
r5=-1.6110, r6 = -0.9567 and,
Xx = 0.8737, X2 = 7.9222, Xg = 2.2645, X4 = 3.8024, Xg = 1.3839, 
Xg = 2.7065.

The differential cross sections is obtained using the 
following relation:
d~0 = l fBHOB l (875-
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where the term f^Hfm has ususal meanings given in equation (21). 
We obtain the third GES term i.e. fgg as follows:
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rCalculation of third GES term Cf^rc, ) for Lithium atom sGES

(3)We obtain the expression for fggg using,

(n) - Jsi= w;, ; <a0 el a < Vt I x“ I v, >i—>f 2Tln! (88),
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co
) gj Jidfc J0(a t) CI1I2 + I2I3 + i4q + qig- I5I6

-I I2 ] A1X5 J
(93)

where,

J1 = I2 = <*l3|AII|*23>

J4 = <*z0I«I|*2b> : !6 = <*lalAIl*Zs>
and

2bbi bt „
AI = In ( 1 - -^- 0030^ + (-“i )

v <*2siaii*23>
I(94),

V <*isIaiI*2s>

2 2bbl bl 2All = ItTC 1 ~ -jj-coa*4 + (-“) ^ ) (95),

substituting the value of 4>^a and <£>2s from (68) and (69) and 
carrying out the integration over z , we obtain the terms

*1 _1 olt = (X1)J(4n) gj dbx ^(X .bj.) ALN1(b1,b) (96a),

2 -1 S° 212 = (X1)<i{4n ) 1 &f b* dbx qtXj,^) ALNgtq.b) (96b),

O *i o13 = (2IT) n A 0J bi DOP(X3,\2) ALN^(b^,b) (96c),

o _ 1 n14 = (210 n 0! b£ dbj. DOP(X3,X2) Kj/Xg.b^ ALNgfb^b) (96d),

X3N2 s» X
*5 = <'Y >1/Z Ab? dbl O + -| A- 3> WV ALH^bj.b)

-................... (96e),
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ALN^b^b)
(96f), 

(96g),

2f]ALNgt^.b) = Ln2 Cl - ^ cos^ + Cg-)2) dtf^ (96h),

and K^(X ,b) are the modified Bessel functions of the second kind. 
The integrals (92) and (93) are then evaluated using the standard 
numerical techniques (Vijayshri, 1985). Thus using the above set 
of equations we have obtained the DCS for elastic scattering by Li 
atom from 100 to 400 eV.

RESULTS AND DISCUSSION :
The present results for the elastic scattering of electrons 

by Li atom are tabulated^ in the tables (II.XIV) to (II.XX). 
Results are tabulated for the energy of incidence varying from 100 
to 400 eV. As stated ,earliar there is no divergent integrals and 
is computationally very simple. Also if one substitute ft = 0 in
the present approximation terms, the corresponding terms in the 
Glauber Eikonal Born series (GES) is obtained. The imaginary term 
will not diverge due to the presence of ft in the expression. 
Results are compared with the other theoretical results of 
Vijayashri (1985), Rao and Desai (1983) , Chandraprabha (1986) and 
Suja and Desai (1988). v

OJ O'
►*
*Wi
tt

<5
»i l
<S
>

>1 w ̂ pq

%cT,01,0
w+

H
IH«03 r4

1-tIE03SH03 *? 
SSI
 03(0
M

a o *©•
le
? I*HVa

sJH
- 

n
o 

*«*
M 

T-t
® 

SB

at 
<



Ill
The present results are quite good in agreement with MGA

(SPSM) than MGA (IC) of Vijayshri (1985) for all angles . In MGA
(IC) core was ignored. Hence the results are lower in small
angles. In any model the inclusion of core is necessary due to the 
deeper penetration of the incident particle into the atomic core 
{ Chan and Chang, 1976). The results of Yadav and Roy (1986) are 
also compared. They used, the single electron system, causing 
decrease in the results for 100 eV and 200 eV for all 
angles. Figures II. and II. results of 100 eV and 
200 eV are plotted along with the other results. From 
figures we can say that the results of Rao and Desai are lower 
estimated for all angles. Where they treat lithium as a single 
electron system. This .emphasis the fact that one must considered 
the lithium as a three electron system. From the terms of the HHOB 
theory we can see that contribution of the imaginary term is more 
important than the terms corresponds to the polarisation in the 
alkali atom scattering.

