


Chapter - 4

SINGLE SAMPLE SHRINKAGE TESTIMATORS UNDER GENERAL
ENTROPY LOSS FUNCTION

4.1 Introduction

The present chapter deals with one sample shrinkage testimators under 

General Entropy Loss Function (GELF) for single parameter Exponential 

distribution and Normal distribution.

The aim of systems reliability is to forecast of various system performance 

measures such as mean life time, guarantee period and reliability etc. In general, 

the type of failure distribution depends on the failure mechanism of components. If 

the failure rate is constant, which is mostly true for electronic components during 

the major part of their useful life, the failure time follows an exponential 

distribution with the p.d.f.

f(x; 0) = <0 exp i—x/6), x > 0,9 > 0 
0 , otherwise

.(4.1.1)

In the context of life testing and reliability estimation, numerous data have 

been examined and it has been found that exponential distribution fits well for 

most of the cases. Several authors have proposed estimators, testimators with 

different choices of shrinkage factors (S.F.) under different loss functions. The 

choice of an appropriate loss function is guided by financial consideration apart 

from other considerations such as over estimation being more serious than under

estimation or vice-versa.
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Shrinkage testimators for the mean of a Normal distribution N(/i, a2) when 

variance a2 is known or unknown, have been proposed by Waiker, Schuurman and 

Raghunandan (1984). Recently Pandey et. al. (1987) considered some shrinkage 

testimators for the variance estimator under Mean Square Error criterion (MSB). 

Parisan and Farsipour (1999), Misra and Meuten (2003), Pandey et. al. (2004), 

Ahmadi et. al. (2005), Xiao et. al. (2005), Prakash and Singh (2006), Prakash and 

Pandey (2007) and others have considered the estimation procedures under the 

LINEX loss function in various contexts. Pandey et. al. (2007) have proposed 

shrinkage testimator(s) variance and have studied the properties of these under the 

Asymmetric loss function (ASL). The present work is an attempt to study the risk 

properties of shrinkage testimator(s) for the variance of Normal distribution under 

a more general loss function viz. (GELF). Pandey et. al. (2007) have studied the 

risk properties of the same for positive degree of asymmetry only, under ASL. 

Where as this study attempts to find the range for positive as well as negative 

degrees of asymmetry under GEL where the shrinkage testimator of variance 

performs better than the UMVUE.

4.1.1 General Entropy Loss Function (GELF)

A suitable alternative to modified LINEX loss is the General Entropy Loss 

(GEL) proposed by Calabria and Pulcini (1996) given by:

Whose minimum occurs at § = 6.

This loss is a generalization of the entropy loss used by several authors (for 

example, Dey and Liu, 1992) where the shape parameter ‘p’ is equal to unity (1). 

The more general version of (4.1.1.1) allows different shapes of the loss function

(4.1.1.1)
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to be considered (say when p > 0, a positive error (&>&) causes more serious 

consequence than a negative error and when p < 0, then negative error is more 

serious). If we are considering prior distributions, then the Bayes estimate of 0 

under GELF is in a closed form and is given by

0e=[e0 (&-')]-% ______ (4.1.1.2)

provided that Eg{d~p) exists and is finite.

4.1.2 Incorporating a Point Guess and

In many real life situations the experimenter may have some prior 

information regarding the parameter being estimated due to some past experience 

or similar kind of studies and it is thought to apply this information to inference 

procedures of the original model. If the prior information is available only in the 

form of a point (a single) value (say) 0O for 0. For example a medical practitioner 

knows that in how many days the patient may get cured (say) 7 days or 10 days 

due to his past experience of treatment. Here we may take 0O —1 days. For such 

situations it is suggested to start with the current (sample) information, construct an 

estimator 9 (MVUE or UMVXJE) and modify it by incorporating the guess 0O 

(sometimes called natural origin) so that the resulting estimator or testimator 

though perhaps biased, has smaller risk than that of 9 in some interval around 0O.

In this chapter an attempt has been made to demonstrate that how 

shrinkage testimation procedure works under GELF.

