CHAPTER I

INTRODUCTION

1.1 BRIEF REVIEW

Pisher [20] formulated the principles of experimental
design and analysis. Yates [39] , [}O] developed further and
he introduced factorial experiments in which a&ll facitors occur
at 2 levels or 3 levels. Barnard [5] introduced the "Generalised

Interaction® for a Qm factorial experiment.

Bose and Kishen [6] and Bose [7] considered the problem
of construction and analysis of symmetrical factorial designs
of the type s” whece s is a prime power, with the help of

Galois Fields and the Associated Finite Geometries.

¥air and Rao [27], [28], [29], Rao [35], Nair and Rao [3C]
developed a set of sufficient conditions which led to the
construction of balanced confounded designs for the

8 X 8, X ... X 8 type of factorial experiments.

. Finney [19] gave fractional replicates of 2" and 3"
factorial experiment and analysed them using higher factor

interactions as error. Kempthorne [21], [22]], Kishen EZﬁ] ,

I';,Kr')



Banerjee [4], Rao [34), further extended the ideas of
fractional replication and confounding. Rao [33),[34] defined
certain combinatorial arrangements called hypercubes of
strength d and Rao f%i) also introduced the idea of orthogonal
arrays of strength d and using them, constructed confounded
designs involving maximum number of factors and preserving at
the same time main effects and interactions upto order (d-1).
Plackett and Burman [32] introduced symmetrical factorial
experiment sé that the main effects are estimable with maximum

precision.

Bose [é] gave a compact mathematical treatment of the
problem of construction and analysis of symmetrical fractional
féctorial designs. Kempthorne suggested having a fractional
replicate with respect to one group of factors and then
combining this with assemblies of the other group of factors,
a fractional replicate may be attained. Merrison [éé] gave a
series of fractional replicate designs for asymetrical

factorial experiments with or without analysis.

Bose and Bush [9], Bush [12], Chakravarti [13], using

orthogonal arrays, gave fractionally replicated designs of
: m m m

the type s11x 822 X eee X sqq in which by a proper choice

of the erthogonal arrays of suitable strength, the main



effects and interactions upto & certain order have yeen
preserved. Rao [363 constructed fractional replicated for

the speeial class of experiments 8?1 X S, where 8, = s? and

8, is prime power. Besides, he alss gave a number of fractionally
replicated designs with and without Wlocks of the type 2% x 3%,

k

3x 27, 2x 3k, etc. estimating the main effects and the

mixed two factor interactions orthogonally.

Bose and Connor 10] gave methods of constructing and
anaiysing fractionally replicated designs of the type
2™ x 3% by associating fractions from the 2m factorial with
those of the 3° factorial using the methﬁd of symbolic direct
product of matrices, so as to preserve the main effects and

7

two factor interactions.

Connor and Young [35] gave a series of fractional designs
(Zm X Bn) in which estimates for main effects and two féctor
interactions are either orthogonal or correlateds A lot of
work has been done by Connot (147, Addelman [1],023,[3],
Srivestva [58], Daniel [17], Box and Hunter [11], Connor and
Zelen [16], Das [18], Margolin [25], Raktoe [37], etc. on
construction and analysis of various types of fractiomlly

factorial designs using orthogonal arrays and other techniques.



1.2 SUMMARY OF THE THESIS

.In this thesis, & technique has been developed to
construct a fractional factorial design with or without blocks
using orthogonal arrays where the main effect and the two
factor interactions (assuming higher order interactions to be
absent) can be estimated economicalily by reducing the total
number of runs. It is expected that the use of this technique

would result in less complicated computation.

Further the author bhas constructed Group Balanced
Fractional Factorisl Design (GBFF) of type 2%. Here each group
of main effects and/or some two .factor interactions have the
same variance. This propefty of having the same variance per
. group reduces considerably the computational work and also
it is believed that this property is observed for the first
time. Such a design with uniform variance group-wise is

defined as GBPFRE.

