Figure	Title of figure	Page
No.		
1.1	Upper extremity amputation level	3
1.2	Prosthetic device upper extremity	3
1.3	Lower extremity amputation level	3
1.4	Prosthetic device lower extremity	4
1.5	Arrangement of main elements of prosthetic	4
1.6	K1 and K2 mobility level	6
1.7	K3 and K4 mobility level	6
1.8	Orthotic device upper and lower extremity	8
1.9	Orthotic device – spinal	8-9
1.10	P&O assistive devices in the human body	9
1.11	Body parts replacement materials	10
1.12	Constituents of composite material	11
1.13	Composites classification (a) Based on phase composition (b) Based on	12-13
	reinforcement (c) Based on matrix	
1.14	Schematic visualization of the AM domain and research efforts and opportunities	18
1.15	Subtractive vs Additive Manufacturing	18
2.1	New prosthetic cross-section diagram	24
2.2	Stresses distribution on socket wall	24
2.3	The forces transmitted through the anterior and posterior aspects during the	25
	walking cycle	
2.4	Traditional manufacturing workflow for a modular prosthetic	26
2.5	Traditional fabrication process of the prosthetics socket	27
2.6	Fabrication methods	27
2.7	Prosthetic foot and hand	27
2.8	Broken arm process steps	28
2.9	Schematic of pylon fatigue test	28

LIST OF FIGURES

List of Figures

2023

Figure	Title of figure	Page	
No.		No.	
2.10	Prosthetic test frame (a) Fixed angle test frame b) Test frame with a roller	28	
	mechanism		
2.11	Corporation orientation chart for 3D printing	29	
2.12	Current application and future potential of 3D printing by industry	30	
2.13	Filament spools	30	
2.14	Test specimens before and after testing	31	
2.15	Additive manufacturing process (a) FDM (b) SLA (c) SLS	32	
2.16	Application of 3D printing	33	
2.17	3D printed prosthetics	34	
2.18	Integrated FE analysis procedure within the design platform	34	
2.19	Prosthetic foot model schematic	38	
2.20	The FE model in 3D, exhibiting equivalent stresses in flexible components	38	
2.21	CAD geometry of runner blade	39	
2.22	A closer view of total deformation on the runner blade	39	
2.23	A closer view of total equivalent stress on runner blade	39	
2.24	Ankle-Foot Devices (a) Renegade prosthetic foot (b) Tailor-Made prosthetic foot	40	
2.25	Ankles-current trends in foot orthotics (a) AF servo, (b) TurboMed, and (c) 3D	43	
	printed AFO		
2.26	The evolution of AFO materials	43	
2.27	Process from 3D scanning to 3D printing	44	
2.28	Side partial c/s view of an embodiment of a prosthetic foot	45	
2.29	Prosthetic foot in an exploded view	46	
2.30	Perspective view of an embodiment of a prosthetic foot	46	
2.31	Exemplarily illustrates a prosthetic foot with a heavy metallic connector	47	
2.32	Complete prosthetic foot (cross-sectional view) that includes the keel	48	
2.33	Photographic illustrations of a resulting splint or brace	49	
2.34	Schematic views of an adjustable external fixation brace	50	
2.35	Medial side elevation view of the AFO	51	
2.36	Exemplary perspective view mobility assistance device	52	

List	of	Figu	ires
------	----	------	------

Figure	Title of figure		
No.			
2.37	Isometric view of an embodiment of the support frame	53	
3.1	Crude amputation rates by year, adjusted for age and stratified by age	54	
3.2	Human prosthetic and orthotic elements	55	
4. 1	External forces acting on the human body during standing	59	
4.2	Internal forces acting on the human body during standing	60	
4.3	An object equilibrium conditions	61	
4.4	Link segment model	61	
4.5	Anatomical structure's length as a proportion of total body height H	62	
4.6	Leg segment density concerning average body density	64	
4.7	Arm held out straight to the side	65	
4.8	Free body diagram of arm	65	
4.9	Free body diagram of arm including moments	66	
4.10	Deltoid muscle force	66	
4.11	FBD represents forces generating moments near the center of the shoulder joint	66	
4.12	FBD includes components of deltoid muscle force and joint force	67	
4.13	Relationship between anatomical and link-segment model	68	
4.14	A rigid rod that may freely spin around a center at position X	69	
4.15	Human leg anatomy with force analysis	69	
4.16	An element at point P is subjected to a force F	70	
5.1	Process of design thinking	72	
5.2	Systematic design flowchart	72	
5.3	Design and simulation flow chart	73	
5.4	Patient feedback form 1	73	
5.5	Patient feedback form 2	73	
5.6	Patient feedback form 3	74	
5.7	Patient feedback form 4	74	
5.8	Below-knee amputation mechanism	74	
5.9	Functional level (K level) of prosthetic users	75	
5.10	Prosthetic and orthotic devices design criteria	76	

