IN VIVO EXPERIMENTAL STUDIES ON AZOLLA PINNATA R.Br.

Azolla pinneta R.Br. was cultured in plastic trays under in vivo systems, to find out the effects of modified medium which supported optimal biomass production, under in vitro conditions, would equally/better support biomass production of Azolla, under these experimental conditions.

The rates of ammonification of Azolla in its vegetative and sporulating stages of development were investigated.

Ammonification of Azolla nitrogen started after the plants
were incorporated in the flooded soil and they started to
decompose. In addition, the various minerals of Azolla
biomass also got incorporated into the soil. Therefore,
mineral composition of A. pinnata was carried out. Application studies were conducted on incorporation of Azolla in
soil in which rice (paddy) variety IR 28 had been grown.

SECTION A: Biomass production of Azolla

Experiment 14

Biomass production of <u>Azolla</u> in Watanabe and its modified medium under <u>in vivo</u> conditions

Two grams of Azolla plants from in vitro stock cultures were inoculated in one litre of Watanaba medium and modified

medium in plastic trays. Cultures were incubated in culture room at 25 ± 2°C in 1000 lux light intensity for 16/8 hours light/dark cycle. Weekly renewal of culture media was done and biomass production was calculated after three weeks experimental period.

Eight fold increase in blomass production was recorded in Azolla cultured in Watanabe medium while twelve fold increase in Azolla blomass occurred in modified medium (Table 23). The surface of modified medium was completely covered by Azolla plants after three weeks culture period (Plate 13).

By culturing <u>Azolle</u> under <u>in vivo</u> conditions, large quantities of it was available at a time which could be used for further experimental work.

SECTION B: Mineralisation of Azolla

Experiment 15

Measurement of retes of ammonification of Azolla nitrogen

Azolla incorporated in flooded soil started decompositing during which its accumulated nitrogen in the form of ammonia was released. In the present experiment rates of ammonification of Azolla nitrogen during its vegetative and spoulating stages of development were measured, according to

Table 23: Effect of Watenabe medium and modified medium on biomass production of A. pinnata under in vivo conditions

Inoculum: Fresh wt. = 2000 ± 70 mg

Dry wt. = 85 ± 10 mg

Veekly	Watanabe	medium	Modified	medium
observations	Fresh wt. (mg)	Dry wt. (mg)	Fresh wt. (mg)	Dry vt. (ng)
1	4920 <u>±</u> €0	205 <u>±</u> 40	5870 ±70	247 <u>±</u> 30
2	9310 <u>±</u> 120	398 <u>±</u> 30	11980 <u>±</u> 90	509 <u>±</u> 60
3	18320 ±1 90	£05 ∓ 90	24600 <u>±</u> 700	1050±70

Meen of six replicates with S.D.

Plate 13 Biomass production of <u>in vivo</u> grown

A. <u>pinnata</u> after three weeks

Plate 13

the method described in Chapter II. Materials and Methods (12).

Azolla (green) in vegetative stage or (pink) sporulating stage of its development started decomposing the first week, after being incorporated in flooded soil. The amount of emmonia released from vegetative and sporulating Azolla by the end of first week was almost same. At the end of fifth week of incorporation of Azolla in the soil, higher ammonification occurred from sporulating Azolla when compared with vegetative Azolla (Fig. 14). At the end of four weeks about 50% ammonification from vegetative Azolla was recorded. For about 80% ammonification from both the types of Azolla, eight weeks were needed indicating that Azolla to be a slow nitrogen releasing biofertilizer.

Experiment 16

Mineral composition of A. pinnate

In vivo grown Azolla plants were taken in a nickel crucible and heated in a muffle furnace (500 °C) and the ash was analysed for its constituents according to the procedure described in Chapter II. Materials and Methods (9).