The second chapter is‘on construction of economic and
partially duplicated fractional factorial designs of type 2m,
including group balanced fractionsal factorial design of

type o,

.

The third chapter is related to construction of econemic

fractional factorial designs of type 31,



The fourth chapter is on construction of economic

fractional factorial designs of type 2T x 3.

1.3 TREATMENTS, TREATMENT COMBINATIONS AND THEIR RESPONSES

Let there be m factors Ay, Ay, +.., A each of two ‘

levels and n factors B1, Bz, coy Bn each at three levels.

il

Then their 2m X Bn treatment combinations or treatments are

denoted by .
X, X X Y. Y Y
1 2 m .1 2 n
a; 8," ...a - byl b, ... by eee(1:%3.1)

in which the factors A1, A2, “ouy Am occur at the levels
X1, X2’ 'O‘, Xm; Xi = O, 1 (1:1,2, Olo, m) \and thefaCtOI’S
B1, Boy eoey Bn occur at the levels

Ty Yoy veey T3 Yj = 0,1,2 (j=1,2, «v., n).
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Besides when all B factors are absent, the treatment will’

be denoted by'
I, X X
1 2
8, 8, e amm , eee(143.2)

and when all A factors are absent, it will be denoted by

Y, Y Y
2 n . eee(143.3)
by by" ... b

1
For simplicity +the treatment (1.3.1) will be denoted by

(X1, Koy eees X3 Tyy Tyy ooy Yn), ee(1.3:4)
the treatment (1.%.2) by

(Xy5 Epy eeey Xm) eee(1e%3.5)

cn



and the treatment (1.3.3) by

(Y1, Yoy voey Yn) . veo(1.3.6)

They will also be referred to as assemblies. The assemblies
(1.3.5) and (1.%.6) are called pure assemblies and the

assembly (1.%.4), a mixed assembly.

We shall denote an assembly or the mean response to an
assembly by the same symbol. Thus, if z(x1,x2, eeey X3
Tys¥py eees Yn) is an observed response corresponding to an

assembly (1.3.4), then,
E EZ(X1, X2, »e 0y Xm; Y1, Yz’ oy le\‘)]

= (X1, Xpy ey Xgi Yqy Yo cee, Y )
where B stands for "Expectation". Similar remarks apply to

the pure assemblies.

1.4 QORTHOGONAL ARRAYS

The assemblies of a 2™ factorial design can be
identified with points (X,, Xy, «--, Xm) 3 X3 = 0,1, (i=1,2,+..,m)
of EG(m,2) and the assemblies of a 3 factorial design with
m@ﬂ,QQﬁh2““,n)ofﬁHQ3L

points (Yy,¥p, ooy Yh); ¥

Consider an E¢ (m,s). A p-flat EZP in this geometry is



defined by a set of (m-p) linearly independent equations
= do< (“31,2,o.o,m—p)
eeo(144.1)

2 a1 X‘t + aoQXZ + eee + aocme
. Whel’e d0<= 0,3’2,.0-, S""“O

There are s® points on ‘Zp. We shall say thet an
assembly of an s® factorial design lies on the p-flat =
if the corresponding point of EG(m,s) lies on it. Comsider a
linear form L = Xy + 8%, 4+ eee + B X of levels
Xy9Kpy seey X of the m factors, where ai==O,1,; i=1,2,e00¢,Me
The number of non-zero a's is called the weight of the linear

form L. J

Two linear forms are sald to be dependent if one is non=-

zero multiple of the other. If not, they will be independent.

Let L denote the linear form given by

IID(E aNqX1 + aX2X2 + eee + amem 000(1-4'2>
o(=‘,-'l,---*;P-

The necessary and surficient condition that the s

points of D written as column vectors constitute an

orthogonal array of strength (d+1) with s® assemblies, m

constraints, g levels and index >\ denoted by (sp, m, 8, d+1)

m-p
is that every linear form > >\°( L, - has atleast (a+2)
=1

non-zero coefficients (i.e. > >‘,,<I’o( is of weight > d+2)



for (>\1, }\2, "")‘m-—p) # (0,0, ..., 0), Xbeing equal to

gP-a-1,

For convenience, we shall write the points as row vectors
and the resulting matrix of dimension (s® x m) will also be
referred to as an orthogonal array of strength (d+1). In this
array, the rows will represent the assemblies and the columns

represent the constraints.