List of Figures

Figure	Title of figure	Page
No.		
5.11	Prosthetic foot model 1	77
5.12	Prosthetic foot model 2	77
5.13	Prosthetic foot model 3	77
5.14	Prosthetic foot model 4	78
5.15	Prosthetic foot model 5	78
5.16	Prosthetic foot model 6	78
5.17	Prosthetic foot "heel strike" analysis	79
5.18	Prosthetic foot "mid stance" analysis	79
5.19	Prosthetic foot "toe off" analysis	79
5.20	Prosthetic foot analysis stages	80
5.21	Prosthetic foot model 2 in "heel strike" situation	80
5.22	Prosthetic foot model 2 geometry during a heel strike situation	81
5.23	Prosthetic foot mesh model 2 during heel strike situation	81
5.24	Static structural simulation of prosthetic foot model 2 during heel strike situation	82
5.25	Total deformation in mm for prosthetic foot model 2 during heel strike simulation	83
5.26	Total deformation in Hz for prosthetic foot model 2 during heel strike simulation	83
5.27	Equivalent stress for prosthetic foot model 2 during heel strike simulation	83
5.28	Strain energy for prosthetic foot model 2 during heel strike simulation	84
5.29	Prosthetic foot model 2 in "mid stance" situation	84
5.30	Prosthetic foot model 2 geometry during mid stance situation	84
5.31	Prosthetic foot mesh model 2 during mid stance situation	85
5.32	Static structural simulation of prosthetic foot model 2 during mid stance situation	85
5.33	Total deformation in mm for prosthetic foot model 2 during mid stance simulation	86
5.34	Total deformation in Hz for prosthetic foot model 2 during mid stance simulation	86
5.35	Equivalent stress for prosthetic foot model 2 during mid stance simulation	86
5.36	Strain energy for prosthetic foot model 2 during mid stance simulation	87
5.37	Prosthetic foot model 2 in "toe off" situation	87
5.38	Prosthetic foot model 2 geometry during toe off situation	87
5.39	Prosthetic foot mesh model 2 during toe off situation	88

Figure	Title of figure	Page
No.		
5.40	Static structural simulation of prosthetic foot model 2 during toe off situation	88
5.41	Total deformation in mm for prosthetic foot model 2 during toe off simulation	89
5.42	Total deformation in Hz for prosthetic foot model 2 during toe off simulation	89
5.43	Equivalent stress for prosthetic foot model 2 during toe off simulation	89
5.44	Strain energy for prosthetic foot model 2 during toe off simulation	90
5.45	Prosthetic foot model 1 geometry during mid stance situation	92
5.46	Prosthetic foot mesh model 1 during mid stance situation	92
5.47	Static structural simulation of prosthetic foot model 1 during mid stance situation	93
5.48	Total deformation in mm for prosthetic foot model 1 during mid stance simulation	93
5.49	Total deformation in Hz for prosthetic foot model 1 during mid stance simulation	94
5.50	Equivalent stress for prosthetic foot model 1 during mid stance simulation	94
5.51	Strain energy for prosthetic foot model 1 during mid stance simulation	94
5.52	Prosthetic foot model 3 geometry during mid stance situation	94
5.53	Prosthetic foot mesh model 3 during mid stance situation	95
5.54	Static structural simulation of prosthetic foot model 3 during mid stance situation	95
5.55	Total deformation in mm for prosthetic foot model 3 during mid stance simulation	96
5.56	Total deformation in Hz for prosthetic foot model 3 during mid stance simulation	96
5.57	Equivalent stress for prosthetic foot model 3 during mid stance simulation	96
5.58	Strain energy for prosthetic foot model 3 during mid stance simulation	97
5.59	Prosthetic foot model 4 geometry during mid stance situation	97
5.60	Prosthetic foot mesh model 4 during mid stance situation	97
5.61	Static structural simulation of prosthetic foot model 4 during mid stance situation	97
5.62	Total deformation in mm for prosthetic foot model 4 during mid stance simulation	98
5.63	Total deformation in Hz for prosthetic foot model 4 during mid stance simulation	98
5.64	Equivalent stress for prosthetic foot model 4 during mid stance simulation	99
5.65	Strain energy for prosthetic foot model 4 during mid stance simulation	99
5.66	Prosthetic foot model 5 geometry during mid stance situation	99
5.67	Prosthetic foot mesh model 5 during mid stance situation	100
5.68	Static structural simulation of prosthetic foot model 5 during mid stance situation	100

