Chapter 4

(v, )-Wardowski Contractions

4.1 Introduction

In order to solve the more complex nonlinear analysis problems, the concept of
metric spaces has been extended in many aspects. In particular, Czerwik [15] in-
troduced the concept of b-metric spaces and established the Banach contraction
principle in this framework with the fact that b-metric need not be continuous.
Recently, Aghajani et al. [3] defined the G} -metric spaces by using the notions
of b-metric spaces and G-metric spaces, and they discussed some basic properties
of GGy -metric. They also pointed out that the class of Gy-metric spaces is effec-
tively larger than that of G-metric spaces. Thereafter, several results have been
extended from metric spaces to b-metric spaces, more so, a lot of results on the
fixed point theory of various classes of mappings in the framework of b-metric
spaces have been established by different researchers in this area.

On the other hand, Rhoades’ problem on discontinuity at fixed points is
one of the interesting problems of fixed point theory. Rhoades [52] brought up
the issue of whether there is a contractive condition strong enough to produce a
fixed point which does not require the map to be continuous at the fixed point.
Following the initial answer provided by R. P. Pant [47], several further solutions
to this open problem have been offered using various techniques. In this context,
Wardowski [61] introduced the F-contraction and proved fixed point results for
such mappings. Later, Liu et al. [42] introduced the (1, ¢)-type contraction for
metric spaces as follows.

Here, ® denotes the collection of non-decreasing, continuous functions ¢ :
[0, 00) — [0, 00) such that for each sequence {t,,} C (0, c0), nh_)rrgo ¢(t,) = 0 if and
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only if lim ¢, = 0.
n—oo
A function ¢ : [0,00) — [0, 00) is called a comparison function if it is mono-
tone increasing and lim ¢"(t) = 0 for all ¢ > 0, where )" is n* iterate of 1.
n—oo

F.,n denotes the collection of all comparison functions.

Definition 4.1.1. [42, p.4131] Let T be a self-mapping defined on the metric
space (X,d). Then, T is said to be (1, ¢)-type contraction, if there exists ¢ € ¢
and ¢ € F,,,, such that

d(T2,Ty) >0 —> ¢(d(Tx,Ty)) < B(6(M(x,y))), for all 2,y € X,

where M (z,y) = max{d(z,y),d(z, Tx),d(y, Ty), 3d(z, Ty),d(y, Tx)}.

In recent years, fixed points of discontinuous mappings have found applica-
tions in neural networks. Some current solutions to the Rhoades’ Open Problem
are used to provide some applications for neural networks with discontinuous
activation functions [45, 51].

The objective of this chapter is to find out contractive condition which does
not force the mapping to be continuous at their common fixed points. For this,
generalized (¢, ) —Gy-Wardowski contraction for three mappings is introduced to
establish a common fixed point theorem in setting of complete G,-metric spaces.

Further, its application to neural networks is discussed.

4.2 Preliminaries

Here, we recollect some basic definitions and results that are prerequisites for this

chapter.

Definition 4.2.1. [3, p.1088] A Gj-metric space (X, Gy) is said to be symmetric
if Gy(z,v,y) = Go(y, 3, 7), for all 2,y € X.

Definition 4.2.2. [3, p.1089] For a sequence {x,} and a point x in (X, G}), we
say that:

(1) {z,} Gp-converges to z, if lim Gy(z,,zm,x) = 0, that is, for every € > 0

7,Mm—00
there exists ng € N satisfying Gy(z,,, T, x) < g, for all n,m > ny.

(2) {z,} is Gy-Cauchy if lim Gy(zp, T, zx) = 0, that is, for every £ > 0

n,m,k— oo
there exists ng € N satisfying Gy(z,, z, 2x) < €, for all n,m, k > ng.
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(3) (X, Gh) is Gy-complete if every G- Cauchy sequence in X is G- convergent
in X.

Proposition 4.2.3. [3, Prop.1.11, p.1090] For a sequence {z,} and a point z in
(X, Gy), the following are equivalent:

(a) {z,} Gp-converges to x,
(b) lim Gy(zp, xn, ) =0,
(c) lim Gy(z,,z,z)=0.