If X' = (X4, X5y ++.y X;) and the s¥ (=u) points:are

X5y X5 o0y X then the orthogonal array is of the form

T - -
£ (X947 Eygr oer Zyp)
%5 (Epq0 Xppr wves Xpp)
X-I'JL (Xu‘l’ X112’ tere Xum)

TR L -

In this form, the array can be looked upon as a fractienal

desdign of u assemblies of an s® factorieal.

The above result was first proved by Rao 3¢} . The (mw-p)
linear forms Ly (&=1,2, ..., m-p), will be called the

generating forms or the generators of the array. Giving all



possible values 0,1,2, ..., s-1, to d_,(x=1,2, ..., w-P), we

CD\

get gP disjoint orthogonal arrays, all of the same strength,

such that between them they exhaust all the s" assemblies.
These arrays will be called pure arrays.

Arrays of strength (d+1) defined as above will be
denoted by 81, Sz, ceey 82m~p and will be said to belong to
the class_(2 4.4 in E¢(m,2). In BG¢(n,3) arrays of the same
strength will be denoted by Ty, TZ’ cony T3n~p and will be

said to belong to the class ¢d+1’

Each set of arrays is such that no two arrays in the
same set have any assembly in common and between them they

exhaust all the assemblies of thg corresponding design.

1.5 KRONECKER PRODUCT OF TWO MATRICES

If A is (pxq) matrix and B is (rxs) matrix, then

the Kronecker product (Direct product) is defined as

- — .

311 312 cun a1q bH b12 [P b1s
a21 %2 ...%m b21 '%2 ces b25
ap1 ap2 see apq br1 br2 vos brs




—

811

804

il
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» e

a
b

4B

SR A G ST OO LTS ETEST eSS

B a12B
B a22B
ap2 B

a8
Pq

which is a (pr x gs) matrix. We shall denote

above product A

® B.

Also, the kronecker Product is defined as

A Dy Ay,
Abyy A Dby,
Ab, Ab,

0.‘Ab1s

'.ﬁAbzs

LN T R R S B B R B R B BN I N

LN A R I ]

A brg

T

-l

which is again a (pr x gs) matrix.

&

1.6 VIXED ARRAY AND FRACTTONALLY REPLICATED

ASYMMETRICAL FACTORIAL DESIGN

either of the

Let 8 be 2 column vector of u assemblies, say

* e v

«?}& (X XuQ e Xum)

]
'» L.

(Xqq Xqp »0e Xyp)
(Xpq Zgp o Xop)

0085880680000

10



which also is an array of some strength in EG(m,2) and T be

a column vector of v assemblies, say

(Tpq Yoy oo- Y2n)

L2 N B B BN BE BN L BN BN IR B AR 2R I 4

(Yv1 Yv2 tte Yvn)

v

which is again an array of some strength in B3¢(n,3). Then
S @® -T will mean the symbolic direct product of two column

veetors of assemblies S and T and is taken as

.&11 Xy oo Ly Toq Yag oee Ym)*
o X oo et My e v
S® = | T e
T T
e

which is (uv x 1) column vector of mixed assemblies or a
mixed array with uv assemblies and (m+n) constraints. It can
also be looked upon as a fractionally replicated design

consisting of uv assemblies of a oM x M design.