The EBS method which gives good results for e" -H and e - Be 
gives higher values in case of e - Li scattering.This may be due 
to the fact of the cancellation of the higher order Born terms in 
e - Li scattering. Due to very limited experimental data for e - 
Li scattering in these energy range it is impossible to have a 
complete analysis for the present calculation. Having obtain 
success in case of e - H and e - He scattering we extend it to the 
e - Li scattering., Hence not only the refinement is applied but we
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considered -the lithium as three electron system. The results 
obtained through are well compared with the other theoretical 
results and the experimental data available. It is observed that 
the results have improved when it is compared with the other 
methods.

Table II.XIV to. II.XVII describes the behaviour of the terms
of the HOSOB scattering amplitudes (equation, 21) for the energy of
incidence 100, 300, 200 and 400 eV respectively in the angular

2range 5 to 120 deg. The terms are expressed in / sr.
Tables II.XVIII to II.XX compares the results produced after 

the refinement to the HHQB approximation of Yates (1979) for the 
energy varying from 100, 200 to 400 eV in the angular range 5 to 
150 deg. As stated above as the energy of incidence increases 
beyond 400 eV or so the results are not upto mark.

Figures II. to, II. also compares our results with the 
methods described above.,

Bence, here we have considered the lithium atom as a three 
electron system as well as the refinement is applied to the HHOB 
approximation, i.e. inclusion of certain low lying energy states 
in the calculation of the differential cross sections.

Bence we find that in general without going in for much 
computational complexity of the higher order Born terms, if 
certain low lying energy states are included then the accuracy in 
the measurements of the cross sections can also increases further.
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TABLE II.XIV
Behaviour of the individual terms of the refinment in the HHOB theory for Lithium atom scattering at 100 eV. [Results are expressed in a*;/Sr.]

Angle (1)f (2)Im f (2)Re 1 f Re (2)2 f (3)f(deg.) i—>f HEA HEA HEA GES
— — _ ——------ ------—-—--*-— — — — — -— — — —-
5.0 5.3104 4.619 1.315 4.04 (-1) 1.47
10.0 4.3589 2.053 1.305 2.246 (-1) 1.79
15.0 3.286 1.24 1.17 7.10 (-1) 1.86
20.0 2.3875 1.021 1.05 1.017 (-1) 1.77
25.0 1.741 9.53 (-1) 9.56 (-1) 3.68 (-1) 1.64
30.0 1.3077 8.976 (-1) 8.898 (-1) 9.77 (-1) 1.53
40.0 8.2825(-1) 7.637 (-1) 7.90 (-1) 2.28 (-1) 1.40
50.0 5.9833(-1) 6.877, ,<-l) 7.057 (-1) 1.117 (-1) 1.33
60.0 4.6904(-1) 5.406 (-1) .6.29 (-1) 6.14 (-1) 1.16
70.0 3.8601(~1) 4.69 (-1) 5.608 (-1) 3.37 (-1) 1.11
80.0 3.2863(-l) 4.158 (-1) 5.015 (-1) 1.95 (-1) 1.00
90.0 2.8809(-1) 3.758 (-1) 4.511 (-1) 1.18 (-1) 9•55(-1)
100.0 2.5890(-l) 3.45 (-1) 4.09 (-1) 7.4 (-1) 9.80(-1)
110.0 2.3240(-l) 3.213 (-1) 3.75 (-1) 4.74 (-1) 8.60C-1)
120.0 2.1210(-1) 3.03 (-1) 3.47 (-1) 3.10 (-D 8.60(-1)



TABLE II.XV
m

Behaviour of the individual terms of the refinment in the 
HBOB theory for Lithium atom scattering at 300 eV.

Angle 
(deg.)

(1)
f
i—>f

Im f
(2)
HEA

5.0 4.64 1.33
10.0 2.83 5.9(-1)
20.0 1.02 4.694 (-1)
30.0 5.48(-l) 3.43 (-1)
40.0 3.57(-l) 2.59 (-1)
50.0 2.65C-1) 2.07 (-1)
60.0 2.13{-1) 1.736 (-1)
70.0 1.68(~1) 1.45 (-1)
80.0 1.42(-1) 1.325 (“D

1.22(-1> 1.193 (-1)

(2)
Rel f Re 2 f

(2)
r fg

FTRTA
—

HEA 3

7.82 (-1) 1.27 (-1) 5.77(-1)
6.442 (-1) 1.23 (-1) 6.0 (-1)
4.896 (-1) 1.296 (-2) 4.8 (-1)
3.96 (-1) 3.78 (-3) 4.05C-1)
3.16 (-1) 1.13 (-3) 3.6 (-1)
2.51 (-1) 3.8 (-4) 3.0K-1)
2.01 (-1) 1.3 (-4) 2.87(-1)
1.55 (-1) 3.522 (-5) 2.57{-l)
1.36 (-1) 1.563 (-5) 2.3K-1)
1.153 (-1) 1.12 (-5) 2.26C-1)90.0



TABLE II.XVI
Behaviour of the individual terms of the refinment in the BBOB theory for Lithium atom scattering at 200 eV.