Figure	Title of figure	Page
No.		
5.69	Total deformation in mm for prosthetic foot model 5 during mid stance simulation	101
5.70	Total deformation in Hz for prosthetic foot model 5 during mid stance simulation	101
5.71	Equivalent stress for prosthetic foot model 5 during mid stance simulation	101
5.72	Strain energy for prosthetic foot model 5 during mid stance simulation	102
5.73	Prosthetic foot model 6 geometry during mid stance situation	102
5.74	Prosthetic foot mesh model 6 during mid stance situation	102
5.75	Static structural simulation of prosthetic foot model 6 during mid stance situation	102
5.76	Total deformation in mm for prosthetic foot model 6 during mid stance simulation	103
5.77	Total deformation in Hz for prosthetic foot model 6 during mid stance simulation	103
5.78	Equivalent stress for prosthetic foot model 6 during mid stance simulation	104
5.79	Strain energy for prosthetic foot model 6 during mid stance simulation	104
5.80	Exploded view of the multiaxial foot ankle mechanism	108
5.81	Exploded view of human foot structure assembly	108
5.82	Transparent view of human foot structure with mounting bracket	109
5.83	Perspective view of human foot structure	109
5.84	Orthographic views of human foot structure assembly (a) Front view (b) Top view	109
	(c) Side view and (d) Bottom view	
5.85	NE and SE isometric view of mounting bracket	110
5.86	Cross-section views top, section A-A and section B-B of mounting bracket	110
5.87	Assembly view of the multiaxial foot-ankle mechanism	111
5.88	Transparent assembly view of the multiaxial foot ankle mechanism	112
5.89	Human foot structure assembly	112
5.90	Perspective transparent view of human foot structure assembly	113
6.1	Slicing tools for prosthetic foot model	115
6.2	FDM machine (Ender-3 V2)	115
6.3	Prototype model of prosthetic foot	116
6.4	Slicing tools for mounting bracket	116
6.5	Prototype model of mounting bracket	116
6.6	Prosthetic model assembly process	117

List	of	Figu	ires
------	----	------	------

Figure	Title of figure	Page
No.		No.
6.7	CAD model of novel prosthetic foot	117
6.8	Vertical Milling Center with 3-axis	119
6.9	UHMW-PE raw material block	119
6.10	Machining process of prosthetic foot model	120
6.11	A realized model of a prosthetic foot	120
6.12	Machining process of the mounting bracket	120
6.13	A realized model of the mounting bracket	121
6.14	Prosthetic foot with foot adapter	121
6.15	Sole treaded on the bottom side of the prosthetic foot	121
6.16	Pylon adapter is mounted on the foot adapter	122
6.17	Weight of pylon with adapter	123
6.18	Weight of socket elements	124
6.19	Weight of various prosthetic foot elements	124
6.20	Assembly weight of novel and SACH prosthetic foot elements	125
6.21	Novel prosthetic foot structure with various pylon elements	126
6.22	Weight for novel prosthetic foot structure using pylon 1	126
6.23	Weight of novel prosthetic foot structure with various pylon sizes	126
6.24	SACH prosthetic foot structure with various pylon elements	127
6.25	Weight for novel prosthetic foot structure using pylon 2	127
6.26	Weight of SACH prosthetic foot structure with various pylon sizes	128
6.27	Socket fitting process on patients	128
6.28	Gait cycle's phases	129
6.29	The stance phase of the right lower limb's gait cycle	130
6.30	Human body stick diagram for pointing movement	130
6.31	Body movement types	131
6.32	Movements of the body	131
6.33	GUI of Kinovea for patient motion analysis	133
6.34	The stance phase of the left lower limb's gait cycle (case 1)	134
6.35	Patient lateral view initial contact position (case 1)	135