We have proposed the shrinkage testimators for the scale parameter of an 

Exponential distribution in section 4.2. The risks of the proposed testimators have 

been derived in section 4.3. The section 4.4 deals with the relative risk(s) of these
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two estimators. Section 4.5 concludes with the comparison of UMVUE and the 

proposed shrinkage testimators in terms of their relative risks. Suggestion for the 

choice of shrinkage factor is made and recommendations regarding the choice of 

level of significance and degree of asymmetry have been made.

In section 4.6 we have proposed the two different shrinkage testimators for 

the variance of a Normal distribution and we have studied the risk properties of 

these two shrinkage testimators under General Entropy Loss Function. Section 4.7 

deals with the derivation of the risk(s) of these two estimators. Section 4.8 deals 

with the relative risk(s) of these two estimators. Section 4.9 concludes with the 

comparison of UMVUE and the proposed shrinkage testimatiors in terms of their 

relative risks. Further in the same section a suggestion for the shrinkage factor is 

made, along with the choices of degrees of asymmetry and level of significance.

4.2 Shrinkage Testimator(s) for Scale Parameter of an Exponential 

Distribution.

Let x have the distribution defined in (4.1.1). It is assumed that the prior 

knowledge about 6 is available in the form of an initial estimate 00. We are 

interested in constructing an estimator of 0 possibly using the information about 6

and the sample observations: xx,x2.......,xn. The proposed shrinkage testimator

can be described as follows:

(i) Compute the sample mean x = —'Y'xi which is the ‘best’ estimator of 0 in 

absence of any information about 0. (ii) Test the hypothesis Ho : & = d0 against

2 flX 7H] : 6 4- Qq at a level using the test statistic which follows % - distribution 

with 2n degrees of freedom.

92



We define the shrinkage testimator 0S7[ and 0S7; of 0 as follows:

q [kx+(l-k)0o ; if z? *(2nx/0o)<zZ

1 [ x ; otherwise

where k being dependent on test statistic is given by

,(4.2.1)

k =2hx/Qq x2 and

Z2={xl~Xi)

Now, taking the ‘square’ of k (i.e. k = k2), another testimator is defined as

9 = J(2W#o Z2)2 * + [l-(2»x/0o Z2f]&o 

ST2 ( 5c

4.3 Risk of Testimators

; if H0 is accepted 
; otherwise

(4.2.2)

In this section we derive the risk of these two testimators which are defined in the 

previous section.

4.3.1 Risk of (9cti

The risk of 0STx under LE(&,0) is defined by 

R(3STi)=E[0STi\LE(0,0)]

= E[kx+(1 - k)0o/xi < 2rix/0o < xl\ P [z? < 2nx/0o < ]
+ e\x | 2rix/0o <xf U 2wc/0o > xl ■ p\lrix/00 < X\ U 2rix/0o > zl\

(4.3.1.1)

Xl^tt . 2n

2 n

x\ob
2 n

2 nx
A?

(x-9„)+eJe
Ml
In

f(x) dx - j pin

zih
In

2 nx
A?

(x-0o)+0o 0 f(x) dx

X\%In| f(x)dx+ J [(x/$)p -pln(x/0)-l]/’(x)d5: + j [(x/0)/> - p\n{xj0)-\\f{x)dx

zm
In

a
2 n

(4.3.1.2)
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Where /(x) = (l/Tn) («/0)n(x)n 1 exp(- nx/O) 

A Straight forward integration of (4.3.1.2) gives

R(0st) = Ix-I2-\I/ 2 , \
,n

x2 (f>
\ 2 y

{ __2 / \
I

X, (j)

V 2 y

7
r Xx<f> 
V 2 :

,n + p
\ r „ 2 ,X-i (p

. V
f x\(j> ^

—£..1.. *2o’,V z y

y

\
n-¥ p +n -y

+ U-/3 -/4

(4.3.1.3)

Where /(*; /?) = (l/fp) | e~x xp~l dx refers to the standard incomplete gamma
o

function and
Ml

/, = J [(2/2/w^^2)—(2// z2)+0\p (l/rn) e~' tn~l dt
xf <P 

2

I2 = J Pte [{2t2/n0z2)-(2t/ ^2)+^](l/r«) e‘tnldt
i±

2

si
2

i3 = J In {tjn) {\/Tn) e~l tn~x dt

0

I4 = j /?ln (//«) (l/r«) e 1 tnX dt
Ml

2

4.3.2 Risk of 0 cm

Similarly, we obtain the risk of @St2 under L given by
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?