11
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1.7 EFFECTS OF THE 2% FACTORIAL EXPERIMENT

Any interaction of a 2" experiment will be denoted

by M XE _ }m

.'0(107-1)
A Ay oo Am

;
(Ny =0,1, i=1,2, «0v, m)

where the interaction (1.7.1) also includes the main effects

and the average response of all assemblies. If )\1 = 1 and the

P ~
rest of the,Ki's (i=2,%3, ++., m) are zero, then (1.7.1)

vepresents the main effect A. If )\1 = ;\2 = 1 and the rest

of the )\i's (i=3,4, ..., m) are zero, then (1.7.1) represents

the two factor interaction A1A2 and similarly for other

factors.

Let
1 -1 1 ¢(o)

H= | = - e (1.7.2)
1 1 1 c(1)
where the comstants C(X); x = 0,1, are defined by (1.7.2).
1 ¥ 3

Then we caen easily varify that H = -

1 2
g 2

Let (@)~ g ® U @ ».- @ U i cee(1.7.3)

denote the Kronecker product of U taken m times. Then we shall

define all the interactions in (1.7.1) by the matrix identity



' 1
(3) ®(a) ® ... @ (;m>=a(m)(§1)@ @)
. or eeo(1.744)

(1)@ (1)@ -0 <}~;m>=ﬁ"(m)< @)@ @)

m

eeo(1.7.5)

with the convention

A A
IOI;‘I,IOK\:A = A -I,AO:I

where I is the average of the mean responses of all assemblies
(Bose and Connor. 110] ). The effect defined in this way are

known as the "Product Effects.".

Prom (1.7.4) and denoting the treatment combination,
X1 X2 m K :
a,  8," veooa by (X,Xp, eee, Xm) for simplicity, we deduce

(Xy:Kps »or X)) =5 2 +C(x; )84 ‘ e (1.7.6)
i=1 z

Assuming three or more facter interactions as negligible
(1.7.6) reduces to

m
Xy Xy wes xm) =T + %iﬁ c(xi) Ay

+ 5 c(xi) c(xi) AL eo o (1.7.7)
i L1

where c(xi), X; =0or1 i=1,2,..., mare as defined by
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(1.7.2) and ¥  means the summation over all pairs of
- 1240
indices i, i' for 1 <i' (i, 1' = 1,2, .., m)-

1.8 EFFECTS OF THE 3 PAGTORTAL EXPERIMENT

Any interaction of a 3™ experiment will be denoted

by P P Py

Bz LR AN Bn 00.(10801)

}lj = 0,1,2 and j = 1,2, vy e

when only one p is different from zero, (1.8.1) represents

a main effect. It is a linear effect if p=1 and a quadratic
effect if p=2. When two p's are different from zero, (1.8.1)
represents a two~factor interaction. It is a linear x linear,

. 1inear x quadratic or quadratic x linear, gquadratic x quadratic
effect according as the couplet of no§~zero p's is (1,1),

(1,2) or (2,1) and (2,2).

Let - N - L
EE I K (o) dy(o0)
K= |1 o -2| 14 (1) a,(1)] ...(1.8.2)
U : 1 1] j a,(2) d2(QL
Then we can easily varify that K’1="1/3 1/3 143
-1/2 0 1/2

1/6 -1/3 1/§J

s



where the constants dp(z); z = 0,1,2; p=1,2 are defined by
+(1.8.2). Then we shall define all interactions in (1.8.1) by

the matrix identity

1 1 1 T I I
b, by by By By By
2l e ¥ ie.e |x® |#leo |58 |@.q:
1 2 n 1] 2 n
- - = . L - - L. . L. .
(’)‘3? 000(10803>
T - - - o~ -~y ™ ™ f' — - e
T I I 1 1 1
‘ -(n) '
B, @ B,|@.- @ |B, | b, |® b, |®..@ P,
2 2 2 2 2 2
B B B b b b
2
, 'l.J | 2,[ ] n | i ‘IJ K J L n_J

with the convention
I1.1=1, 1.8 =3F=13%1, 8°=1

where I is the average of the mean responses of all assemblies.
(Bose and Connor [10) ). The effects defined in this way are

known as the "Product Effects".

