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CHAPTER I

INTRODUCTION

1 .1 BRIEF REVIEW

Fisher [2CfJ formulated the principles of experimental 

design and analysis. Yates [59j , (40J developed further and

he introduced factorial experiments in which all factors occur 

at 2 levels or 3 levels. Barnard introduced the "Generalised

Interaction" for a 2m factorial experiment.

Bose and Kishen C6j and Bose \lJ considered the problem 

of construction and analysis of symmetrical factorial designs 
of the type sm where s is a prime power, with the help of 

Galois Fields and the Associated Finite Geometries.

Nair and Rao [273 > £28j, [29j, Rao ["35] , Hair and Rao [30J 

developed a set of sufficient conditions which led to the 

construction of balanced confounded designs for the 

s1 x s2 x .. . x s type of factorial experiments.

, Finney (j 9^J gave fractional replicates of 2m and 3n 

factorial experiment and analysed them using higher factor 

interactions as error. Kempthorne {2lJ, [223, Kishen £23]] ,
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Banerjee (Vj, Rao £^4j , further extended the ideas of 

fractional replication and confounding. Rao £j55]»13^0 defined 

certain combinatorial arrangements called bypercubes of 

strength d and Rao f35~) also introduced the idea of orthogonal 

arrays of strength d and using them, constructed confounded 

designs involving maximum number of factors and preserving at 

the same time main effects and interactions upto order (d-1). 

Plackett and Burman [3-2] introduced symmetrical factorial 

experiment so that the main effects are estimable with maximum 

precision.

Bose [bj gave a compact mathematical treatment of the 

problem of construction and analysis of symmetrical fractional 

factorial designs. Kempthorne suggested having a fractional 

replicate with respect to one group of factors and then 

combining this with assemblies of the other group of factors, 

a fractional replieate may be attained. Morrison gave a

series of fractional replicate designs for asymetrical 

factorial experiments with or without analysis.

Bose and Bush f9j, Bush Jj 2j, Chakravarti jjjjt using
t

orthogonal arrays, gave fractionally replicated designs of 
m2 mathe type s^ x Sg x ... x s ^ in which by a proper choice 

of the orthogonal arrays of suitable strength, the main
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effects and interactions upto a certain order have been

preserved. Rao £36} constructed fractional replicated for
n1 t

the special class of experiments s^ x s2 where s2 = s^ and 

s^ is prime power. Besides, he also gave a number of fractionally 
replicated designs with and without blocks of the type 2m x 3n,

"Lr V

3 x 2 , 2 x 3 , etc. estimating the main effects and the 

mixed two factor interactions orthogonally.

Bose and Connor [10] gave methods of constructing and 

analysing fractionally replicated designs of the type 
2m x 3n by associating fractions from the 2m factorial with 

those of the 3n factorial using the method of symbolic direct 

product of matrices, so as to preserve the main effects and 

two factor interactions.

Connor and Young 053 gave a series of fractional designs 

(2m x 3n) in which estimates for main effects and two factor 

interactions are either orthogonal or correlated.' A lot of 

work has been done by Connot 04-3, Addelman C 13 23, 0 J»
Srivastva 083, Daniel 07j, Box and Hunter 0 "Q, Connor and 

Zelen fl6j, Das 0CJ* Margolin £25}, Raktoe 07j, etc. on 

construction and analysis of various -types of fractionally 

factorial designs using orthogonal arrays and other techniques.
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1.2 SUMMARY 01 THE GEES IS

In this thesis, a technique has been developed to 
construct a fractional factorial design with or without blocks 
using orthogonal arrays where, the main effect and the two 
factor interactions (assuming higher order interactions to be 
absent) can be estimated economically by reducing the total 
number of runs. It is expected that the use of this technique 
would result in less complicated computation.

Further the author has constructed Group Balanced 
Fractional Factorial Design (GBFF) of type 2m. Here each group 
of main effects and/or some two .factor interactions have the 
same variance. This property of having the same variance per 
group reduces considerably the computational work and also 
it is believed that this property is observed for the first 
time. Such a design with uniform variance group-wise is 
defined as GBFF.

