
CHAPTER - IV

MISCLASSIFIED DATA II CURTAILED SAMPLING P1A1S

4.1 In this chapter we have obtained the maximum likelihood 
estimate of the fraction defective when data from the curtailed 
sampling plans are subject to misdassification. The maximum 
likelihood estimate of the probability of misclassification is 
also obtained..The asymptotic variances and covariances of 
these estimates are derived.

4.2 Description of Misclassification :

Rejection of a lot involves sometimes a botheration.
An immediate consequence of the rejection of a lot leads to 
inspection of all the articles of a lot, when screening is 
prevailing. Rejection of a lot may raise undue doubt, whether 
the quality of the production has deteriorated. The party 
concerned, therefore, may avoid the rejection of a lot by 
practising deliberative errors in inspection. In Plan 1, we 
know that a lot is rejected if the number of defectives in n 
inspected articles is c+1 (=k) or more. Therefore, an inspector 
is inclined to classify a defective as a* nondefective, when 
he finds exactly c+1 defectives in the articles inspected;
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for this will lead to acceptance of a lot and avoidance of 
the further bothersome consequences. Cohen [ 10,11] has 
considered this type of miselassification® He has obtained 
the maximum likelihood estimate of the fraction defective, 
when data of Plan 1 are subject to this type of miselassifica­
tion.

We consider here the same type of miselassification, 
namely, the misclassification which leads to acceptance of a 
lot when it is being inspected under the Curtailed Sampling 
Plans. Let us try to determine the stage at which the inspec­
tor may classify a defective as a nondefective which will 
lead to success in his manipulation. Recalling the statements 
of the Curtailed Sampling Plans, Plans 1 and 2, it is evident 
that if the Inspector classifies a defective as a nondefective 
when the kth defective appears at the nth inspection, it will 
lead to acceptance of the lot. We assume that the inspector 
does so with probability©.

However, it should be noted that in Plan 3 misclassi- 
fication at an earlier stage of the inspection could have 
resulted in both the acceptance of the lot and the curtailing 
of the inspection. Por instance, let us consider the case, 
n=30 and k=5* Say, the inspector has noted not a single 
defective in 25 inspected artidLes.Purther he finds that the
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26th article is defective. He is then supposed to continue 

inspection in accordance with the statement of the plan. 

However, had he classified the 26th article as nondefective he- 

could have stopped the inspection-, - resulting in the acceptance 

of the lot. It may he very ■unusual to find too much dis­

loyalty in an inspector. It is, therefore, assumed that he 

does not misclassify at that stage. We assume that he classi­

fies a defective as a nondefective when his misclassification 

will not lead to curtailment of the inspection hut will merely 

lead to the acceptance of a lot which otherwise would have been 

rejected, had the correct classification been rigidly followed. 

The results of-the estimation are obtained when the data 
related to only this type of mis classification are presented.

4*5 Furthermore, it is assumed that the inspector gives 
complete information of the inspection. Thus, we have consi­

dered only the results belonging to Situation A under mis- 

classification. The other assumptions related to p, the lot 

size etc. stated in Section 2.3 are valid here also.

4-4 Probability.Functions :

Recalling the definitions of the random variables 
x,y,z, i, and s given in Section 2.3 we have the following 

probability functions of the random variable s subject to the 

misdassification discribed above, in the respective plans ■
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Plan 2:

m2(s) =

m^(s)=

Plan 3 :

( “ )pVx s=x=0,1,.

(^ }pk~1 qn""k+1 |_1 + (n-k+1 )p£/nq.]

s=x=k-1,

>>V'k s=y=k,k+1

0-ox “:ppV'k s=y=n,

s=i=0,1,.

( S-k )in_k+1Pk’1Ci+ep/q) s=i=k-1,

( JpV-* s=y=k,k+1

(i-ej^-hpV-1

...(4.1)

...(4.2)

where q.=1-p, 0 4 p < 1 and 0 <9 ^ 1.