Proposition 4.2.4. /3, Prop.1.10, p.1089] A sequence {x,} in (X,Gy) is G-

Cauchy if and only if lim Gy(xy, T, Tm) = 0.
n,Mm—>00

Definition 4.2.5. [3, p.1090] Let (X,G) and (X,G’) be two Gp-metric spaces.
Then a function f: X — X’ is Gy-continuous at a point x € X if and only if
{f(zn)} = f(x), whenever {z,} — x.

In a G-metric space, the metric is jointly continuous in all three of its vari-

ables. But this statement is not true in case of Gy-metric spaces.

Proposition 4.2.6. [3, Prop.1.5, p.1089] Let (X, Gy) be a Gy-metric space. Then
for s > 1 and for each x,y,z,a € X, the following properties hold:

1. Gy(z,y,2) =0 = z =y =z,
2. Gy(z,y,2) < s[Gy(x,x,y) + Gp(z, x, 2)],
3. Gb(x7 Y, y) S QSGb(y, xr, :E)v

4. Go(r,y, 2) < s[Gy(z,a, z) + Gy(a, y, 2)).

4.3 Results for (¢, ¢)-Wardowski contraction in

(Gy-metric spaces

To take this section forward, we firstly introduce the (v, ¢) — Gp-Wardowski con-
traction and generalized (1), ¢) — G,-Wardowski contraction. Subsequently, com-

mon fixed point result via such contraction in G,-metric space is demonstrated.
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Definition 4.3.1. Let S be a self-mapping defined on the Gy-metric space (X, G).
Suppose that there exist ¢ € ® and ¢ € F,,,,, such that for s > 1

G(Sz,8y,52) > 0 = ¢(25'G(Sx, Sy, S2)) < Y (¢(Mi(z,y, 2))),

for all z,y, z € X, where
M (z,y,z) = max{G(x, y,2),G(z, Sz, Sy), Gy, Sy, Sz),G(z, Sz, Sz),

%[G(SL v, 2) + G(z,8y.2) + G(z.y. 5Z>]}«

S
Then, S is said to be a (1, ¢) — G,-Wardowski contraction.

Definition 4.3.2. Let S, T, R be self-mappings defined on the G,-metric space
(X, G). Suppose that there exist ¢ € ® and ¢ € F,,,,, such that for s > 1

G(Sz, Ty, Rz) > 0 = ¢(25*G(Sz, Ty, R2)) < (p(My(z,y, 2))), (4.1)

for all x,y, z € X, where
My (z,y,2) = maX{G(x, y,2),G(x, Sz, Ty),G(y, Ty, Rz),G(z, Rz, St),

1
E[G(SLL‘, y,2) + G(x, Ty, z) + G(x, vy, Rz)]}.

Then, we say that (S, T, R) is generalized (¢, ¢) — G,-Wardowski contraction.
Now, the main result of this chapter is furnished below.

Theorem 4.3.3. Let S,T,R : X — X be generalized (¢, ¢) — G- Wardowski
contraction in a complete Gy-metric space. Then S, T, R have a unique common
fixed point u € X, also S"x — u, T"r — u and R"x — u, for each x € X.

Further, at least one of S, T and R is not continuous at w if and only if

lim Ms(x,u,u) # 0 or im Msy(u,y,u) # 0 or lim My (u,u, z) # 0.
y—u zZ—U

T—U
Proof. For any zy € X, we can construct a sequence {x,} by setting
T3n41 = ST3n, Tany2 = TT3,01, T3n13 = RIznye, n 2> 0.
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Suppose that =, = x,,1, for some n € N.

If x3, = 23,41, then x3, is a fixed point of S.

If 23,41 = T3,49, then x3,.1 is a fixed point of 7.

If 23,40 = T3,43, then x3,.9 is a fixed point of R.

Thus, at least, one of the mappings S, T or R has a fixed point.