Assuming three or more factor interactions as negligible

‘ . Y1 YZ Yn
and denoting by b," ... b " by (T, Tp oo Yn) for simplieity,
we obtain from (1.8.3)
.2 n .
(¥y.¥, e Y. ) =TI+ > S a(v.)s!
112 n e R R A
+ 3 S gy ay () B¢ B
}14}11 iz 3§ }1 | - R B
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where dP(Yj); p=1,257;= 0,1,2; j=1,2, «.., n are as

defined by (1.8.2) and ¥  means the summation over all
* J<L3!
pairs of indices j, j' for j <« i' (J,i' = 1,2,...,0) and
> means the summation over all pairs of indices P F*
< p‘

(}1, }1, = 1’2)'

1.9 EFFEGTSIOF‘THE 2™ x 3" FAGTORIAL EXPERIMENT

Any interaction in this experiment will be denoted by

‘Ajl Agi e Am BP1 .o an e (1.9.1)
which may be regarded as the symbolic product of
A:' Azl... gzm and Br1 e Bin . If N, =1 end py=1
and the rest of ( A\, p)'s are zero, then (1.9.1) represents
the linear effect A;B; of the 1" factor of the 2% factorial
and the j'0 factor of the 3" factorial. If A;=1 and py=2 and

rest of the ( ), P>'S are zero, then (1.9.1) represents the
quadratic effect AiB§ of the same factors (i=1,2,...,m;

i

§=1,2,000,1).

A1l interactions in (1.9.1) will be defined by the

‘matrix identity



1 1 1
@ 1@ eee @ @
a1_ 8 am
=H(i‘1? @™ [1 I
@ @. . &
Al |B2dl
Qr
T I T
@ oo D ®
A1 2 Am
-(m) =(n)
= @K 1 1
i ]@l-éﬁ
a1 a2

ce.(1.9.3)

Where I denotes the average of the mean responses of all

mixed assemblies (Bose and Connor Z?Qj ).
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-
1) 1
@ L ®
b, b
2 2
b5 | b2
ot - 3 P ¢
1— p— - b w— -y
I I I
l® B ..®
B, B, B,
8| |5 B,
| . . . L J
L ..(1.9.2)
I T
@ ® . o ®
- |3, B,
2 2
_32_' BnJ
“1 [ e x
E 1 g
b © b S b
1 2 n
2 2 .2
v? | v 1va |

Assuming three or more facter interactions és negligible

X, X X
. 1 2 m
and denoting 2, &a," ... 8,

Y

1
By

Y
2 '.‘.

2

Y
bn

n by

(que eee X T4Y5 e Yn), We obtain from (1.9.2)
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o
(X Xy oo Xy Tq Y ove Yn? =1 + iz=1 C(X;) 4y

v 2 o(X.) C(X') AA!
1 <ir + ;0 +1

2 n
+ S s al(r.) ¥
== prit ol

' B!
+}1§4;P' ‘jgj' dP(Yj)d‘u. (Y j)Bg‘ Bk,

» )
< B
+ [EZ" iz’j c(xi)%(yj )A.lBj

’wt{ere C(Xi), a(y.), Z S are already defined earlier
o igit ' j <3
and 2 means ‘the summation over all pairs of indices 1i,]
1,3
(i=1,2, eeep, m, §=1,2, +es, n).

1.10 FRAGTIONAL REPLICATE OF THE 2™ PACTORIAL DESIGN

In the usual theory of fractional replication,
a -%—- fraction of the 2% factorial consists of the assemblies
2
(X1 Xy veo Xm) satisfying the p linearly independent equations

Lo(aaM,X1+ao<2X2+...+ap<me=dx eeo(1.10.1)
( X= 1,2, «sey D)
in GP(2), where (2 4, 8,05 +=+» agg) # (0,0, «..,0)

We shall say that the interaction

M Na >‘-m
A‘l A2 ‘oo Am e (1.10.2)
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corresponds to the linear foazm }\11{1 + )\2X2+... + >\me

in GF(2) and carries 1 4.f.