4-5 ME of p and 6 :

We obtain the maximum likelihood estimates of the 

fraction defective and the probability of misclassification 

when I lots have undergone the inspection under the curtailed 

Sampling -^lans subject to the misclassification described 

above. Each accepted or rejected lot will give rise to one 

observation associated with x,y,z, or i which belongs to one 

of the populations defined by (4.1) and (4.2). She observed
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frequencies associated with these variables are a 9, r 9,
jLy J f C.

a. „(or a ,) and r whose exact definitions are given in 
Section 2.6.1. However, it should he noted that the observed 
frequency ak_1 2 is the mixture of the true frequency for 
x=k-1 and the frequency arising due to mis classification. The 

same applies to afc__1 y Similarly the observed frequency rQ ^ 
for 3=2 and 3 is the reduced frequency due to misclassification.

Then in the notations of the classical theory of 

estimation based on the fixed sample size, we have T observa­
tions (l=T -+T .) on the random variable s from the popula-a, 3 r,3
tions m.(s) (3=2,3). Ihe likelihood function based on T such 3
observations will be as follows!

Plan 2:
a r

Plan 3i a ry>3

Equating the first partial derivatives of the like

lihood functions with respect to p and 6 to zero, we get the
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following equations for estimating p and ©.

Plan 2:
p2(k-1)(n 0+ D„ 0)

'a,2 r, 2’

+ P C>-«1 > V-1,2 + Hrn,2 * n(nTa,2+ Dr,2] 

-(k-l)(Da>2+ Mr>2Q

+ n(Ba,2+ kIr,2)- mn,2 =0 .(4.3)

and © = ^.(n-k+1 )p\_1>2 “ ^n,^^ p^n_k+1 ^^-1,2+rn,2^

• •• (4.4)

Plan 3s
3) , + M T - ra,3 r,3 n,3

Ba,3+(n-k+1>Ta> 3+Br,5_rn,3_ak-1,3

and 0 = (PV,i3- Vn,3Vp(Vil3+rn,3)

where

...(4.5)

Da, 2’
k-1 ‘ n
X xa_ 0 , X .,= X yr .(3=2,3),

x=0 x, 2 ’ *»3 y=k y»3

k-1
Ba, 3~ jjo lai,3

A A

4.6 Variance Covariance Matrix of the Estimate (p and Q);

We need the following expectations to-compute the 

variances and covariances of the estimates,
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E ^a, 2+ kTr,2^ / 1 = J1“p m2^k“1 ^ ^k2 • * * (4* 6 )

,-pE (af&^2+ pr^2)/ I = J2 ...(4.7)

E ^a,3+ Mr,3^T = J3~ P ^^VAj ...(4.8)

and
PE [Ba>3+ fr-M) Ia(3- 3)r,3]/T = J4 ...(4.9)

where (i) Ag = p+nq/(n-k+1)©, A^ = p+q/G,

(ii) mg(k-l) and xn^(k-1) are respectively

the values of m2(s) an<^ ^(s) a-t s=k-1, 

and (iii) <J.j, Jg, and are as defined in (3*7), 

(3*8), (3*9) and (3-10) of Chapter III.

further, noting that J.|=J2 and =<1^ using the 

results (4.6) through (4-• 9) the expectations of the second 

derivatives of the likelihood functions are found to be :

Plan 2:
2- E( "5 log l2/"dp2)/T=J1/p2q+(lA2A2)('l/A2-l/p)m2(k-l)=011

...(4.10)
- E(ls2log p^9)/T= -nm2(k-l)/(n-k+l)A2©2=^12=j^21

and
- E02log Ii2/’B©2)/T=m2(n)/(l-©)2+p2m2(k-1 )/A282=^22

.. .(4.11) 

...(4.12)
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Plan 3;

‘ - EU2log P3/"bp2)A=J3/p2<l+(l/<l2A5)(l/A5-l/p)m5(k-1 )=0U

...(4.15)

- E(>2log Ij/'bp'bOj/T^-ii^Ck-l )/A3©2= jZS12= jZf21 - ...(4.14)

and
- E(h2log L5/ '&©2)/l=m5(n)/(1-©)2+p2m3(]s:-1 )/A2©2=022 ...(4.15)

