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CHAPTER 8

THE DISPLACED NEGATIVE BINOMIAL DISTRIBUTICHN

8.1 Introduction

Most of the biological data are well fitted by
the negative binmemial distribution ( [3_7, [ 4.7 ).
But there are some instances /[ 28 _/, where the negative
binomial fits are worse. Staff / 51_/ has defined the
displaced Poisson distribution which can fit well in
some cases to biological data where the negative
binomial fits are worse. In this chapter, the displaced
negative binomial distribution has been defined on the
same lines as Staff / 51_/. The displaced megative
binomial distribution is generated by the number of
events in the negative binomial distribution in excess

of a threshold value r when it is assumed that at least

r events do occur.

The displaced negative binomial distribution can

also be obtained as under. Iet Y be a random variate
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having a truncated negative binomial distribution given by

]

(8.1.1) P(¥=j) = ( [m*j / fﬁli)ej/jgr({iﬁﬁ / [3+1)ed,

(m>0,0<8 <1; j=r, r+l, r+2ye0s)0

et X =Y -~ r. Then the distribution of X is

given by

]

(8:1.2) 2(t=)) = ([mewsy/[rej+1)0?/ & ([mazsi/[eride?,
S = o .

(m>0, 0<06<1; j=0, 1,2,...).

We, therefore, define the displaced negative
binomial distribution (in which r nedd not be a positive

integer), as

(8.1.3) P(X=j) = ([m+r+j/[rj+1)0%/ & (Jmizsi/[Toi+1)e7,
. i _ R o

(m > O, O ( e < 1, r > "'1; 3 = 0,1,2,9-.“’).

It is suggested that the displaced negative binomial
distribution may be found useful in fitting to biological
data where the negative binomial fits are not good. Here,
three methods of estimating the parameters are discussed}
(i) Maximum likelihood method, (ii) Method A -~ using

zero-cell frequency and the first thres sample moments



115

and (iii) Method B - using the first four sample moments.
The asymptotic variance-covariances of the estimators
obtained by the above three methods are derived and it is
found that Method A is reasonably efficient while Method
B is inefficient. The maximum likelihood estimators are

complicated and laborious and so Method A is recommended.

Notation. (i) Bar below the lebtter indicates a
vector, (ii) Dash over a vector or a matrix indicates

its transpose.
8.2 The maximum likelihood estimation

The probability law for the displaced negative

binomial (8.1.3) can be written as

> o]
(8.2.1) P(X = 3) =py = Ly:/ iZoLy

(3 =0, 1, 2y seey °°)

where 13 =(lm+r+3/|e+3+ 1)9j and m > O,
r> -1 and 0<9 < 1. '

Consider a random sample of size n from the
population (8.2.1) and let nj be the observed frequenéy

in the sample corfesponding to X = j. The likelihood

funetion L is given by
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w N
(80202) L = 1'.: pJ

Let R %Tm+r+3), S %Kr+;+1), Tj = Rj - Sj, where

k1“(11:) = 2108 atoglx

is the digamma function tabulated by
Eleanor Palrman [16 7. Let X = Xjnj/n, m, = anRj/n,
my = Eanj/n, wherein the summation is taken over all

sample values, Op = Mp = Mg 5 Mp = ji@ijj, Mg = jiopjsj’

t R
Mp = Mp = Ag and pi = E ip. Then we find that

j=o =3’
(8.2.3) S R VPR
oo ae - pl Pj’
apj
(8.2.4) == p; (R -/UR?:
apj
.24 — = p. (T, - .
(8.2.5) = pa_(a Pg)

Taking logarithm of L and differentiating respectively

rete 6, m and r, we obtain

dloglL

. R
(8.2.6) —5— =m (% - ’11)’

(8.2.7) 6;’:@ = n{my - mp),
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(8.2.8) == n{m, - ).

From (8.2.6), {8.,2.7) and (8.2.8), we get the maximum

1ikelihood equations for estimating €6, m and r as

X = ﬁl:;_s
(8.2.9) mp = Mp o
Bp = Hp -

Further, the information matrix M of the maximum

likelihood estimators cecan be found to be as

TN, e7oov(y, Ry), 87 00v(4,m,)
(8.2.10) M = n | 6 Lcov(j, Ry V(R,), Cov (R, )
1 .
~6 Cov;g, Tj?, CovCRj,Tj) . V(Tj)

Then M"l will be the asymptotic variance-covariance matrix

of the maximum likelihood estimators of .8, m, r.

The method of scoring {Rao /[ 35_7, p.169) can be
applied to solve the maximum likelihood equations (8.2.9).