R(§ST2)=E[0ST2\le(o,0)]

= Efeme/9Qx2J(x-Oo)+OjXi < 2rix/0O < x2} p[Zi < 2nx/0o < xl]

+ e\x | 2mc/0o < Xx U 2wc/90 > xl ]■ p[2wx/6>0 < Xx U 2nx/0Q > ]

14.3.2.1)
x¥o r-

2 n

- \
Mis

2 n

Zl&Q 
2 n

( 2m ^

\^% j
(x-0o)+0o 0

x¥b
2 n

fix) dx - |pin

x¥o
In

( 2m ^

\0oZ j
{x~0,)+0, fa f(x) dx

Mis
2 nin zn r *i T 1

| f(x)cBc+ J [(jc/6>)p -p\n(x/0)-l\f{x)dx + J fe/0)p - p\n/xl0)-\\f{x)dx

Mis
In

Xi% 
2 n

(4.3.2.2)

Where /(x) = (1/1V) (njOf (x)" 1 exp(- nx/0) 

A straight forward integration of (4.3.2.3) gives:

R(0STJ = A - I2-\Irxl<!> ^ r-2
—n

(i/«)' Tip + n)

2 , 
f „2

I
xf (j)

n
V

X „2
/

X, ^

Ira

,n -/

Xf (j) n + p I x2 $ n + p\ + l\ —

( x\ </> ^
-, n2 ,

+ lV-/3 -/4

_(4.3.2.3)

Where I(x; p) = (l/Fp) | e~x xp~] dx refers to the standard incomplete gamma
0

function and
x\4>

f = J [(413/n<f>2 {z2 f )-{it2/<t>(x2 + (Vrn) e~' tn~l dt

2
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*2<
= | pIn (z2 J )-(4t2/^(z2j)+(l/r») e* tn~l dt

2
I3 = J p In (tf n) (l/rn) e * tn 1 dt

CO

/4 = J p\n.{t/n) (l/r>?) e~* tn~l dt
xj $

4.4 Relative Risks of ST,

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator x in this case. For this 

purpose, we obtain the risk of x under LE[d,o) as:

RE(x)= E[x\LB&e)\

= J ^x/e)p-p\n _____ (4.4.1)
0

A straightforward integration of (4.4.1) gives

Re{x) = T(n + P) 
Tn (np)

p{y/{ri) -ln(«) } 1 (4.4.2)

Where y/(n) - {d/dn ) In Tn refers to the Euler’s psi function.

Now, we define the Relative Risk of 0sn with respect to x under LE(§,o) as 

follows:

RR1 .(4.4.3)
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Using (4.4.2) and (4.3.1.3) the expression for RRj given in (4.4.3) can be obtained;
a

Similarly, we define the Relative Risk of 0St2 by 

MR = K'4:x)

(4.4.4)

The expression for RR2 is given by (4.4.4) which can be obtained by using 

equations (4.4.2) and (4.3.2.3).

Now, it is observed that bothRRi and RR2 are functions of‘0’, ‘n’, ‘a’ and ‘p\

A

4.5 Recommendations for ^st,
In this section we provide the comparison of UMVUE and the proposed 

shrinkage testimators in terms of their relative risks. Recommendations regarding 

the applications of proposed testimators are provided.

A A

• In order to study the behaviour of &STi and 0STj and the effect of shrinkage

factor (S.F.) on the proposed testimators we have computed the values of 

Relative Risk (RRi) for the following set of values, n = 5, 8, 10, 12; a = 1%, 

5%, 10% ; p = -3, -2, -1 and p = 2, 3,4. In all there will be several tables of 

RR for different variations in ‘p’, ‘a’ and ‘n\ We have considered ^ = 0.2 

(0.2) 1.6. Some of the tables have been assembled in the appendix by (i) 

keeping ‘a’ to be fixed and varying ‘p’ (ii) keeping ‘p’ to be fixed and 

varying ‘a’ as we wish to recommend for these two values.