The second chapter is on construction of economic and 
partially duplicated fractional factorial designs of type 2m, 

including group balanced fractional factorial design of 
type 2m.

The third chapter is related to construction of economic 
fractional factorial designs of type 3n.
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The fourth chapter is on construction of economic 

fractional factorial designs of type 2m x 3n.

1 *3 TREATMENTS, TREATMENT COMBINATIONS AMD THE JR RESPONSES

let there be m factors , Ag, •••» Am each of two 

levels and n factors , Bg, .Bn each at three levels. 

Then their 2m x 3n treatment combinations or treatments are 

denoted by
*5' T T V V V

„ 1 Q 2 0 m v 1 , 2 . na. a„ .«« a b,« b^-s ... b 12 m 1 2 n

m
in which the factors A1, Ag, ••*»

X.j, Xg, • ••» ; X. =0, 1 (i=1,2, •

B^, Bg, ..., B occur at the levels 

Yv Yg, Yn; Y. = 0,1,2 (3=1,2,

.. .(1 .3.1 )

occur at the levels 

., m) and the factors

n).

Besides when all B factors are absent, the treatment will' 

be denoted by

X1 X2 X„
• • • a. m"1 m

. ..(1 .3*2)

and when all A factors are absent, it will be denoted by
Y.Y Y•12 ,~n

b1 b2 **• bn . ..(1 .3.3)

lor simplicity the treatment (1.3*1) will be denoted by

^n'(X1? X2, ••*,-Xm; Yv Yg, ..., Yj, ...(1.34)

the treatment (1.3-2) by

(x1, x2, ..., xm) (1.3*5)



and the treatment (1.3.3) by

(T1t Y2, ...» Yn) . ...(1.3.6)

They will also be referred to as assemblies. The assemblies 

(1.3.5) and (1.3.6) are called pure assemblies and the 

assembly (1.3.4), a mixed assembly.

We shall denote an assembly or the mean response to an 

assembly by the same symbol. Thus, if z(X^,Xg, ..., Xm»

Y-jjYg, *•., Y ) is an observed response corresponding to an 

assembly (1.3*4), then,

E [ztt.,, x2........ x,,; Tr T2.......... Yni]

= (X1- X2........V Yr V ■••• V
where E stands for "Expectation". Similar remarks apply to 

the pure assemblies.

1 .4 ORTHOGONAL ARRAYS

The assemblies of a 2311 factorial design can be 

identified with points (X^, Xg, •••, Xm) ; X^ = 0,1, (i=1,2,. 

of EG(m,2) and the assemblies of a 3n factorial design with 

points (Y1 ,Yg, ..., Yn)j Yj -0,1,2 (j=1,2,..., n) of EG(n,3)

Consider an EG (m,s). A p-flat Xp in this geometry is
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defined by a set of (m-p).linearly independent equations

a c^1 + & oC2^2 + • * • + aocm^m = ,2,... ,m-p)

.. .(1.4 .1)
where d = 0,1,2,..., s-1.

There are s^ points on £ . We shall say that an
ir

assembly of an sm factorial design lies on the p-flat

if the corresponding point of EGCm,s) lies on- it. Consider a

linear form 1 = a.x. + a0x0 + ... + a„x of levels11 2 2 mm
X-jjXg, xffl of the m factors, where a^=0,1,; i=1,2,...,m.