Let MC be the information matrix at the initial solution
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(BO, By ro); Let gy = (9"1i} D) mT)é = column
veector at the initial solution for the sample and

By = (9'1‘n£, My pT)é = column vector at the initial
solution for the population. Then the increments A6,

Am and Ar in the initial values are calculated from

A8
-1
(8.2.11) on | =nMy (gq = By)s

Ar

where Mgl is the reciprocal of the matrix M. The

process is repeated till the increments in €, m and r

are negligible.

8.3 Method A~ wusing zero-~cell frequency and the first

three sample moments

We now give simplified method for estimating the
parameters 6, m and r, which makes use of the zero-cell
frequency and the first three sample moments. We call
this method as Method A in short. The probabilities of the
displaced negative binomiél disfribution satisfy the

following recurrence relation.

(8.3.1) - pp=el@+r+ g - Dp/(r+3),

(jzl’ 2, eo.,w)-
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Using (8.3.1), we get the following recurrence relation

for the moments n; of the displaced negative binomial

distribution.

(8,3.2) p& = h(l ~ po) + Dyl

n-1. n
8.3.3 'L=hp +u g Mul g (2 )t
( ) ﬂn+1 )111 ij(j?'ua + D jzl(j-l?p:‘! 4

(n = 1, 2, ae-)@

where h=pm-r, u=p(m+r) and p=6/(1-29).

I d -~

From (8.3.2) and {8.3.3), we get

~ -~

1 R
(8.3.4) By = h{1 - po) + upy

t ' '
(8.3.5) . My = h.pi + U+ PRy,

t ¢ - ) t . 4
F8@3.6? 83 = h.pg +u(l + 2 pl) + p(;u)1 + 2'pé).

We write (8,3.4), (8.3.5) and (8.3.6) in the matrix
notation as i i

(8.3.7) P=Ae

]

' 1 °f : v
where P = (nl, P;, Ps)ﬂs e = (k, u, p) and
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(1 -1, Y ] 0

o 0
t '

A= p-l ’ 1 ’ /ul .
' t '
Ry s 2mg+ 1, 2p,+pn

Prom (8.3.7), we get

-1

(8.3.8) e=4a"P,

where A~ = inverse of the matrix A = ( [A]) .[aij]’

i, j =1, 2, 3; and the elements a5 are given by’

r 2
a;; = 20ng -nj': )s
a,, = = Dy(2 By + HI)
12 Py 2 113: ’
. — >' A
813 = Pg My

t t 1
8.21 =.o- }l; (}12 + }11)9

: . t ty
app = (1 - p) (2 1y + py),
t
255 = = (1 = pg) By,
t | t
azq = pl(z Pyt 1) - Py -

. . T - - g
Azo = PO }12 - {1 - P@)(z }1;_ +'1),
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t
3.53 =1 - po(p-l + 1)!
2 ' " 2
and o] =2(py - my )= pp( momy + 25 - By ).

Let m; =3 i nj/n denote the rth order raw

moment for the sample. Then equation (8.3.8) suggests
that we can estimate the parameters h, u and p, if

N t L 4
we substitute m, for p, (r =1, 2, 3) and no/n

for p, in the r.h.s. expression of (8.3.8). Thus if

A .
g = (h, G, S)' denotes the column vector of the

AL A A A )
estimators h, u, p, then e 1is given by

A=l A
= (A) _P_s

o>

(8.3.9)

A A
where A and P denote the values of A and P obtained

by replacing the population moments p; by the sample
moments m; (r =1, 2, 3) and Dy by no/n. From the

A A A .
estimators h, u, p, we find the estimators of 8, m

and r as

A A .
(8.3.10) 6 = p/(1 + D),
. " " o ‘
(8.3.11) m= (4 + ph)/ (1 + )y
A - A
(8.3.12) T=({@-10)/(1+53).
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We now derive the asymptotic variance-covariance
matrix of the estimators 8, Q and ;, Let ; denote
the differential of X. Then, noting that (XY)* =
X*Y + XY¥*, we have from (8.3.9),

*
A - A
(8.3.13) e = ATI( P - 1%e).