• For n = 5, a = 1% and for different values of ‘p’ (positive as well as 

negative) Osl] performs better than the conventional estimator for all the 

values of £p’ with its best performance for p = -3 and p = 2 for the whole 

range of <(>. Considered here i.e. 0.2 <$< 1.6.
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• Next we have changed to a = 5%. Similar pattern of behaviour is observed 

for the relative risk and p = -3 and p = 2 provide the best results. However 

the magnitude of RR is small compared to a = 1% values.

• We have also considered a = 10%. In order to observe the behaviour for still 

higher level of significance just to confirm whether under different loss 

function the value of ‘a’ gets changed or not. We found that 0S1- performs

still better than the conventional estimator but the magnitude of RR values is 

still small though in all the cases it is above unity.

• So, a small value of a = 1% is recommended. Also by varying ‘n’ it is 

observed that RR values are higher for n = 5 compared to its other values of 

8, 10 and 12. Hence a smaller ‘n’ is suggested. A higher RRj value indicates 

a ‘better’ control over the risk. So, by choosing appropriate value of ‘p’ and 

‘a’ a better gain in terms of performance of 0SJ; can be achieved.

• 0S-J; , is another testimator proposed by taking the ‘SQUARE’ of shrinkage 

factor. We have again prepared the relevant tables of Relative Risk (RR2) of 

0Sr2 with respect to the conventional estimator for the same set of values as

we have considered to study the behaviour of 0STj. We observe the 

following:

• For 0S7i where we have considered the square of S.F. Following behaviour

of RR is observed. For almost the entire range of <f> i.e. 0.2 < ^ < 1.4 the 

values of RR (in terms of magnitude) are higher than those for S.F.(without 

square).
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• Almost similar pattern of RR for different values of ‘p’ and ‘a’ has been 

observed for the values of n considered here. The S.F. can be made small 

either by taking smaller values of a or by fixing a and taking higher powers 

of‘k\

• So, the proposed testimator is having smaller risk than the conventional 

estimator provided n is small, a is small and square of S.F. is considered.

Tables showing relative risk(s) of proposed testimator(s) with respect to the 

best available estimator.

Table: 4.5.1.1 Relative Risk of 0STl ’ a = l%,n=5

* p = -3 d 11 N
i

P—1 p = 2 p = 3 ►
ts II

0.20 0.959 0.777 0.568 1.002 0.953 0.968
0.40 1.327 0.918 0.595 1.935 1 1
0.60 1.893 1.327 0.745 2.369 1.144 1.071
0.80 2.183 1.821 0.949 3.448 1.966 1.476
1.00 3.003 1.934 1.048 4.583 3.359 2.257
1.20 1.669 1.641 1.626 3.008 2.301 1.453
1.40 1.383 1.291 1.362 1.772 1.654 1.464
1.60 1.175 1.026 1.113 0.744 0.723 0.741

Table : 4.5.1.2 Relative Risk of 0STl a = 1 % , n = 8

$ p = -3 d II p = -l p = 2 p = 3 p = 4
0.20 0.995 0.995 0.984 0.957 0.976 0.968
0.40 1.046 0.998 1 1.004 0.977 0.986
0.60 1.429 1.215 1.087 1.006 1.002 1.001
0.80 2.149 1.742 1.371 2.11 1.394 1.197
1.00 2.435 2.124 1.603 4.259 3.894 2.992
1.20 1.943 1.839 1.505 3.227 2.768 1.824
1.40 1.411 1.351 1.211 1.408 1.166 1.096
1.60 1.071 1.002 0.942 0.48 0.513 0.528
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Table : 4.5.1.3 Relative Risk of @stx a - 5%, n = 5

p = -3 p = -2 p = -l p = 2 p = 3 p = 4
0.20 1.12 1.026 0.991 1.049 1.022 1.012
0.40 1.371 1.179 1.051 1.09 1.04 1.021
0.60 1.449 1.437 1.197 1.314 1.122 1.058
0.80 1.575 1.589 1.36 2.17 1.375 1.17
1.00 1.587 1.63 1.404 3.488 2.793 1.404
1.20 1.28 1.391 1.299 2.844 1.771 1.35
1.40 1.139 1.182 1.132 1.524 1.233 1.136
1.60 1.035 1.02 0.979 0.722 0.739 0.76