The number of non-zero a’s is called the weight of the linear 

form 1. ;

Two linear forms are said to be dependent if1 one is non­

zero multiple of the other. If not, they will be independent.

let 1^ denote the linear form given by

“*1*1 + V2X2 + ••• + VA ...(1.4.2)
<X= •, -----/ f> -

The necessary and sufficient condition that the s^

points of £ written as column vectors constitute an

orthogonal array of strength (d+1) with s^ assemblies, m

constraints, q levels and index denoted by (s^, m, s, d+1)
m-p

is that every linear form T~~ A, L^- • has atleast (d+2)
<*=1

non-zero coefficients (i.e. is of weighty d+2)
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for (Xv ^2» ***’.^m-p^ ^ (°»0’ **’’ Ageing e^ual to

sp-a-1 #

for convenience, we shall write the points as row vectors 
and the resulting matrix of dimension (sp x m) will also he 
referred to as an orthogonal array of strength (d+1). In this 
array, the rows will represent the assemblies and the columns 
represent the constraints.

If X' = (Xif X9, ...» \) and the sp (=u) paints care
X}, X£ ..., X^ then the orthogonal array is of the form

X.1
fax* —(x^ i, X-j 2> X^m)

T *—2 ^X21’ X22’ X2m^

X’-u
(X^, Xu2, ..., X^)
L J

In this form, the array can be looked upon as a fractional
design of u assemblies of an sm factorial.

She above result was first proved by Rao 0>D • She (m-p)
linear forms (c<=1,2, ..., m-p), will be called the 
generating forms or the generators of the array. Giving all
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) possible values 0,1,2, ..., s-1, to do^(c<='l»2, ..., m-p), we

get sm-p disjoint orthogonal arrays, all of the same strength, 

such that between them they exhaust all the sm assemblies.

These arrays will be called pure arrays.

Arrays of strength (d+1) defined as above will be 

denoted by S1, Sg* •••> Sgin-p and will be said to belong to 

the class_/X.in EG(m,2). In SG(n,3) arrays of the same 

strength will be denoted by T^, Tg, ..., T^n-p and will be 

said to belong to the class ^+-| •

Each set of arrays is such that no two arrays in the 

same set have any assembly in common and between them they 

exhaust ail the assemblies of th§ corresponding design.

1 .5 KROBECKER PRODUCT OF TWO MATRICES

If A is (pxq) matrix and B is (rxs) matrix, then 

the Kronecker product (Direct product) is defined as
r-

ral 1 a12 ... a1q bn b12 • • • b1s

a21 a22 a2q.
•

b21 b22 * • *

ff)

a «*P1 ap2
,

b - r1 br2 • • • brs
-
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a11 B a-) 2® • * * ai q B

a21 B a22B . ' * ' a2q. B

ap1B ap2 B •** ap<l B

which is a (pr x qs) matrix, We shall denote either of the 

above product A (3) B.

Also, the kronecker Product is defined as

A b^ ^ A b^ g • • • A b^ ^

A ®21 ®2 2 • • * A bgs

A br1 A br2 * * * A brs 

which is again a (pr x qs) matrix.

1.6 MIXED ARRAY A 3D FRACTIONALLY REPLICATED 

ASYMMETRICAL PAG TOR IAL DESIGN

let S be a column vector of u assemblies, say

<*11 X12 *’* X1bP
(X21 X22 *** X2ts?

^Xu1 Xu2 “• Xum^

L J
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1 which also is an array of some strength in EG(m,2) and T be 
a column vector of v assemblies,, say

T

(Yn Y12 ... Y1n) 
(Y21 Y22 ... Y2n)

<Yv1 Yt2 ”• Y™>_
which is again an array of some strength in E&(n,"3^. Then 
S <S) -1 will mean the symbolic direct product of two column 
vectors of assemblies S and T and is taken as

k*. *
X12 ... x1m Y11 Y12 ••• Y1n>

(Xu x12 * * • Xi1m V.

:

ro

... Yvn)

Xu2 *y* • * /um Y11 Y1 2 Y1n)

<Xu1 Xu2 ... Xum Yv1 Yv2 ••• Yto>

which is (uv x 1) column- vector of mixed assemblies or a 
mixed array with uv assemblies and (m+n) constraints. It can 
also be looked upon as a fractionally replicated design 
consisting of uv assemblies of a 2m x 3n design.