We assume that z,, # x,.1, for all n. Let d,, = G(zp, Tpi1, Tni2) > 0, for all n.

Hence
G(5$3n7T$3n+17 R$3n+2) = G($3n+1, T3n+2, $3n+3) = dzp+1 > 0,
implies that

¢(2S4d3n+1) = ¢(2S4G($3n+17 T3n+2, $3n+3))
< Y(A( My (230, T3n41, T3nt2))), (4.2)

where

]\42(333717 L3n+1, i173n+2)

= maX{G(ZE?)m T3n41, $3n+2), G($3m STap, T$3n+1); G($3n+1, Tx3,41, R$3n+2)7
1

) 4_8[

+ G(wsn. Tw3p41, T3ny2) + G(T3n, T3n1, R963n+2)]}

G($3n+2> R340, Sl’sn) G(5$3m T3n+1, $3n+2)

= maX{G (30, Tant1, Tan+2), G(Tant1, Tant2, Tants),
1
4s
+ G(Z3n, T3n+1, T3n+3)] }

|G(Z3n+1, T3nt1s Tant2) + G(T3n, Tani2, Tang2)

From definition of Gy-metric space, we have

G($3n+17 $3n+1,$3n+2) < G(J«“3n+1, T3n+2, $3n+3) = d3n+17
G(Z3n, Tant2, Tantz) < G(T3n, Tanst1, Tantz) = dap,
G(l’sm T3n+1, -773n+3) < S[G(Tsm T3n41, 'T3n+2> + G(T3n+1, T3n42, 173n+3)]

= s[dsn + dsni1]-
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Hence,

s+1
S

My (23, T3nt1, Tant2) = max{dsn, dsni1, (d3n, + dsni1) }

= max{d3n7 d3n+1}~
If Ms(x3p, 3041, Tanso) = dane1, then from (4.2), we have

O(25 dspi1) < V(H(dzni1)) < H(dans1),

which is not possible. Hence, Ms(x3,,, T3511, Tanio) = dap-
Using (4.2), we have

$(25 dzny1) < Y(P(dsn)) < ¢(dzn), for all n € N, (4.3)

Again, from (4.1), we have

¢(284d3n+2) = ¢(284G($3n+2, T3n43, I3n+4))

0(25*G(Tz3n41, RTansa, STanis))
V(P(Ma(T3n43, T3nt15 Tant2))): (4.4)

IN

where

Ma (23043, T3n41, T3nt2)
= maX{G(l‘?ers, L3n+1, $3n+2)7 G(333n+37 ST3n43, T$3n+1)7

G(333n+1, T$3n+1, R$3n+2), G($3n+2, R£E3n+2, S$3n+3),

1

4_3 [G(S$3n+37 T3n+1, $3n+2) + G($3n+3, Twsn 1, $3n+2)

+ G(T3043; Tant1, RT3042)] }

= maX{G($3n+37 T3n+1, $3n+2), G($3n+37 T3n+4, $3n+2),

1
4s

+ G(x3n+37 T3n+1, l’3n+3)]}

|G(Z3n+45 T3n+1, Tant2) + G(T3n43, Tant2, Tant2)
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< maX{G($3n+17 T3n+2, T3n+3), G(T3n12, T3n43, Tanga),

s+1
4s

(G(T3n41, T3n+42, T3n43) + G(Tant2, Tanys, 373n+4)]}

= maX{d3n+17 d3n+2}~

If My(x3543, T3ni1, T3nt2) = dsnio, then from (4.4), we get

P(25 d3pi2) < V(P(dsnt2)) < P(dznsa),

which is not possible. Hence, Ms(Z3,13, T3n41, T3n12) = d3ni1-

Using (4.4), we have

¢(2S4d3n+2> S 1/}<¢(d3n+1>> < ¢(d3n+1>' (45>

Similarly, we can obtain

D(25* d3ni3) < V(P(dsniz)) < P(dsnia). (4.6)

From (4.3),(4.5) and (4.6), we have

P(dps1) < 025 dpi1) < (P(dn)) < P (P(dp-1)) < ... <" (P(dn)).