The ash contents of <u>Azolle</u> was found to be 10% on dry weight basis. The ash contained petassium 3.31%, phosphorus 1.27%, magnesium 1.14%, calcium 1.08% and iron 0.34% as seen in Table 24. Presence of few other micro-

Fig. 14 Rates of emmonification of vegetative (green) and sporulating (pink) A.

pinnata during a period of eight weeks.

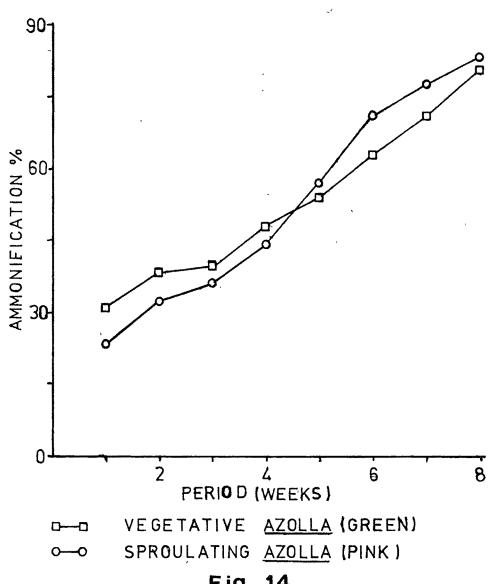


Fig. 14

Table 24: Mineral composition of Azolla pinnata

Constituents	Percentage on dry weight basis
Phospho rus	1.27
Potassium	3.31
Calcium	1.08
Magnes l um	1.14
Sulphur	0.84
Sodium	0.67
Chloride	0.82
Iron	0.34
Silicon	0.13
Manganese	0.0322
Copper	0.0042
Zinc	0.0046

Mean of three replicates

elements viz. menganese, copper and zinc in small quantities was also recorded.

SECTION C: Application studies on A. pinneta as a biofertilizer

Experiment 17

Effect of Azolla and/or nitrogen fertilizer on the growth and yield of rice variety IR 28

Experiments were conducted in summer and kharif seasons (dates of transplantation 4-2-86 and 3-9-86 and harvest 25-5-86 and 7-12-86 respectively) in the year 1986, to study the effects of Azolla and/or inorganic fertilizer nitrogen incorporated in soil, on the growth and yield of rice variety TR 28. Twenty five days old seedlings of rice variety TR 28 were grown in soil incorporated with Azolla, inorganic fertilizer (ammonium sulphate), a mixture of Azolla with inorganic fertilizer (ammonium sulphate) and control receiving no treatment as described in Chapter II, Materials and Methods.

Results recorded on height of rice plants showed significant increase at 30 days, 60 days and 90 days of transplantation in summer and kharif seasons when grown in soil incorporated with only <u>Azolla</u>, only ammonium sulphate and <u>Azolla</u> combined with ammonium sulphate (Plate 14).

Plate 14 Growth of rice plants, variety IR 28

after 60 days (summer season) (Co =

control, Az = Azolla alone, F = Ammonium

sulphate alone and F + Az = Ammonium

sulphate + Azolla)

Plate 14

(,

Highest increase in height, blomass as well as nitrogen contents were recorded according to the sequence of fertilizers used as stated earlier (Tables 25 and 26).

Application of Azella alone to the rice plants increased tiller numbers by 42% and 74% in rice grown in summer and kharif seasons respectively over the control values. In response to ammonium sulphate alone, tiller numbers increased by 79% and 98% over the control values in rice grown in summer and kharif seasons respectively, still further increase in these values was noted in response to application of Azolla combined with ammonium sulphate.

Results recorded at various time intervals, clearly showed that the increase in height, fresh weights, dry weights and nitrogen contents of rice plants were reflections of the evailability of nitrogen fertilizers supplied in various forms.