Table : 4.5.1.4 Relative Risk of @stx oc = 5% ,n = 8

4>

lia. i1!a
p = -1 p = 2 p = 3 p = 4

0.20 1.033 1.017 1.007 1.008 1.004 1.002
0.40 1.151 1.088 1.047 1.096 1.053 1.035
0.60 1.341 1.203 1.097 1.11 1.047 1.023
0.80 1.545 1.403 1.216 1.303 1.089 1.007
1.00 1.555 1.487 1.304 2.055 1.396 1.18
1.20 1.324 1.326 1.232 1.998 1.319 1.111
1.40 1.099 1.094 1.063 1.062 0.992 0.951
1.60 0.947 0.918 0.907 0.556 0.606 0.627

Table : 4.5.2.1 Relative Risk of &st2 a = 1% , n = 5

$ 11 p = -2 p = ~l p = 2 p = 3 p = 4
0.20 0.919 0.883 0.916 0.82 0.883 0.923
0.40 1.302 1.027 0.932 0.968 0.983 0.99
0.60 2.034 1.608 1.231 1.261 1.091 1.035
0.80 2.215 2.396 1.671 3.366 2.363 1.621
1.00 2.463 2.508 1.843 6.484 5.819 3.158
1.20 1.786 1.993 1.617 4.733 4.083 3.031
1.40 1.449 1.5 1.288 1.617 1.273 1.237
1.60 1.219 1.169 1.023 0.495 0.513 0.54
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Table : 4.5.2.2 Relative Risk of Ost2 « = 1% , n = 8

p = -3 IIa

p = -l p = 2 p = 3 P = 4.........

0.20 0.979 0.943 0.952 0.874 0.881 0.886
0.40 0.978 0.994 1.001 0.906 0.948 0.969
0.60 1.405 1.183 1.057 1.008 1.004 1.003
0.80 2.361 1.878 1.431 2.305 1.385 1.144
1.00 2.628 2.306 1.697 5.258 3.935 2.094
1.20 1.883 1.774 1.467 2.069 2.689 1.952
1.40 1.29 1.205 1.09 0.768 0.759 0.764
1.60 0.963 0.871 0.816 0.291 0.322 0.331

4.6 Shrinkage Testimator for the Variance of a Normal Distribution

Shrinkage testimators for the mean ju of a Normal distribution N(jU, a1 2) 

when variance a2 is known or unknown, have been proposed by Waiker, 

Schuurman and Raghunandan (1984). Recently Pandey et. al. (2007) have 

studied the risk properties for the positive degree of asymmetry. Where as 

this study finds the range for positive as well as negative degrees of 

asymmetry where the shrinkage testimator perform better than the UMVUE.

Let X be Normally distributed with mean /a and variance a2. We have 

proposed a single sample shrinkage testimator. It is assumed that the prior 

knowledge about a2 is available in the form of an initial estimate Og. Using

the sample observations x,,x2...... ,xn and possibly the given information

we wish to construct a shrinkage testimator. The procedure is as follows:

1. First test with a sample of size n, the null hypothesis H0 : a2 = Og against
ry ~ y ^2

the alternative Ht : =£ tig using the test statistics — , where v = (n -1)
(Tn
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1and s2 = — x)2. The test statistics is distributed as xl with v

degrees of freedom.
2n VS** n o

2. If H0 is accepted at a level of significance i.e. xf < — < x| where xf

and x| are the lower and upper points of the uniformly most powerful 

unbiased (UMPU) test of H0, use the conventional shrinkage estimator with

shrinkage factor k
VS4- 

2 7 >
which is inversely proportional to j2 and it

depends on the test statistic, so the arbitrariness in the choice of shrinkage 

factor has been removed by making it dependent on the test statistic.

3. If H0 is rejected, use s2, the Uniformly Minimum Variance Unbiased 

Estimator (UMVUE) as the estimator of a2.