Letting n — oo, we get lim " (¢(dy)) = 0.
n—oo
Thus, lim G(z,, ZTp11, Tri2) = 0.
n—oo

Since x,, # x,.1 for every n, so by property (GB3), we obtain

G(gjn» Tn+1, :En+l) S G(In) Tn+1, xn-‘,—?)-

Hence,

lim G(zp, Tpi1, Tpi1) = 0.
n—oo

Since, G(xp, Tp, Tni1) < SG(Ty, Tpi1, Tnyr), for all n > 0.

lim G(z,, T, Tpe1) = 0.
n—oo

Now, we prove that {z,} is a G,-Cauchy sequence in X. It is sufficient to

show that {x3,} is a G,-Cauchy in X. On contrary, assume that {z3,} is not a G-
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Cauchy sequence. There exists £ > 0 for which we can find subsequences {zs,,, }
and {xs,, } of {x3,} such that my is the smallest index for which 3my, > 3n; > k

and

G (T3 T3mp—3: Tamp—3) < € < G(Tan,., T3my: T3my )-

Since

£

IA

G($3nk7 T3my,» 373mk)

IA

S|G (T3, Tang+1s T3ng+1) + G(T3ny+15 T3my s L3my, )]

IN

S|G(T3ny s Tang+1> Tang+1) T G(T3np+1, Tamp s Tamp—1) ),

taking upper limit as k — oo, we get

€ .
- S lim sup G(ngnk+1, T3my, » x3mk—l)7 (47)
S k—o0

which implies that, G(zsn,+1, T3m,, T3m,—1) > 0, for all k € N.

Hence, from (4.1), we have

¢(254G($3nk+1: T3my—15 373mk)) = ¢(254G(5$3nk, T':U3mk—2, R$3mk—1))
S P(O( Mo (230, T3y —25 T3my—-1))), (4.8)

where

M2($3nk7 T3my—2, 173mk—1)
= maX{G(SUzmk; T3myp—25 x?)mk—l)a G(I?mk, S$3k7 T«T3mk—2)7

G($3mk—27 T'I3mk—27 R$3mk—l)7 G($3mk—1, R933mk—1, S$3nk)7
1

ZS[G(S$3nk7 T3my—25 T3my—1) + G(Tang, TT3my—2, Tamy—1)

+ G(230, 5 T3my—2, R'I?)mk—l)]}

= maX{G(SC:snk; T3my—25 fsmk—1)7 G(isnk, T3np+15 $3mk—1),

G($3mk_2, xSmk—la x3mk>7 G<x3mk—17 $3mk7 x3nk+1)7
1

E[G(%nkﬂ, T3my—2: L3m—1) + G (Tan,, Tamp—1, Tamy—1)
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+ G(x3nk7 szk—Za I‘Bmk)] } .
Since

G(T3n, s Tamp—2, Tamp—1) <S[G(T3n, . T3my—35 T3my—3)

+ G(T3mp—3: T3mu—2, L3my—1)]
taking upper limit as k — oo, we get

limsup G(xsn,, Tamy,—25 T3m,—1) < SE. (4.9)
k—o0

Also,

G(-T/Snka T3np+1s T3mk—1)
< 5[G(X3my—1, T3mp—3: L3my—3) + G(T3m,—3, T3ny s Tang+1)]
< SG(Z3my 1> T3my—35 Tamy—3) + °G(T3my—35 Tany.» Tang, )
+ 582G (T30, T3ny s T3nys1)
< SG(T3my 1> T3my—3, T3my—3) + 28° G(T3m, -3, T3my—3: T3ny,)

+ SZG(:E?)nkv x3nk: I3nk+l)-
Taking upper limit as k£ — oo, we get

msup G (230, T3mps1s Tam,—1) < 28°¢. (4.10)
k—oo

Again,
G(l’:’)mk—l, T3my,, l’3nk+1)
2
< 8G (T304 415 T3ngs Tang, ) + 5 G (T3ny s T3mp—3 T3mp—3)
2
+ 8°G(T3mp—3> Tamy,> Tamp—1)-
Hence,
. . . - )2,_.
Hmsup G(Zgm,—1, Tamys Tang+1) < S°€. (4.11)
k—o0
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Also,