12

1.7 EFFECTS OF THE 2m FACTORIAL EXPERIMENT

,mAny interaction of a 2 experiment will be denoted

A,

X,

Ar

Xm

2
0,1, i

* * # A.
...(1.7.1)

m
1,2, •.., m)

where the interaction (1.7*1 ) also includes the main effects 

and the average response of all assemblies. If ^ = 1 and the 

rest of then's (i=2,3, •••, m) are zero, then (1.7*1 ) 

represents the main effect A. If A-} = A2 = 1 and the rest 

of the A 's (i=3»4, ..., m) are zero, then (1.7.1) represents 

the two factor interaction A^Ag and similarly for other 

factors.

Let

H =

1 1 1

C(o)

0(1)
...(1 .7.2)

where the constants C(X); X = 0,i, a^gdefin^d by (1.7.2),

-1Then we can easily varify that H

Let u(m) = n ® u ® <S> u ...(1.7.3)

denote the Kronecker product of TJ, taken m times. Then we shall 

define ail the interactions in (1.7*1) by the matrix identity
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( L) ®( k~> ® ••• ® <■ 1>= H<m) (I>®

*] m i .in
A ...(1.7.4)
Or

<J)@ (A)@ ( aJ = H’(m)( i,)®( L)S ••• ® ( i )
* 2 nm 12 m

...(1.7.5)

with the convention

x X XI.I = I, I.A = A = A . I, A0 = I

where I is the average of the mean responses of all 'assemblies 

(Bose and Connor. ^0} ). ,J-'he effect defined in this way are 

known as the "Product Effects.".

From (1.7.4) and denoting the treatment combination,

XX Xa.,1 a22 ... amm by (X.,,X2, ...» Xm) for simplicity, we deduce

(Xl,X2, Xj =5 Aj] • ...(1.7.6)

i=1

Assuming three or more factor interactions as negligible 

(1.7.6) reduces to

2L*2 ••• V “ 1 + °<xi> Ai

+

i <di'

C(Xi) C(X[) A±A£ ...(1.7.7)

where cCx^, J.± = 0 or 1 i = 1,2,..., m are as defined by
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(1.7*2) and means the summation over all pairs of
i i’

indices i, i* fdr i 4i' (i, i' = 1,2,..., m).

1 .8 EFFECTS 01 THE 3*1 FACTORIAL EXPERIMENT

Any interaction of a 3n experiment will he denoted

hy h ^2
B1 B2 *•* Bn ...(1.8.1)

Pj = 0.1.2 j = 1,2............n.

when only one p is different from zero, (1.8.1) represents 

a main effect. It is a linear effect if p=1 and a quadratic 

effect if p=2. When two p's are different from zero, (1.8.1) 

represents a two-factor interaction. It is a linear x linear, 

linear x quadratic or quadratic x linear, quadratic x quadratic 

effect according as the couplet of non-zero p's is (1,1),

(1,2) or (2,1) and (2,2).

let _ _ _
1 -1 1 1 d1(o)

rz=ro —
--
C
M

K= 1

C
M1

©

1 d1 (1) d2(1)
1 ■ 

L
1 1 1 d^2) d2(2)

Then we can easily varify that k“= 1/5 1/3 1/3

-1/2 0 1/2

1/6 -1/5 1/6
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5 where the constants d (z); z 

'(1.8.2). Then we shall define 

the matrix identity
-
1 1 1

b1 CM
&

V
u2
1,

4

_ J
©• • © b2

n
^ -

Or

0,1,2; p=1,2 are defined by 

all interactions in (1.8.1) by

— ™ -
I i I

-(n)
1 1 1

B^ Q> b2 • © B
n

=K b1 b2 b
n

B1 4 _2B
n

u2b1 b2 D2
n

m*
j J L J i J

*• —
with the convention

1.1=1, I.B* =• B^ = #«I, B° = I

where I is the average of the mean responses of all assemblies. 

(Bose and Connor |1CD )• ^he effects defined in this way are 

known as the "Product Effects".