The effect of incorporation of Azolla alone, or ammonium sulphate and both combined on the yield components and yield of rice plants recorded increase in these growth parameters (Table 27). An increase in panicle length by 18% and 25% were recorded over the control in Azolla application, 22% and 36% in ammonium sulphate application and Azolla combined with ammonium sulphate, the increase

Table 25 : Effect of Azolla and fettillagt nitrigen on plent height, blomass and nitrogen cor :ent of rice crop (Summer)

Treatments	Plant height	Fresh wt.	Dry wt.	Fresh wt.	Dry wt.	N content of shoot	N content of root
	(cm)	(g)	(g)	(8)	(8)	(mg/g dry	(mg/g dry
After 30 days							,
Control	16.2	092.0	0.323	0.690	0.260	13.1	10.5
Azolla alone	20.0	1.483	0.693	1.560	0.576	18.4	13.0
Ammonium sulphate	21.7	2.096	1.030	2,643	926.0	21.1	18.8
<u>Azolla</u> + Ammonium sulphate	22.9	2,203	1.083	2,766	1.093	23.7	20.1
C.D. at 5%	*-	0.28	0.12	95.0	0.17	0.7	
After 60 days							
Control	25.8	3.136	1,506	3.550	1.313	24.6	20.9
Azolla alone	29.1	6,203	3.020	6,643	2.590	28.3	21.6
Ammonium sulphate	33.6	10,990	5.290	11,080	5,083	31.0	24.6
<u>Azolla</u> + Ammonium sulphate	35.1	12.510	960*9	13.400	6.113	32,3	26.2
C.D. at 5%	2.3	1.09	0.67	2.12	0.92	6.0	1.2

Table 26 : Effect of Azolla and fertilizer nitrogen on the plant height, blomass and nitrogen contents of rice (Kharif)

Treatments	Plant height	Fresh wt.	Dry wt. of shoot	Fresh wt.	Dry wt.	N content of shoot (mg/g dry	N content of root (mg/g dry
	(gg)	(8)	(8)	(8)	(8)	¥.)	*(*)
After 30 days							
Control	17.3	0.820	0.384	0.720	0.324	12.8	10.0
Azolla alone	21.7	1.198	0,569	2.070	0,940	17.9	12.0
Ammonium sulphate	22.1	2.270	1.090	2.715	1.195	80.9	16.2
Azolla + Ammonium sulphate	24.6	2.920	1.574	3.010	1.354	22.7	18.7
C.D. at 5%	1.6	0.38	0.38	0.82	0.08	1.6	1.7
After 60 days						¢	
Control	31.1	3.258	1.466	3.125	1.406	23.9	21.2
Azolla alone	33.8	7.483	3,346	6.215	2.798	27.0	21.7
Ammonfum sulphate	38.1	11.420	5.140	10,840	4,859	7.62	23.1
Azolla + Ammonium sulphate	41.2	13.680	6.255	12.720	5.724	31.7	24.2
C.D. at 5%	1.9	86.	96.0	1.14	78,0	2.0	6.0

Effect of Azolla and fertilizer nitrogen on the yield components and yield of rice crop (Summer and Wharif seasons) Table 27 :

Treatments	Tiller (nos/hill)	Panicle length (cm)	$_{\substack{\text{Grain}\\\text{yfeld/hill}\\(g)}}$	Straw yield/hill (g)	100 grain weight (g)
Summer crop					
Control	10.6	13.8	4.350	11.762	4.099
Azolla elone	15.0	16.3	99.9	18.010	1.81
Ammontum sulphate	19.0	16.8	8.030	21,520	4,546
Azolla + Ammonium sulphate	22.0	17.3	9.790	36.433	1.736
C.D. at 5%	5	Q.	56.0	3.21	0.1
Marif crop					
Control	3,6	45.3	6.050	9.450	1.107
azolla alone	5.0	16.4	8,280	11.730	1.472
Ammonium sulphate	17.0	18,1	8,705	17,210	1.620
<u>Azolle</u> + Ammonium sulphete	19.0	5	13,530	24,115	1.758
C.D. at 5%	<u>د.</u>	7.6	1.05	87.7	0,12

Mean of six replicates

was by 25% and 44% respectively in summer and kharif seasons (Fig. 15 and 16).