Now, the proposed shrinkage testimator a2T1 of er2 is

2 _ (k s2 + (1 — k)(?Q , if H0 is accepted
ST1 \ s2 , otherwise

The next proposed shrinkage testimator &sT2 of a2 is

~2 _ f^i s2 + (1 — kiVo , if H0 is accepted 
asT2 1 s2 , otherwise

Where vs‘
ex02 x2

Estimators of this type with and arbitrary k (0 < k < 1) have been proposed 

by Pandey and Srivastava (1987) and others. In all such studies it has been 

found that the shrinkage estimators work well if k is near zero and ‘n’ is small 

and ‘a’ is also small. The present work deal with the shrinkage factor 

dependent on the test statistic and arbitrary ‘k’.
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We have studied the risk properties for several choices of level of significance, 

sample sizes, a wide range of 1 and several values of degrees of asymmetry.

4.7 Risk of Testimators

In this section we derive the risk of these two testimators which are defined in the 

previous section.

4.7.1 Risk of dsfi

The risk of 62sti under Lt\§,0) is defined by 

i?(<T2s,) = £[<T2J £*(<?,(?)1

E ks2 + (l - k)a2 / Xi < < xl
I &0

2 2 ) S 2 i i U 2
— <Xi U — >Zi
crn crn

2 2Xl < —1" < %2

+ E vs 2 I I osT < Xi U — >Xl

44

J.J.
X\

k(s2-a;)+a20
xl4

f(s2) ds2 - J p In
„2 2

k{s2 — o~q )!+<7n

<T
f(s2) ds2

14.7.1.1)

44
- } ns1) ds2 + J

v2 _2

f 2 \P ( 2 > ■
s -p In s -l—J ^ J

f(s2)ds2 + j
.7 7 

X2<t<S

( 2 y s ■p In -1
J

f(s2)ds2

Where /O2) 1

2/2 m
(*•)2 q

1 us2
1 1 2 ds'

Straight forward integration of (4.7.1.2) gives

.(4.7.1.2)
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h-h- {i“1 (xiA'|)}

[i(x?a,^ + p)- i(xi^.j+p) + i]

-i3 - i4

(4.7.1.3)
x

Where I(x;p) = {l/Tp) | e~x xpA dx refers to the standard incomplete gamma
0

CF*“

function, A = -7 , and

h =

Io —

= pyTFg) £?/ (k (; - A)+A)P e ^ 1 dt 
TTT^) $1 ln (k (;-■*) + A) e“®‘ dt

xfA
V

2V2 r
rj 1.®

V27 0

4 = dt

4.7.2 Risk of a|r2

Again, we obtain the risk of <?2st2 under LEid,d) with respect to s2, given by 

R(o-2ST2)=E\a2sT2\LF{d,e) ]

V2+(i KVo /xi < , < z2"
■/>

2 U52 2
V < 2 < ^2

1— «P
, ^0 j

9

S’*"
os2 7 , , t>^2 2

2 <*,- U 2 >Xi P
VS2 7 , , OS2 2

2 <XfU 2 >xl
&0 ao j L^o <*0 J

(4.7.2.1)
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f(s2)ds2

)ds2

7 7xi<m

xt4

vs
c0

■44+ 0'n

f(s2)ds2- j p In
2 2

*1*0

IXS •44+<xn

r 2 v f 2 > 00 r 2 \p ( 2 >
4 - p In s -1 /(j2)<&2 + I 4 - p In ? -1

[U J lc J *2*0 [U J (c y
f(s2

1
2/2 rB

(4"‘
X t)»2
2 I i 2

ev ' as

;egration of (4.7.2.2) gives

ii-iz- 1(^.5)}

*(x§4)+i]

l+p)
m

[!(xix.|+p)- l(xix.| + p) + l]

^3 — 4

_(4.7.2.2)

(4.7.2.3)

e~x xp 1 dx refers to the standard incomplete gamma

A)P e^ttl dt

\x2 X2
+ A) e-(I> tt1 dt

- by £
e W 12 1 dt
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4.8 Relative Risk of ffsn

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator s2 in this case. For

this purpose, we obtain the risk of s2 under I£(<t2,ct2) as:

RE(s2) = E[s2\L(a2,cr2)]

= J \s2l<?2Y-p\n (s2la2)-\\f{s2)ds7
o

f 1 us2 )
(s^e  ̂J

.(4.8.1)

Where f(s ) =
2/2 rw

A straightforward integration of (4.8.1) gives

**02) -Pi W -1
.(4.8.2)

0M
Where w(n) ~{d/dn)\nTn refers to the Euler’s psi function.