Hence, by the 8-method (Kendall and Stuart /23 _7, §10.6),

: . A
the variance-covariance matrix V of e , to the order

n-l, is found to be

. .
(8.3.14) V=E(e. &) =a"tBa") Yn,

" =" * % “t
where B = nE( P - AAg)( P* - A%g ) = [:bij J. The
elements bij’ (i, j = 1, 2, 3) are given by
. :
bllz }lg“nh"‘ﬂi(u“h),
t
b12 = b21 = p‘é - (h + P) p-z - uh’

2

Bom = by, = E = (b + p)D - u°
23 32 ) b ’

boz =P ~ (b + 2D)E - (2u + p)D - u>
33 1Y u .,

where
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<
]
k]
N
i

- 2 “
2(h + p) pg + (0 + 9)° By ,

i
i

-

' V
D = n} - (n+2p) pg - (2u+ ) my

E = }15-—(h+2p)}1;

-

(2u + P)ﬂ }lé s

L4

P = pg- (b + 2p) pé (2u + p) By

The variance-ecovarianee matrix W, to the order
- ' -
n 1, of ( @, m, 7 )  can be obtained by using
(8.3.10), (8.3.11), (8.3.12) and the &-method (Kendall

and Stuart /[ 23_7,610.6) and is given by

(8.3.15) Ww=r1'veo,
where
(1-6), -(1-8), O
2
T = (1~8)%/8, (1-9), 0 °

.

~(1-8) (mer-r0)/0, -r(1-9), (1-0)2

_The joint asymptotic efficiency E,, of

ACA A
(8, my » ) relative to the maximum likelihood

estimators of 8, m, r is given by



124

(843.16) | By =1/ ml.|w],

where |X| denotes the determinant of the matrix X
and M is the information matrix given by (8.2.10).
8¢4 Method B- using first four sample moments

We now derive the estimators of 6, m, r by the
method of moments, which makes use of the first four

sample moments. We call this method as Methed B in

short.

From (8.3.3),.by taking n = 1, 2 and 3, we get
(8s4.1) pézhpi%u+pp{,
(8.4.2) By = b pg + u(2 By + 1) + p(2 By + pg)
(8.4.3) pé = h.pé + u(3 pé + 3 pi + 1)

+p(Bag + 3y + ),

where h, u and p have the same meanings as in
(8.3.2) and (8.%.3). Writing equations (8.4.1),
(8.4.2) and (8.4.3) in the matrix notation, we get

(834.4) g = R e ,
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1 4
where Q = ( By, pig, p;) and ¢ = (h, u, p) and
- .
uy 1 y U4
R = ! (2 u! + 1) (2 al +u))
=1 U 1 ’ 2 1
i ) | 4 t
ué, (3ué+3u1+1), (3ué+3u2+u1)
From (8.4.4), we get
(8.4.5) e = - g,

where R™T = inverse of the matrix R = (|R])™% [rij]'

The elements rij’ ’(i, i =1, 2, 3) are given by

t ' ' ' t
rll = }11(6}15"3}12‘}11)*'3}15-6}1
' t 1
Ty = 5ﬂ1(p2+n;)-5(1u_3+;u;) ,
t2
ri5 = 2(mg - py")
4 1 £ 1 ’
Toy = Mg By - pg( u3+3,ué+p;),
r = mi(2 ps + 3 u) +nt)
22 1'% Mg g T H)
t | S ty
Tos. = ~R(ny +py),

'2 '
2 +}12 ’
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t t LI 4 t
Ty = PR3 pg + 3 pg + 1) - pg(2 py + 1),

t v t t
rgg = Py - Py(3 pg + 3 py + 1),

1]

Tys n_{(z ;1; + 1) -n; )

' t : t 2 - t 12
and [R| =p (4 py Ry + B3 Pg - B Ry + Py =Ry ) -
t ] Tty
Bo( pg + 3 1)

Equation (8.4.5) suggests that we can estimate
e = (b, u, p)' by substituting the sample moments m;
for the popuiétion moments n; in the r.b.s. expression

of (8.4.5). Thus, the estimator & of e is given by
~ e ~
(86446) e = (R)l,@.,

~ AL
wherein R and § denote the values of R and

o

obtained by replacing the population moments p; by the

sample moments m; (r = 1, 2, 3).

From the estimators E; ﬁ; and 5, the

estimators of 6, m and r are found to be

H

(844.7) 0 p/ (1+7),

(8.4.8)

B
"

(E"‘Ez)/g(l"’g)a
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B

(8.4.9) = (A-2)/(1+D)
Following the method given in Section 8.3 for
deriving the asymptotic variance-covariance matrix of
A
the estimators h, G and ﬁ, we obtain the

asymptotic variance-covariance matrix U of e as

(8.4.10) v = st /a,

1 = inverse of the matrix R defined in -

where R
(80494:) and S = [sij 1 - IIE(‘@.*- R*g)(g* _ R*‘g) 'o
The elements 5,5 are given by 7 ,

2

E - (h;p)D - uz,

It

= H - (h+p)G - ug,

4]
o
ey

¥

850 = F - (b+2p)E - (2u+p)D - uz,

b4

Sgz = Szo = I ~ (h+2p)H - (2u+p)G_~ u?