G(fﬂ3nk+1, T3my—2, 173mk71)
2 2
<s G(Sl??mk; T3my—35 373mk—3) +s G(373nka T3ny» x3nk+1>

+ SG(X3my—3, T3mp—25 T3my—1)

implies that

Hmsup G(@3, 11, T3m, 2, Tam, 1) < S°€. (4.12)
k—o0

Also,

G(Z3n415 T3mp—1, Tamy—1) < G(T3n,415 T3my—25 T3my—1)

implies that

limsup G(T3n,+1, T3mp—1, Tamp—1) < s2e. (4.13)
k—o0

Again,
G (T3> Tamy—15 Tamp—1) < G(ZTan,., T3my—25 T3mp—1)

implies that

limsup G(xsn,, Tamy—1: Tam,—1) < SE. (4.14)
k—o0
Also,
G(iﬂzmk, T3my,—25 $3mk)
< 8G (230, 5 T3my—3: T3my—3) + SG(T3mp—3, L3mp—2, L3my )-
Hence,
limsup G(Z3n,, T3my—2, T3m,) < SE. (4.15)
k—o00

Using (4.9)-(4.15), we get

1
limsup M (T30, T3m, 2, Tam, —1) < max{se, 25, s%c, —(25%¢ + s¢)}
k—o0 S

= 25%¢.
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Now, using (4.7) and (4.8), we get

9 .
¢(254g) < ¢(254 lim sup G<x3nk+17$3mk717z3mk>>

k—oo

= ¢(2s*limsup G(Szan,, T'v3m,—2, Rrgm, 1))

k—o0

< Y(Pp(limsup My(xs,,, T3m,—2, L3me—1)))

k—o0

< P(¢(25°¢))
< 9(25%¢),

which is a contradiction. Hence, {z3,} is a G,-Cauchy sequence and so, {z,} is a
Gyp-Cauchy sequence. Since X is a complete Gy-metric space, there exists u € X
such that lim xz, = u. Therefore,
n—r oo

lim z3,,1 = lim Sx3, = lim z3,,0 =

n—r o0 n— oo n—oo

= lim Tz3,,1 = lim z3,,3 = lim Rxs3,.2 = u.

n—o00 n—00 n—o0

To prove that, u = Ru.
We have,

G(S-riinv Twsp41, R$3n+2) < S[G(Siﬁsm Tx3n11, RU) + G(RU: Ru, Rl’3n+2)]-

Suppose G(Sx3n, Tr3,11, Ru) = 0 and G(Ru, Ru, Rrs, ) = 0, for some n € N;
then G(Sz3,, Tr3,11, Rr3,12) = 0, a contradiction to our assumption.
Therefore, we take G(Sws,, Trs3,41, Ru) > 0, for all n.

From (4.1), we get

¢(284G(8$3n7 T':C?)n-i-la RU)) S 1/1(@(]\42(55371, T3n+1, U))), (416)

where

My(23n, Tani1, u)
= maX{G(i?m, T3n41, U), G(SU:sn, ST3p, T933n+1),
G($3n+17 Tx3n41, RU), G(% Ru, S$3n)a
1

4—S[G(Sl"3m L3n+1, U) + G($3n, Twgn 1, U) + G(fE:sn, T3n+1, Ru)]}
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Taking limit as n — oo , we get

1
lim Ms(23p, 3541, u) = max{G(u, u, u), G(u,u, Ru), 4—G’(u, u, Ru)}

n— 00 S

= G(u,u, Ru).
Taking limit as n — oo in (4.16), we get
$(25"G (u, u, Ru)) < Y(¢(G(u, u, Ru))) < ¢(G(u,u, Ru)).

implies that
25*G(u, u, Ru) < G(u,u, Ru),

a contradiction. Hence, u = Ru, that is u is a fixed point of R.
Similarly, we can prove u is a fixed point of S and 7" both. Therefore, u is a
common fixed point of S, T and R.