Now, we define the Relative Risk of o^sr^i- 1,2 with respect to s2 under 

Z,(<r2,cr2) as follows:

-Ms2)
RRl =

R^usn) .(4.8.3)

Using (4.8.2) and (4.7.1.3) the expression for RRi given in (4.8.3) can be obtained; 

it is observed that RRj is a function of‘A’, ‘ v ‘a’, ‘k’ and ‘p’.

A £

Finally, we define the Relative Risk of & st2 by
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Re( S2) 
R(cr2sr2)

,(4.8.4)

The expression for RR2 is given by (4.8.4) which can be obtained by using (4.8.2) 

and (4.7.2.3). Again we observed that RR2 is a function of ‘A’, * v ‘a’ and ‘p\

4.9 Recommendations for d$Ti

A 2 A 2
In this section we wish to compare the performance of cr sq and & st2 with 

respect to the best available (unbiased) estimator of a2.

4.9.1 Recommendations for T1

It is observed that RR] is a function of v, a, X, k and the degrees of asymmetry "p".
a2

In order to study the behaviour of cr with respect to the best available estimator 

we have considered several values of above mentioned quantities viz. k = 0.2 (0.2) 

1.0, X = 0.2 (0.2) 2.0, v = 5,8,10,12, and p = -2, -1.75, -1.5, -1.25, -1.0 , 1.0 and 

smaller values of a - 1% and 0.1%. As we have observed that RRi values start 

getting negative even for p = +1, so other higher values of ‘p’ are not considered 

with a view that for positive values of ‘p’ the usual estimator may perform better 

than the proposed one. Also, several studies have pointed out that smaller level of 

significance should be taken, this motivated us to consider smaller values of as 

considered as above. There will be several tables of RRi . Some of these have 

been assembled at the end of the chapter. However our recommendations based on 

all these tables are as follows.

A 2 „1. cr sTi performs better than dl at a = 1% for the whole range of ‘A’ for p = 

-2 i.e. the values of RRi are greater than unity for 0.4 < A < 1.8. In this 

situation the range of ‘k’ is 0.2 < k < 0.8. It is observed that as p assume
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other negative values upto p = -1, still the performance is better but the 

range of‘A’ changes and for p = -1 it is 0.8 < A < 1.2 . i.e. it reduces. These 

values are obtained for v = 5. However, for other values of v i.e. 8, 10 and 

12 again a similar pattern is observed but now the recommended values of p 

are upto -1.50.

2. The positive values of ‘p’ (p = +1 reported here) are indicative of better 

performance of a2, so it is suggested that the use of GEL would be 

beneficial for under estimation situations.
*2

3. We have considered a = 0.1% also to observe the behaviour of cr sq, here 

the range of ‘A’ is increased as now it is 0.4 < A < 2.0 which holds even for 

‘p’ upto -1.25 again when p = -1 the range changes slightly and becomes 0.4 

< A < 1.8. As v is increased to ‘8’ the range of ‘A’ decreases for different 

negative values of cp’ and it is now 0.6 < A < 1.8 for p = -2 and 0.8 < A < 1.2 

forp = -1.

4. Still increasing v to 10 and 12 we have observed that the range of A reduces 

to 0.6 < A < 1.6 and now the values are better upto p = -1.50.

5. For both the values of as considered here the RRi values are more than ‘ 1 ’ 

but the magnitude of these values are higher for a = 0.1% and the range of 

shrinkage factor for all the above recommendations is 0.2 < k < 0.8.

6. So, it is recommended to consider higher degrees of underestimation with a 

small sample size and smaller level of significance, i.e. take v = 5, p = -2, a

= 0.1% than a2stx performs better than 82 for 0.4 < A < 2.0 and 0.2 < k < 

0.8.
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4.9.2 Recommendations for &st2

As the arbitrariness in the choice of ‘k? is removed by making it dependent on test

statistic, now the relative risk of &2st2 with respect to a2 is a function of p, A, c, 

and a. In order to study the behaviour of RR2 we have considered p = -2, -1.75, - 

1.50, -1.25, -1.0 and 1.0, A = 0.2 (0.2) 2.0, v = 5,8,10 and 12, a = 1% and 0.1% . 