Assuming three or more factor interactions as negligible 
y Y Yand denoting b.,1 bg2 ... bnn by (Y1 Yg ... YQ) for simplicity,

we obtain from (1.8.3)
. 2 n(Yr.Y2 ... Yn) = I + £. S d„(Y,) 3%
p1 j=1 P 3 3

T* JZL+

jl <p* 3
■' 4p(T55 % 4 Br
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where df1(Y.); ti = 1,2 ; Y, = 0,1,2; 3=1,2, n are as
P 3 , <J

defined by (1.8.2) and means the summation OYer all
3^3'

pairs of indices 3, 3* for 3 3' (3,3' = 1,2,...,n) and

y~ means the summation oyer all pairs of indices p., p.’ 
u< p*
(p, ji' = 1,2).

1 .9 EFFECTS-Off THE 2m x 3n FACTORIAL EXEBRIMEM?

Any interaction in this experiment will be denoted by

h fa fa J*1 T3P2
I1 A„ B., Bnm 1 2 B. n

n
...(1.9.1 )

X»* F1 Fo Pn .
A_ and B\ Bg^ ... Bnn - If = 1 and p^=1

which may be regarded as the symbolic product of
h H

A1 A2 ... .-m
and the rest of ( p)’s are zero, then (1 .9.1) represents

"t- H inthe linear effect A^ of the iwu factor of the 2 factorial 

and the 3th factor of the 3n factorial. If ^=1 and p^=2 and 

rest of the ( )>, p)’s are zero, then (1.9.1) represents the 

quadratic effect A,B? of the same factors (i=1,2,...,m;

3=1,2,...,n).

- All interactions in (1.9.1) will be defined by the

matrix identity
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<3
_ — _ ^ «- -

I I - I I i I

A.j
©

A2_
S>

B.j b2
§)* •

B
n

2M N 2Bn

L J

gr
\

I I I I I
<S>

_A1_ A2_ Am 'BV Bg

2 _2Lbk LB2_

. ..(1.9.2)

I

B.
n

-(m) -
=H ® K

t- -i
-

- ■ - -1 ~ 1
®. • <g>

1 1
g)

1
2).

1

a2 am
*1 b2 b

n
i
- _

b? *2 L
L 2b^

1 2 1 n

...(1.9.3)

Where I denotes the average of the mean responses'' of all 

mixed assemblies ,(Bose and Connor ffioj ).

Assuming three or more factor interactions as negligible
■^1 ^2 ^m ^1 ^2 Yn

and denoting a^ a2 ... affi b^ bg ... bn by

U-i%2 ... Xm Y£ ... Yn), We obtain from (1.9.2)
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m(Xl X2 ... V T, I2 ••• *n> = I + T °^i} Ai

+ 21 C(X*) C(X’) A±A^
i <V

+ A Z d(Y.) B?
' p1 j=1 ** 3 3

+ 21 Z d (Yjd 
f*f' .3-0' P 3 p 333

+ Z S Ctt^d (iSA^
p=1 i, 3

Were C(X,), d (Y.), Z Z *«* already defined earlier
1 Y 3 i^i* ’3^3’

and Z means the summation over ail pairs of indices i,3 
i* 3 .

(i=1,2, •••j ffl) J 1j2j..«>nJ.

1.10 IRAQIIOhAB REBLXCAIE OB THE 2m FACTORIAL DESIGN

In the usual theory of fractional replication,

a _1_ fraction of the 2m factorial consists of the assemblies 
2P

(Xl X2 ... Xffi) satisfying the p linearly independent equations

a,*1 .h + a*2X2 + ••• + VXm “ d« •••0-10.1)

( 1,2, ...» p)

in GF(2), v?here (a^, a^, •*•» ac*m^ ^ (°>°» ••*»°)

We shall say that the interaction 
"h0L

A1 A2 ... A,
'im

m
. . . .(1.10.2)
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corresponds to the linear f©&m Alx1 + AaV’ +AmXm 

in GI’(2) and carries 1 d.f.