To prove that u is the unique common fixed point of S,7T and R. Let v be
another common fixed point of S,7T" and R. Then, Su = Tu = Ru = u and
Sv =Tv = Rv =v. We have G(u,u,v) = G(Su, Tu, Rv) > 0 and G(u,v,v) =
G(Su,Tv, Rv) > 0.

From (4.1), we have
$(251G(Su, Tu, Rv)) < ¥(6(Ma(u, u, v))) < ¢(My(u, u, v)), (4.17)
where
Ma(u,u, v) = max{G(u, u,v), G(u,v,v)}.
If My(u,u,v) = G(u,v,v), then from (4.17), we get
¢(25'G(u, u,v)) < ¢(G(u,v,v))

implies
25*G (u, u,v) < G(u,v,v) < 25G(u,u,v),

a contradiction.
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Similarly, if My(u,u,v) = G(u,u,v), then from (4.17), we get
(254G (u,u,v)) < ¢(G(u, u,v))

implies
25*G (u, u,v) < G(u,u,v),

a contradiction.

Hence, S,T and R have a unique common fixed point in X.

Further, we prove that at least one of S,7T" and R is not continuous at u if and
only if

T—U

lim Ms(z, u,u) # 0 or lim Ms(u,y,u) # 0 or lim My (u,u, z) # 0.
y—u z—u

Equivalently, we prove that 5,7 and R are continuous at w« if and only if

lim Ms(z,u,u) =0 and lim Ms(u,y,u) =0 and lim Ms(u,u, z) = 0.
y—u z—u

T—U

We suppose that
lim Ms(z,u,u) =0 and lim Ms(u,y,u) =0 and lim Ms(u,u, z) = 0.

T—=u y—u z—u

Now,

lim Ms(x,, u,u)
Tpn—U

= lim maX{G(a:n, u,u), G(xy,, Sy, Tu), G(u, Tu, Ru), G(u, Ru, Sx,),

Tp—U

1

Thus, lim G(z,,Sz,,u) = 0. This implies that Sz, — u = Su, that is, S is
contimfgﬁsu at u.

Similarly, we can prove T" and R are continuous at .

On the other hand, if S;T and R are continuous at their common fixed point u,
that is lim Sz, = Su, lim Tz, =Tu and lim Rx, = Ru.

Tp—U Tp—U Tp—U

Then

lim Msy(z,, u, u)
Tpn—U

= lim max{G(xn, u,u), G(y, Sy, Tu), G(u, Tu, Ru), G(u, Ru, Sz,),

Tp—U
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1
G510 + Gl ) + Gl Rl =0,
lim Ms(u, z,, u)

= lim max{G(u, Tn,u), G(u, Su, Tx,), G(xn, Tr,, Ru), G(u, Ru, Su),

1
12 [G(Sw, 2 0) + Gl T, ) + Gl o, Ru)]} _o,
lim Ms(u, u, x,,)

Tp—U

Tp—U

= lim maX{G(u, u, ), G(u, Su, Tu), G(u, Tu, Rx,,), G(x,, Rx,, Su),

1

E[G(Su, u, ) + G(u, Tu, x,) + G(u, u, Rxn)]} —0.

The subsequent example affirms our obtained result.

Example 4.3.1. Let X = [0,00) and define G : X — [0, 00) by

0 ifr=y=
G(x,y,z):{ , ftr=y=z2

max{z,y, z}, otherwise.

Then (X, G) is a complete Gy-metric space with s = 1.
We define S, T, R : X — X by

S — & rel0,1],
0, z€(1,00);

Tx: %7 [071 Y
07 ( 700)7

Ry — %’ 07 1]7
0, (1,00).

Also, take ¢(t) =t and (t) = &.
Then, S, T, R satisfy all the conditions of Theorem 4.3.3 and x = 0 is the only
common fixed point of S, T and R.