A A

Then the variance covariance matrix of p and © is
•*•1

given by £ 0±j~] i.e* the asymptotic variances and co-

variance are :

= ^22^11^22 “ ^12^T ... (4*16)

¥(©) = 0^j/T(0j^$22 “ ^12^ .. .(4.17)

and

Cov (p,0) = - 0^2/l(^i1^22~^12^ ...(4.18)

4.7 Particular Cases © = 1 and Q = 0 ;

4.7*1 Case © = 1. When the misclassification is carried with

certainty the observed frequency r .(5=2,3) will he zero.
D

The probability functions can be easily obtained by substitu­

ting 0=1 in the expressions of mj(s) given by fe) and (MJ.The 

case then reduces to estimation from a population with one 

parameter. The maximum likelihood equation for estimating p 

and variance of the estimate may be derived in the usual way. 

They are :
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Plan 2 s
p2(k-1)(nla>2+ Br>2^

+ p C(n-k+l)ak_1>2 - B(nTa>2+ Dr>2) - (t-1 )(D&f 2+Mrj 2)J 

+ n(Da>2 +'klr>2) = 0 ...(4.19)

and
“1 I

^TV(p)] = J^/P2^ +(l/q.2A2)(l/A2-l/p)m2 (k-1) ...(4*20)

where
A2= p+nq/(n-k+1), m2(k-l) = ( )pl£“1 qn_k+1

. 1 >. . ' .;j . [l + (n-k+1 )p/ncf]

Plan 3 :
Sa.3 + Mr.3

31 „+(n-k+l)T .,+ 3) ,-a, 1
a, 3 a, 3 r,3 £-1,3

and

where

•1[>V(p)3 = J./PV(1A2)(1“1/P)mjk-1)

mjCk-l) = (^^^"^^^"Ul+pA)

...(4.21 )

... 4.22)

4-7.2 Case 0—0. It is the case of correct classification 

i.e. the case where there is no misclassification. ^he case 

then reduces to the case dealt in Section 3*2 .

4.8 A Humerical Example :

We illustrate the results'of Plan 2 by an example. 

Table 4.1 gives the'tabulation of 20Q observations associated
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with the inspection of 200 lots under Elan 2 with n=15 and 

k=3. It is assumed that the data are subject to miselassifica- 

tion of the type considered here.

How from the table below we find T =117, 3? 0=83,
oty d. X* y

Da 2=155, Dr 2=796, ^-1 2=54' ^ rn 2“5* Substitu'bing "bdese 

values in equations$4.3) and (4.4) we get p=0,l6©4 and 0=0.629*

low the hypothetical values of p and © used for obtaining the 

above random sample of 200 observations are 0.15 and 2/3 

respectively.Substituting these hyopthetical values of p and 

0 in (4.10),. (4.11) and (4.12) we find 0^=102.417, 012=O.31093, 

^22=0*15710* Ihen we have-Y(p) “ 0.00004916, ?(§)= 0.036725 for 

T=200. Therefore, S.E.(jp) = 0.00701 and S.E. C&)= 0.1916. The
A /'s

absolute difference between p and p, and © and 0 may be 

attributed due to sampling fluctuations since we observe that

|p - p| = 1.48 S.E.(p) and l© - Q\ =0.20 S.E.(©)

In practice, one may use p and © to compute the estimates of 

the asymptotic variances and covariance when one does not know 

the true values of p and ©.The use of the Tables of Binomial 

Eroabability Distribution [55 J has been made for the above 

computations.
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Table 4*1

Number of 
defectives

Number of
accepted
lots

Number of
articles
inspected

Number of 
rejected 

• lots

Number of
articles
inspected

Number of
rejected
lots

(1) "(2)' i nn (3) UJ

0 16 3 1 10 14 '

1 47 4 3 11 6

2 54 5 9 12 9

- _ 6 7 13 13

- - 7 3 14 3

- _ 8 5 15 3

- - 9 7 - -

Total 117 Total _ - 83