The interaction (1.10.2) is estimated by the contrast

( X-jX-j + ^Xg+ ... + ) “ ( Al^l* X2^'2+ * *

. ..(1.10.3)
where the parenthesis ( ) means the sum of the observed

responses of the assemblies satisfying the equation within it. 

If only one ^ differs from zero,(1.10.2) represents a main 

effect. If two ^’s differ from zero, it represents a two- 

factor interaction. The main effects and the interactions 

defined in this way agree with the definition given in 

Section 1.7 except that the interactions may differ in sign.

Consider any linear form 1 which is not of the form

Xi-^1 + X2^2 ^ •••■*■ Ap^p ...(1*10.4)

A^= 0*1? 00=1,2, P? ( ^2» •••» Ap)^(0* 0, ..., 0)

The interactions corresponding to the linear form

1*+ (X1 ^*1 ”** A 2^2 * * * "** X p^p ^ ...(1.10.5)

are said to be aliases of the interaction corresponding 1.

It is known that each interaction not corresponding to 

any linear form + A2Ij2 + '** + ^Xp^p is a mem1:)er
/

one and only one alias set.
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It is dear that; the assemblies of the fraction defined 

by (1.10.1) which satisfy 1=0 also satisfy 1+ (X 1L-j + X2^2+ ***

+Xpkp) =/\1d1 +^2d2 + *** + Apdp ^ those satisfyine

1=1, satisfy

1+ (/X1L1 + A2i‘2+ *“ + ^p1^ = 1 +/X1d1+/X2d2+ ... +Xpdp

__p
where X d = 0 or 1

o<=1 o( °<

Let Zm_p denote the (m-p)-flat determined by

c*

of

; eO= 1,2, ..., p in EG(m,2) and set
of points lying on Xm_p. Also let ^ l=d ^ denote the set 

of points satisfying the equation l=d in GE(2). Then 

^L=d^ f) ^-^xn-pl wil1 raean the Set °f poin1:s coinnion between 

the two sets, let ^l=d\ f) \ 2"represents the sum of 
the observed responses of assemblies corresponding to points

^L=d j- n ^m_p] *

Then from (1.10.5) and succeding paragraphs, it follows

= 2m_p jinteractions corresponding ...(1.10.6)

to 1 + interactions corresponding 

to 1 + ( Xs-jl^+

( Xi» X2’ ***’ Xp^ ^ •••»

E

0)
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The implication of (1.10.6) is that in the expected value of 

the column vector of observed response of the assemblies 

corresponding to points in ^ f ran^ 'the matrix 

formed by the column vectors of coefficients belonging to 

effects which correspond to 1 + ( X-j1*-) + ^2^*2 + *** + Xpkp) 

is 1 .

The identity relationship for the fraction defined 

by (1.10.1) is

I = Gr.j = G-g = • • • = Gp = G-jGg = «•• = ®p_']Q'p=: *•• = ‘ ^p

. . .(1 .10.7)

where G's are the interactions corresponding to the linear 

forms (1.10.4).

The relationship (1.10.7) is useful in determining the 

set of effects aliased with a given effect.

1 .11 FRAG TIP IfAL REPLICATE Of THE 3n FACTORIAL DESIG1

1 HA —— fractional replicate of a 3 factorial consists 

of the assemblies (Y^, Y2, • ••, Y ) satisfying the <1 linearly 

independent equations

M0 = b01Y1 + bonY. +

in GF(3)•
02 2 + V Tn “ ee ...(1.11.1)



22

Writing p± for B±} i = 1,2, n we shall say that the

interaction

H P2 ^n-D * ~D *D xx

ni t2 *** rn ...(1.11.2)

corresponds to the linear form |ilY1 + JiigYg + •*• +

and carries 2 d.f. which may he assigned to the two orthogonal
, ^1 ^2 Pn \

components, linear and quadratic denoted hy L(B1 Bg ... pn ) 
Fi P-9 K

and Q( p1 p2 ... JBn ) respectively. The linear effect

1*1 P-p P'n
L(p.| p2 **• ) is estimated hy the contrast

h=T [(p,Y1+p2T2 + ... + pnV2> - <PlVF2V",+ FnV°ll

and the quadratic effect Q(^ p2 * * * Pn ^ "^e con^ras^

rV flHVft-V ••• +^n=0)- ••• +HsV1)
+ (PlY1+ P2Y2+' **• + Pn^n=2^j

where ( ) has the same meaning as in (1.10.3).