Corollary 4.3.4. Let S : X — X be (¥, ¢) — Gyp-Wardowski contraction in a

complete Gy-metric space. Then S has a unique fixed point, say u and S"r — u,
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for each x € X. Further, S is discontinuous at u if and only if

lim M, (z, u, u) # 0.

T—U
Proof. By taking S =T = R in Theorem 4.3.3, we get the result. O

Corollary 4.3.5. Let (X, G) be a complete Gy-metric space and S : X — X

satisfies
G(Sx,Sy,Sz2) >0 = ¢(25'G(Sx, Sy, S2)) < Y(p(G(x,y,2))),

for all x,y,z € X, where p € ® and ¥ € F,,,,. Then S has a unique fized point,
say u and S"x — u, for each x € X. Further, S is discontinuous at u if and only
if

lim G(z,u,u) # 0.

T—U
Proof. Taking My(z,y,z) = G(x,y,z), the conclusion follows from Corollary
4.3.4. O

The following result is for Wardowski type contraction in Gp-metric spaces.

Corollary 4.3.6. Let (X, G,) be a complete Gy-metric space and S : X — X

satisfies
G(Sxz, Sy, Sz) >0 = 7+ F(2s*G(Sx, Sy, S2)) < F(G(x,y, 2)),

for all x,y,z € X. Then S has a unique fixed point, say u and S™xr — wu, for

each x € X. Further, S is discontinuous at u if and only if

lim G(z,u,u) # 0.

T—U

Proof. In Corollary 4.3.4, we take Ms(z,y, z) = G(x,y, z) and ¥ (t) = e~ "t, where

7> 0and ¢(t) = e'®, where F is an F-contraction, then we get the result. [

4.4 Application to neural networks

In fixed point theorems, contractive mappings that admit discontinuity at the
fixed point have found applications in neural networks with discontinuous acti-

vation functions (e.g. Ozgiir and Tas [45] and Rashid et al. [51]). Here, an
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application of Theorem 4.3.3 is provided by taking into account discontinuous
activation functions in neural networks. The class of discontinuous activation

functions was generalized by Nie and Zheng [44] as follows.

Uj, —o00 < < p;,

Six) = lizz +cin, pi <o <y,
(x) =
ligw +cia, 1 <x < g

Vs, g < x < 400,

where p;, 1;, @i, wi, v, lix, li 2, Cin, €2 are constants with

—00 <P << g <400,
lin >0, l;2 <0,

Ui = lapi + ¢i1 = liaqi + ¢i2,
Liari + cinp = ligori + ¢io,

v; > SZ‘(T'Z‘), 1=1,2,...,n.

The function 5; is continuous at every real number except the value z = ¢;.

Here, we consider the discontinuous activation functions S,7T and R:

4, —00 < x < —2,
+ 0, —2<x <1,
S)=4 " ==
—r4+8, 1<ux <4,
8, 4 << +o0,
where
pi=-2ri=1¢=4 u=4 v =3,
li,l =1, Ci1 = 6, li,2 =1, Ci2 = 8,
-3, —00 < x < —2,
2r+1, —2<x< -1
T'(x) = L
—2r—1, —3<z<1,
4, 1 <2z < 400,
where

1
pi = —2, i =5 ¢ =1 u=-3 v=4,
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li,l =2, Ci1— 1, li,2 = -2, Ci2 = -1

and
—2, —o0 < r < —4,
20 +6, —4<x< -3,
R(z) = T+ <z <
—2r—6, -3<z< -2
4, —2 <z < 400,
where
Di = _47 ri = _37 q; = _27 U; = _27 V; = 47
lin=2, cin =0, lip=-2, ¢;s =—6.
The function 7" has four fixed points, uy = —3,us = —1,u3 = _?1 and uy = 4,

and the functions S and R has only one fixed point at z = 4. So, x = 4 is the
common fixed point of S, T and R.

lim My (x,4,4) # 0,
z—4

implies S is discontinuous at x = 4.
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