The interaction (1.10.2) is estimated by the contrast

-é-gn— [( )\TXT + )\2X2+ +)\mxm=1) = ( NEq+ NKot ...+,\E§{m=o§],

ee(1.10.3)
where the parenthesis ( ) means the sum of the observed
responses of the assemblies satisfying the equation within it.
If only one A ditfers from zero,(1.10.2) represents a main
effect. If two A's differ from zero, it represents a two-
féctor interaction. The main effects and the interactions
defined in this way agree with the definition given in

Section 1.7 except that the interactions may differ in sign.

Consider any linear form L which is not of the form

MEq + }\21:.2 toeee + )\pr e (1.10.4)

)\; 0,15 &=1,2, ey B3 (Ngs Mgy ooy )\p);é(o,a,...,m
The interactions corresponding to the linear form

It (NqDy F ATy + ooe + AL | Cev(1.10.5)

are said to be aliases of the intei'action corresponding L.

It is known that each interaction not corresponding to

any linear form )\11.1 +)\232 + oeee +>\pr is a member of o

!

one and only one alias set.
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It is clear that the assemblies of the fraction defined
by (1.10.1) which satisfy L=0 also satisfy I+ (A Ty+ )\21;2+
+ Nplip) = A&y F Apdp £ eee + A d, and those satisfying

L =1, satisfy
L+ (")\11«1 +)\2L2+ eee }\pr) = 1'+>\1d1+)\2d2+ +,>‘pdp

P

where 2 ) d, =0 por1

Let Eim-p denote the (m-p)-flat determined by
L,=d, 3 x=1,2, ..., p in B¢(m,2) and izm_p} , the set
of points lying on Zm_p. Also let §L=d} denote the set
of points satisfying the egquation L=d in GF(2). Then
);Ipd}ﬂ sz—-p} will mean the set of points common between
the two sets. Let (iIFd?] N3 fm_pD represents the sum of

the observed responses of assemblies corresponding to points
of {Lad kN {Zm_p} .

Then from (1.10.5) and succeding paragraphs, it follows

S (PRLT RS ) B (5 LE RN )]

‘

= oB7P E’Lnteractions correspending eee{1.10.6)

to L + interactions corresponding
to L + ( )\11‘.1+ )\2h2+ cee + )\p]:,p)j
( %4a >2a ¢ vy %p) # (O, Og‘---; 0)
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The implication of (1.10.6) is that in the expected value of
the column vector of observed response of the asgssemblies

corresponding to points in > the rank of the matrix

m-p’
formed by the column vectors of coefficients belonging to
effects which correspond t0 L + (NqTy + Aoly + oo+ NTp)

is 1.

The identity relationship for the fraction defined

by (1.10.1) is

IZGU]:G’Z:O--m p=G1G2=oc-:Gp_1Gp2 COO=G1G2000G

p
...(1'10'7)
where G's are the interactions corresponding %o the linear

forms (1.10.4).

The relationship (1.10.7) is useful in determining the

set of effects aliased with a given effect.

1.11 FRACTIONAL REPLICATE OF THE 3" FACTORIAL DESIGN

A —%~ fractional replicate of a 3n factorial consists
%
of the assemblies (Y, Y,, ..., Y, ) satisfying the g linearly

independent equations

Msib@,}y,] +b62Y2+ oo-+b6nYn=ea o'~(1-11.1)
in GR(3%).
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Writing ?i for Bi; i=1,2, «+s, n we shall say that the

interaction

P

?n Pg cer By - v (1.11.2)

corresponds to the linear form p, Y, + B,¥, Foaes + Pl

and carrles 2 d.f. which may be assigned to the two orthogonal
B

components, lmear and quadratlc denoted by L(}B1 ]32 e Pnn )

and Q( p1 Pz . pn ) respectively. The linear effect
By B R , .
L(ﬁ11 B2 e pﬂn ) is estimated by the contrast

1
—— (pﬁﬁpﬂ'+...+ynﬂﬂ) (pﬂﬁy22“.+pnﬂ$ﬂ
2x3

2

and the quadratic effeet Q($1

{}HYH+P2 ot e +an£=o)— 2(P1Y1+P2Y2+ .o +pnYn=1)

Py
-+ By, ), by the contrast

2x3

AN

(Yt polot ooe + Fﬁ$n=2£]

where ( ) has the same meaning as in (1.10.3).