Angle (deg.)
(1)f i—>f

(2)Im fBEA
(2)Re IfBEA

(2)Re 2 fBEA

iiiii1 
CO

i 
too

1 
<M

ii

5.0 4.9598 2.16 9.773 (-1) 2.109 (-1) 8.170(-1)
10.0 3.4641 8.826 (-1) 8.48 (-1) 5.94 (-1) 9.300(-1)
15.0 2.198 6.81 <[-1) 7.273 (-1) 3.193 (-D 8.67 (-1)
20.0 1.4213 6.34 (-1) 6.4881(-1) 2.34 (-1) 7.810(-1)
25.0 9.9090(-l) 5.74 {[-D 5193 (-1) 9.77 (-2) 7.150(-1)
30.0 7.4431(-1) 5.063 (-1) 5.447 (-1) 1.1 (-2) 6.640(-1)
40.0 4.9194C-1) 3.92 (-1) 4.58 {-D 3.9 (-3) 6.440{-l)
50,0 3.6469(-1) 3.15 (-1) 3.83 (-1) 1.55 (-3) 5.340(-l)
60.0 2.8809(-1) 2.642 (-1) 3.2 (-1) 6.6 (-4) 4.850{-1)
70.0 2.3452(-l) 2.285 (-1) 2.69 (-1) 2.80 (-4) 4.450(-l)
80.0 1.9748(-1) 2.02 (-1) 2.29 (-1) 3.6 (-4) 4.250{-l)
90.0 1.7029(-1) 1.83 (-1) 1.982 (-1) 6.17 (-4) 3.920(-1)
100.0 1.5170C-1) 1.67 (-1) 1.74 (-1) 3.26 (-4) 3.720{-1)
110.0 1.3420C-1) 1.56 (-1,) 1.55 (-1) 2.98 (-4) 3.420(-1)
120.0 1.2250(-1) 1.464 (-1) 1.41 (-1) 2.594 (-4) 3.390C-1)



H6

TABLE II.XVII
Behaviour of the individual terms of the refinment in the 

HHOB theory for Lithium atom scattering at 400 eV.

Angle 
(deg.)

(1)
f
HEA

(2)
Im f

HEA
(2)

Rel f
HEA

Re 2 f
(2)
HEA

fg
3

5.0 4.36 9.26 (-1) 6.585 (-1) 8.2 (-1) 4.480C-1)
10.0 2.37 4.7 (-1) 5.285 (-1) 7.85 (-1) 4.410C-1)
15.0 1.29 4.38 (- 1) 4.5 (-1) 2.25 (-1) 3.810(-1)
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0 
110.0 
120.0

8.08(-l) 
4.46(-l) 
4.26C-1) 
2.49{-l) 
1.70C-1) 
1.48(-1) 
1.19C-1) 
9.46C-2) 
8.56(-2) 
7.51(-2) 
6.52(-2)

3.68 (-1) 
2.57 (-1) 
1.92 (-1) 
1.54 (-1) 
1.29 (-1)
1.1 (-1) 
9.77 (-2) 
8.76 (-2) 
7.97 (-2) 
7.35 (-2) 
6.86 (-2)

3.98
3.09
2.357
1.804
1.40
1.12
9.17
7.70
6.635
5.84
5.25

(-1)
(-D
(-1)
(-1)
(-1)
(-1)
(-2)
(-2)
(-2)
(-2)
(-2)

1.26 (-1)
5.61 (-3)
4.2 (-3)
1.1 (-3)
2.00 (-4) 
1.90 (-4)
1.61 (-4) 
1.05 (-4)
1.3 (-4) 
1.21 (-4)
1.1 (-4)

3.390(-l) 
2.840(-1) 
1.900(-1) 
1.850(-1) 
1.760(-1) 
1.700(-1) 
1.600C-1) 
1.520(-1} 
1.420(-1) 
1.320(-1) 
1.270(-1)
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Fig II-V1I

e - Li atom 
E * 100 and 200 eV
♦ - EBS resut of Byron and

Joachain
• - Tayal etal
o - Result of static field (Rao 

and Desai)
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