Incorporation of Azolla increased the yield of grain and straw by 53% in rice variety IR 28 grown in summer seeson, while that grown in kharif season the increase was 37% and 24% in grain and straw yield when compared with the control values. Application of the inorganic fertilizer, ammonium sulphate resulted in an increase ef upto 85% and 83% in yield in grain and straw respectively in rice grown in summer season. Application of the ammonium sulphate could bring 44% and 82% increase in yield of grain and straw respectively when compared with control grown in kharlf season. The application of Azolla combined with ammonium sulphate reached to its maximum increase in yield of grain and straw by 125% and 210% respectively in rice grown in summer when compared with the control values. The same treatment resulted in 124% and 155% increase in yield of grain and straw in rice plants grown during kharif season over the control values.

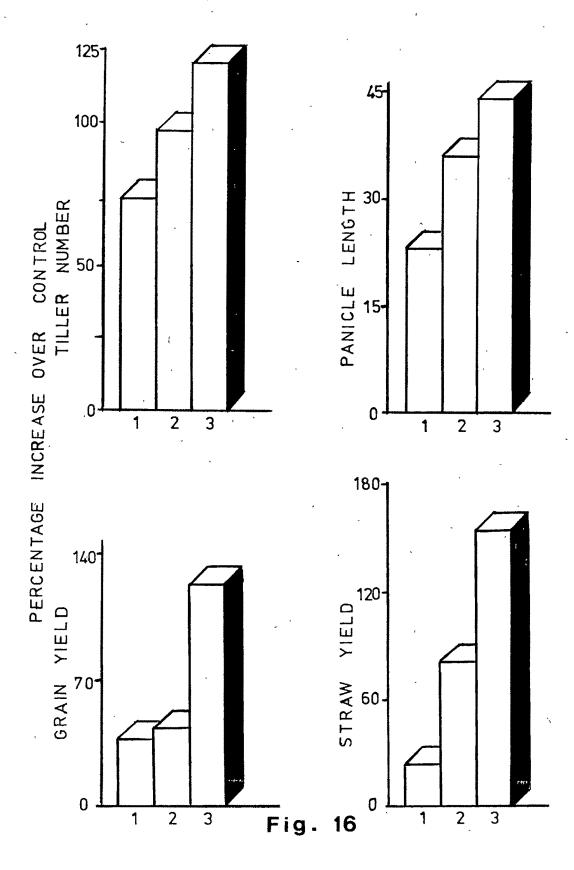
A positive correlation was observed in blomass production and nitrogen contents at thirty days (r=0.988). sixty days (r=0.680) and ninety days (r=0.991) in rice plants grown in summer season and treated with Azolla, ammonium sulphate, and Azolla combined with ammonium

Fig. 15 Effects of incorporation of

1 = Azolla alone,

2 = Ammonium sulphate alone and

3 = Azolle + ammonium sulphate


on tiller number, grain yield, panicle length and straw yield of rice plants

IR 28 variety (summer reason).

Fig. 16 Effects of incorporation of

- 1 = Azolla alone,
- 2 Ammonium sulphate alone, and
- 3 = Azolla + ammonium sulphate
 on tiller mumber, grain yield, panicle
 length and straw yield of rice plants
 IR 28 variety (kharif season).

sulphate. Similarly, a positive correlation existed in biomass production and nitrogen contents of rice grown in kharif season and treated with <u>Azolla</u>, ammonium sulphate, and <u>Azolla</u> combined with ammonium sulphate at thirty days (r=0.988), sixty days (r=0.986) and ninety days (r=0.889) after transplantation.

Thus it was evident that the nitrogen released from decomposing Azolla was sufficient to significantly increase rice yield of IR 28 variety.