This definition also includes the main effects. For any
factor By, the linear effect L(B,) end the quadratic effect
Qgp1) are the same as the effects pj, p? defined in

Section 1.8,

However, for any twe factors 31 and‘32 say, the effects
L($1F2)’ Q(ﬁq-Pg) L(P1«?§), Q(P1P§) are not the same as
2 2.2 . . . . t a
8132, B1B&’ 8132, B1B2 , defined in Sectien 1.8, but are

connected by the relation .
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23 B,B, -3 -3 -3 3 L(pBy)
2 2] ‘
B1BQT =T N 73 1 3 Q(p1,pz) eee{1.11.3)
5B, s 13 (B B5)
2,2 2
B1B2 1o = elpepe)

(comnor [14)] ).

09 B1B§, BfBe, B%Bg are called Product

Effects and the effects L(B;.Py)s Q(By-By)s B(By Ba), APy -Pp)

are called Geometric Effects. To distinguish between the two

The effects B1B

sets of effects, the factors, B1, 32, ooy Bn in the Product

set are denoted by F’P Boy -y By in the Geometric set.
Let W be any linear form which is not of the form
1y My N Ry + eee + Py eee(1.11.4)
‘ Pe= 0514255 6 = 1,2, vas, Q3 (p1,p2, ‘oo, qu% (0,0,..,0)
The interactions corresponding to the linear form
M+qhm1+1yémza-...4‘gﬁmq) eee(1.11.5)

are said to be aliases of the interaction corresponding to

the linear form M.

Bach interaction not corresponding to arxy linear form

(1.11.4) is a member of one and only one alias set.



Tt is clear that the assemblies of the fraction defined
by (1.11.1) satisfying M=0,1,2 also satisfy,
( ’ ' M) zq % 1
M+ M + Mo F o0 + p. e ently
| E B oo qq’ = &, Pe %o’ & Yo %o

i

q
> eq + 2
& Vo %

0,1,2.

N

4
respectively where X e
ooy Po %

fhis means that each of the contrasts

G401z, - (=305%.0)

-

wa ot 0z, J) 2 (3nizad)
¥ Gm-sz}ﬂ 2 n_q}):’

where zn-q is the (n-q)-flat determined by

Mg= eg (6 = 1,2, +o., q) in GP(3), will estimate some linear
function involving interactions corresponding to the linear

form 1&31-#(*11}3[[1 + Py £ oees F quq).

In other words, this implies that in the expected value
of the column vector of responses of the assemblies corres-

ponding to the points in Z the matrix formed by the

n-g’
column vectors of coefficients belonging t effects corres-

ponding to m+(}11M1 + P, 4 el + pqmq) is of rank 2.



The identity relationship for the fraction defined by

(1.11.1) is

I 'o-=G'

== G-'; Q

= Gi6Y = ... = Gy 4GY

- 2 _ - 2

=61(65)° = 00 = Gy (G;l)

= g1a o = = e1(e1)? ...(e")? (1.11.6)
1 2 L N ] % L2 I ] 1 2 * * q , L N L] -

where G's are the interactions corresponding to the linear
forms (1.11.4). The relationship (1.11.6) is useful in deter-

mining the set of effects aliased with a given effect.

1.12 FRACTIONAL REPLICATE oF ™E 2" x 3" PACTORIAL DESIGN

Fractional replicate of this design is obtained by
symbolic association of assemblies belonging to an array in
EG(m,2) with those belonging to an array in EG(n,3) as

indicated in section 1.6.