8zz = J = (b+3p)I ~ 3(u+p)H - (Bu+p)G - u2,

where C, D, E, F have the same meanings as in (8.3,14)
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and

G = pg - (h+3D) p.; 3(u+p) p.é - (3u+p) )1:; ,

t

t
H = pg - (m+3p) pg - 3(uw+p) p, - (3u+p) Ry

I = pp - (043D) pg - 3(utp) g - (3w+p) B,

; ) 4

3 = ng - (b+3p) my - 3(usp) pg - (3u+p) g -
The variance~covariance matrix N of the

estimators 0, m, =, to the order nt can be

obtained by using (8.4.7), (8.4.8) and {8.4.9) and the

§-method (Kendall and Stuart / 23_7, §10.6) and is

~

given by
(8.4,11) N = ¢'UT°T,

where T and U have respectively the same meanings as
in (8.%3.15) and (8‘.4‘.10). The joint asymptotic
efficiency By, of the estimators 8, m, T relative
to the maximum likelihood estimators of 6, m, r is

given by

(8.4.12) By = 1/ |uf.|w],
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where IM[ = determinant of the information matrix WM

defined by (8.2.10).

8.5 Comparison of the joint asymptotic efficiencies of

Method A and Method B

_ Por sake of comparison, we evaluate the efficiencies
EA and EB of Method A and Method B for selected values
of 6, m, ro We take m=2, r =1, p =1 and hence

0 = 1/20

(1) Maximum likelihood method. Using the Tables
of the digamma function (Eleanor Pairman / 16_7) and
(8.2.10), we get, '

[ 14.22222, - 1,43412, - 0.444444
M=n |- 1.43412, 0.153656, - 0.050504
| - 0.444444, - 0.050534, 0.017654

and M| = n° x 0.0000179125 .

(ii) Method A. Using (8.3.2) and (8.3.3), we
. . -t .t
obtain the values of the moments as By = 5/3, Ry = 19/3,
t ? t
pg = 101/3, p, = 691/3, n. = 5765/3, Bg = 56659/3,
: 6

= ' s
By = 640421/3, p. = 8178951/3.

From {8.3.7), we obtain



A= (1/5) 5, 3, 5

19, 13, 43

and hence

24, Aol 16.125, 108’?5

.A. = hnt 45, 32025, - 3'75 °

3, - 26625’ 00575

- =

Also, using (8.3.14), we get € = 121, D = 85, E = 995,
F'= 11509 and )

- 20/3, 18, 82 ]
B= |18 , 112, 816
| 82 816, 7920
and hence
4911 , - 9751.5, 1033.5 |
V = (1/n) | - 9751.5, 19422, - 2056.5 |,

1033.5, - 2056.5, 240
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Using (8.3.15), we get

_—— -—

0,5, = 0.5, O
T = 0.5, 0.5, ©
| -2.5, -0.5 0,25 |
and hence
| 5265 8046 ~277.875 |

W = {1/n) | 8046, 12564  -416.25

| -e77.875, -416.25, 15
and |W| = 100419.75/n°.

Hence, the joint asymptotic efficiency EA’ of

Method A relative to the maximum likelihood method is
By =1/ [M[.[W] = 0.556 (i.e. 55.6%).

(iii) Method B. Using {8.4.4), we get

R = (1/3) 19, - 13, 43

101, 75, 365

and hence
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|~ 11.875, ~5.625, 0.5

21 = | —20.2s, 10.3125, .  -0.9375
| 0.875, ~0.5625, 0.0625 |

Further, we have from (8.4.10), G = 533, H = 8099,
I = 112565, J = 1626563, and

112, . 816, 7024
s = | 818, 7920, 84528
7024, 84528, 1073776

o

and hence

33759 , -64525,5 , 5107.5

U = (1/n) | -64525.5, 123405.75, -9780.75

5107.5, -9780.75, 807,75 |

Using (8.4.11), we get
| 23760, 43200, ~1089

N = (1/n) | 43200, 79200, ~1962

- "'1089, “‘1962, 5@ 64844 =

L

-
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and |N| = 1195560/n°.

Hence, the joint asymptotic efficiency EB of

Method B relative to the maximum likelihood method is

By = 1/|¥]. M| = 0.047, (i.e., 4.7 %).