2x3

This definition also includes the main effects, for any 

factor B1, the linear effect l(p1) and the quadratic effect 

e£?>i> are the same as the effects , p2 defined in 

Section 1.8.

However, for any two factors B1 and'Bg say, the effects

i(p1p2)» Q(pvp2)» L(Fl?:pi^ Q<Pip|) are not the same as 

B^g, B-jB^, B2B2, B2b| , defined in Section 1.8, hut are 

connected hy the relation .
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r— *-

B-jBg -3 -3 -3 3

B1B2t
1
4 .1-3 13 Q (p«j •> P2 ^

2 -l -3 -1 -3

2 2
Jd^ £>2 1 1-11

(Connor (14J )*

The effects B-jBg, B^g, B^Bg, B^Bg are called Product 

Effects and the effects iCp-j.pg), B(^}pg), Q(p^-pg)

are called Geometric Effects. To distinguish between the two 

sets of effects, the factors, B^, Bg, B^ in the Product

set are denoted By , p2, ..., pn in the Geometric set.

Bet M Be any linear form which is not of the form 

+ p.gMg + + Yq^-q. ...(1.11.4)

0,1,2,; S = 1,2, ...» 15 (p-j »F2’ ***’ (0,0,..,0)

The interactions corresponding to the linear form 

M+(]a1M1 + PgMg + ... + ) ...(1.11.5)

are said to be aliases of the interaction corresponding to 

the linear form Iff.

Each interaction not corresponding to a*y linear form 

(1 .11.4) is a member of one and only one alias set.
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t It is clear that the assemblies of the fraction defined 

"by (1.11.1) satisfying M=0,1,2 also satisfy,
i q

+ JigMg + ... + PqM^) = e0’ J5, ee+1*

respectively where
q

51
0=1

H eQ

Pe + 2

0,1,2.

and

This means that each of the contrasts

- (Mn^n-c

§c-o} n?r»4) _2 H^ZJ
- * (M 0 X nj)]

where Y is the (n-q)-flat determined by n-q
M0= eg (6 = 1,2, ...» q) in GP(3), will estimate some linear 

function involving interactions corresponding to the linear 

form + p^2 + ••• + Pq^q^*

In other words, this implies that in the expected value 

of the column vector of responses of the assemblies corres­
ponding' to the points in Xn , the matrix formed by the 

column vectors of coefficients belonging to effects corres­

ponding to + P2®2 + *** + PqV vWc^-
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5 She identity relationship for the fraction defined by 

(1.11.1 ) is

I = GJj = ... = G^,

— G^JGg — .. • * ®4-i®4

= G^GJ,)2 = =Gi-i(s4)2

= G'G£ ...
= ... = GJ|(G')2 ...(G^)2, ...(1.11.6)

where G’s are the interactions corresponding to the linear 

forms (1.11.4). The relationship (1.11.6) is useful in deter­

mining the set of effects aliased with a given effect.

1.12 ffRACfIOHA.il RBELICATE Of 3HE 2m x 3n FACTORIAL LESIGH

fractional replicate of this design is obtained by 

symbolic association of assemblies belonging to an array in 

EG(m,2) with those belonging to an array in EG(n,3) as 

indicated in section 1.6.