A A B
An interaction A?l Agl ... AJ“ P?T sz . IBnn may

be said to belong to two linear forms
ME, + MEy + eoo + ) X in GF(2) and

Y+ oY, + eee + p Y in GF(3)



and will carry 2 d.f. which we may assign to linear and
gquadratic companents.

IS SY M Pg Py MM
L(A, A7 ... A7 ;31 eeo B and QA A5 ...

N
Ap P1 ?2 e ?im )

Liet the eguations
%1}{1 +)\2X2 + e +)\me =d

)‘1;{1 + p2Y2 4+ eve + PnYn =

c.(1.12.1)

be satisfied by points (X X, «.. X ¥;¥,5 oo Yn) such that

(XX, »-- X ) satisfies MX; + NXp + ..o + A X = d in GF(2)

and (Y,Y, «.. Yn) satisfies rl,]Y,] + p%Y e + Pn . = e i’ri
. /‘2.

GF(3), then Linear Component L(A1 cen P1 P2 cor By

is estimated by the contrast

8 .
)\1}{1 + )\2X2 + eee + >\me=1 >\1X1+ >\2X2+ +)$“Xm=1
,}11Y1+}1&Y2 + ees + PnanQ PJ1Y1+}12Y2+ oot PnYn:O
AEg+ AT+ ooe + A X =0 MKyt Kot ev ek A X =0
P1Y1 +I12Y2+ oot F‘nYnsg Ry +P2Y2+ . .ﬂann.—-O

+ 2 ng x 20
= == (}-R-a)
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ANoA /\m n B
and the quadratic compeonent Q(A; A; .o ?1 PZZ"' an )

is estima ted by the contrast
KKy FAXo + vee ¥ >‘me 1+ AoXot +)\ﬂ3( =1
Pty P2Y2 oo + Vn =0 P1Y1+ Pz oF eeet Py n—1

MEq+ ATt «ee +AK =1 (? 1+ MKt coot NE=O0
R
g Y+ Po¥ot eee F p Y= + oot .- +PﬁYn=0
ME A2X2+ oo+ WX =0 o AoXot oo A =0
1

p1Y1+ p2Y2+ ees pnYn=1 Y1+p2 2+ eve + Fn

where ( ) has the same meaning as in (1.10.3).

-2

The two components can also be defined by interchanging

the roles of the linear forms

AEq + NgXot oo+ N Ep 800 pyYy + Po¥ot eee & Rp¥ e

If only %1, F1 are non-zero, and the rest are zero, then
the interaction A A ... A \W\ p1 Pn
1 He Fz Bn
(writing F s ;n place of B's)

represents & mixed two-factor interaction carrying 2 d.f.

belonging to B(A1,F1) and Q(A1,¥1) SaY .

The interactions defined in this way do not agree with
the definitien given in sectien 1.9, but the twe-factor

interactions do have the same meaning as in that section.



28

The identity relationship for the fractional replicate
of o % Bn design can be obtained from those of o™ ang 3n

designs.

If the fraction is given by the mixed assemblies obtained
by combining the assemblies of the fraction defined by (1.10.7)
and the assemblies of. the fraction defined by (1.11.1) as in

section 1.6, then the identity relatiomship is

I:G’1 = ese =GPZG1G2: o » e =G’p_1Gp= e s e =G‘1G2000 Gp
- = = = = - = 2.
=Gy = eee = G& = GG, = «.0 = Gé_1Ga-G%(Gé) Z e
‘ 2
=G! G! = see
2 2 o108
= ' = - ot (!
_GiGz e G = e G?(Gz) ...(G&)
=G1G‘a" = oee e = G’.lG‘('l T s ee = G‘pG"l = see = G‘pG‘é-
= ) 2 2
~G1G2 .- e G‘pG'.;'l(G‘é) ...<G('1) [} 0.0(1!12.4—)

where the interactions are obtained by taking all products of
interactions from the identity relationship for the fractions

defined by (1.10.1) and (1.11.1).

The relationship (1.12.4) is useful in determining the

set of effects aliased with a given effect.