NI.		Page	
No.			
6.36	Patient lateral view loading response position (case 1)	136	
6.37	Patient lateral view mid stance position (case 1)	136	
6.38	Patient lateral view terminal stance position (case 1)	137	
6.39	Patient lateral view pre swing position (case 1)	138	
6.40	Graphs for the lateral views of the gait cycle: Ankle angle (Novel prosthetic foot)	138	
6.41	Graphs for the lateral views of the gait cycle: Knee angle (Novel prosthetic foot)	139	
6.42	Graphs for the lateral views of the gait cycle: Hip angle (Novel prosthetic foot)	139	
6.43	Patient posterior view mid stance position (case 1)	140	
6.44	Patient anterior view mid stance position (case 1)	140	
6.45	Patient lateral view initial contact position (case 2)	141	
6.46	Patient lateral view loading response position (case 2)	142	
6.47	Patient lateral view mid stance position (case 2)	143	
6.48	Patient lateral view terminal stance position(case 2)	143	
6.49	Patient lateral view pre swing position (case 2)	144	
6.50	Graphs for the lateral views of the gait cycle: Ankle angle (Normal patient)	144	
6.51	Graphs for the lateral views of the gait cycle: Knee angle (Normal patient)	145	
6.52	Graphs for the lateral views of the gait cycle: Hip angle (Normal patient)	145	
6.53	Patient posterior view mid stance position (case 2)	146	
6.54	Patient anterior view mid stance position (case 2)	146	
6.55	The stance phase of the left lower limb's gait cycle (case 3)	147	
6.56	Patient lateral view initial contact position (case 3)	148	
6.57	Patient lateral view loading response position (case 3)	148	
6.58	Patient lateral view mid-stance position (case 3)	149	
6.59	Patient lateral view terminal stance position (case 3)	150	
6.60	Patient lateral view pre-swing position (case 3)	150	
6.61	Graphs for the lateral views of the gait cycle: Ankle angle (Senator foot)	151	
6.62	Graphs for the lateral views of the gait cycle: Knee angle (Senator foot)	151	
6.63	Graphs for the lateral views of the gait cycle: Hip angle (Senator foot)	151	
6.64	Kinematic graph for patient's lateral view position	152	

Figure	Title of figure	Page
No.		No.
7.1	The evolution of AFO materials	154
7.2	Casting process for a broken leg	156
7.3	Casting process for a broken arm	156
7.4	3D printing process flow	157
7.5	3D printed hand / wrist brace	158
7.6	3D printed leg brace	158
7.7	A graphical depiction of hand scanning places	159
7.8	3D model of the wrist brace	159
7.9	Modeling of hand / wrist brace	160
7.10	3D model of the leg	160
7.11	Modeling of foot brace	161
7.12	Software flow from STL input to G-code output	161
7.13	Ultimaker Cura user interface	162
7.14	Part uploaded in Ultimaker Cura	162
7.15	Setting 3D printing parameters in slicing software	163
7.16	3D printed AFO part	164
7.17	Levels of the GMFCS classification scheme	166
7.18	Anterior (left) and posterior (right) standard walkers	166
7.19	Gait trainer walker	167
7.20	Patients using commercial walkers	168
7.21	Walker design criteria	170
7.22	Measurements in standing posture	171
7.23	Measurements in sitting posture	171
7.24	CP walker prototype sketch 1	172
7.25	CP walker prototype sketch 2	173
7.26	CP walker design process	173
7.27	Different CAD views of CP model	174
7.28	CAD drawing of CP walker model	174
7.29	CP walker components	175

List	of	Fig	ures
LIDU	01	6	ui co

Figure	Title of figure	Page
No.		No.
7.30	Standing position with walker	176
7.31	Sitting position with walker	176
7.32	Static structural FEA model	176
7.33	Load applied on walker during sitting and standing position	177
7.34	Total deformation analysis during sitting and standing position	177
7.35	Equivalent stress analysis during sitting and standing position	177
8.1	Multiaxial dynamic foot's device features	180
8.2	Design and development process of the prosthetic foot model 1	181
8.3	Design and development process of the prosthetic foot model 2	181
8.4	Design and development process of the prosthetic foot model 3	181
8.5	Design and development process of the prosthetic foot model 4	182
8.6	Design and development process of the prosthetic foot model 5	182
8.7	Design and development process of the prosthetic foot model 6	182
8.8	Development and testing process for novel prosthetic foot	182
8.9	Design and development process of the orthotics foot shell model	183
8.10	Design and development process of the Ankle Foot Orthotic Model	184
8.11	Walker device features	184

2023