Xi Xcl Xni P'1 P? An interaction A^ A2 ... Am p2

be said to belong to two linear forms

/1X1 + >2I2 + ... + )mXm in Gff(2) and 

p1Y1 + p2Y2 + ... + |inY^ in Off(3)

n
n may
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and. will carry 2 d.f. which we may assign to linear and 

quadratic components.
X* Ax

L(A1 A2 ... AK\ ^1 J12
m f 1 r2

Fn, , h hi
pn ) and Q(A1 Ag .•.

hm n Fg

\ Pi ?2
fn
n

.. .(1 .12.1 )

Let the equations

Vi +')'2X2+ ••• +>A =4

}*1Y1 + P2Y2 + * * * + FnYn = e

be satisfied by points (X^Xg •»• Xm Y^Yg ... Yn) such that

(X^g ... Xffl) satisfies ^X., + ^gXg + ... + Amxm = d in ^(2)
and (Y^g ... YQ) satisfies ju^ + pgYg + ... + pnYn = e in

?Sm iu. Fn \
G-I'(3), then Linear Component L(A1 Ag ... Am ^ fg ••• pn ' 

is estimated by the contrast

/>1S, + >2*2 4- 4* Ma"1

iPlY1+filY2 + ••■ + pr.Yr. 2 J
/Vl + V2+ + \Ar0'

*1T1+fl2Y2+ ••■+ PnYn=2

\h:L2* +^,V1

^hh+?zJ2+ •••+ fVV0/

Vi+V2+ •■■+hx«r6

PiV^V-'+VnV0

0 1-1 ,.mt 2 k x 2

- -- Ci*R*A)
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7
At A*. A™ Pi P2 Pn s

and the quadratic component Q(A1 Ag .•• Am ^ f2 “' fn ' 

is estimated by the contrast
A1X1 +A2X2 + ••• +Xmxm=1l AlX1+^2X2+ ***+XnXm=1

-2

-2

\PlY1 + P2Y2+

(A-jX^ A2X2+

^PlY1 + P2Y2+

% xi+ A2v

^PlY1 + P2Y2+

t til =0
rn n

+ X X =1
' mm

+ PnV*

+ \ X =0 
Am m

+ PnYn=1
+

^PlY1+ P2Y2+ ***+ PnYn")

^X|X-|+ ^2X2+ V *+ AmXm=°

* +PnYn=0

%x1+ A2X2+ *•* + ^mXm=0

PlY1+P2Y2+ "* + PnVV

*1Y1 + P2Y2+

where ( ) has the same meaning as in (1.10.3).

The two components can also be defined by interchanging 

the roles of the linear forms

Alx1 + A2V • • ■ + K\ and hT1 + P2T2+ • • • + Va'
If only’ X1, in are non-zero, and the rest are zero, then

' At A-m > P2 Pn

the interaction A.| Ag * * * ^m Pi ?2 ••• Pn .
(writing p's in place of B's) 

represents a mixed two-factor interaction carrying 2 d.f. 

belonging to 3i(A.| ,p<j) and Q(A^,^) say.

The interactions defined in this way do not agree with 

the definition given in section 1.9, but the two-factor 

interactions do have the same meaning as in that section.
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3 The identity relationship for the fractional replicate
of 2m x 3n design can he obtained from those of 2m and 3n 

designs.

If the fraction is given by the mixed assemblies obtained 

by combining the assemblies of the fraction defined by (1.10.1) 

and the assemblies of. the fraction defined by (1.11.1) as in 

section 1.6, then the identity relationship is

I = G1 = ... = Gp = = ... = Gp_1Gp= •*• = G1G2"* Gp

= Gr JJ = ... = G^ = G^Gg — ... = G4“1^4=<^ ^G2 ^ = ***

•••

=<^2 ... 94 = ... = a;(sp2 ...(^)2

= ... = G.jG^ = ... = GpG^ = ... = GpG^
^ • • •

=G1G2 ...- GpGJ|(G')2 ...(G^)2, ...(1.12.4)

where the interactions are obtained by taking all products of 

interactions from the identify relationship for the fractions 

defined by (1.10.1) and (1.11.1).

The relationship (1.12.4) is useful in determining the

set of effects aliased with a given effect.