Again the reason for considering only one positive value for degree is that RR2 

values turn negative even at p = +1. Again there will be several tables of RR2 

some of these have been assembled at the end of the chapter however our
A2

recommendations for cr sr2 are as follows:

1. For 0.2 < X < 1.6, p =-2, v = 5 and a = 1% cr1 st2 dominates a2. However 

the range of‘A’ decreases as ‘p’ becomes -1.75, now it is 0.2 < A < 1.4 and it 

remains true upto -1.25. But for p = -1 the range of‘A’ is shorter as it is now 

0.8 < A < 1.2. These values of RR2 were observed for v = 5. For the other 

values of V almost similar pattern of RR2 values is observed but the values 

become smaller as v increase.

2. Here also for positive values of ‘p’ 82 the usual estimator performs better

a2
than cr st2 as the RR2 values are negative in this case.

3. For another lower level of significance i.e. a = 0.1% the values of RR2 are 

higher in magnitude as compared to those at a = 1%. Also the range of ‘A’ 

increases and it becomes 0.2 < A < 2.0 upto p = -1.50, it slightly decreases 

and becomes 0.6 < A < 1.6 for p = -1. Again for p = +1 the RR2 values are 

negative for the whole range of A.
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4. Changing v = 8, 10, 12 we observe that the range of ‘A’ reduces further and 

it becomes 0.6 < A < 1.6. However for v = 12 none of the RR2 values is 

greater than ‘1’.

5. For both the values of as considered here the RR2 values are more than 

unity but the magnitude of RR2 values is higher for lower level of 

significance.

6. So, it is recommended to consider the higher values of degree of asymmetry 

when under estimation is more serious than over estimation and a lower 

values of ‘v\

CONCLUSION:

Two shrinkage testimators for the variance of Normal distribution have been
a 2 a 2

proposed viz. <7 s% and <7 si2 .

The values of RRi (i.e. O'2stx with respect to a2) and RR2 (i.e. <J2st2 with

respect to er ) are not much different in their magnitudes. However cr st2 is a 

shrinkage testimator based on test statistic, so it could be used. It is observed 

that the use of GELF does not provide good result for positive values of degrees 

of asymmetry (i.e. overestimation being more serious). So, it is recommended 

for the reverse situations.

A lower value v = 5 with p = -2, a = 0.1% provide better result for almost the 

whole range of ‘A’. However both the estimators perform better than the usual 

estimator for other values also but the reported values are indicative of the best 

performance.
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Tables showing relative risk(s) of proposed testimator(s) with respect to the 
best available estimator.
Table: 4.9.1.1 Relative Risk of ffV, a = 0.1% , vx = 5, k = 0.2

X p = -2 p = -1.75 p = -1.50 p = -1.25 p = -1 TJ
11 i—
k

0.20 0.833 0.671 0.558 0.476 0.411 -2.82
0.40 1.432 1.298 1.079 0.869 0.687 -2.13
0.60 1.801 1.962 1.827 1.522 1.18 -1.37
0.80 1.831 2.171 2.214 1.95 1.527 -1.101
1.00 1.727 2.058 2.16 1.966 1.575 -1.028
1.20 1.599 1.856 1.932 1.775 1.448 -1.081
1.40 1.48 1.661 1.691 1.547 1.277 -1.268
1.60 1379 1.494 1.485 1.346 1.117 -1.719
1.80 1.293 1.358 1.319 1.182 0.983 -3.129
2.00 1.221 1.247 1.186 1.051 0.873 -3.934

Table : 4.9.1.2 Relative Risk of <x2sr, a = 0.1% , vt = 5, a = -1.75

X •
o
11

JX k = 0.4 k = 0.6

00•
o
1!

JX

o
•ii

&

0.20 0.671 0.867 0.994 1.027 0.839
0.40 1.298 1.428 1.411 1.255 0.821
0.60 1.962 1.911 1.733 1.429 0.818
0.80 2.171 2.05 1.84 1.502 0.807
1.00 2.058 1.976 1.818 1.517 0.796
1.20 1.856 1.829 1.738 1.5 0.786
1.40 1.661 1.674 1.639 1.466 0.777
1.60 1.494 1.533 1.538 1.423 0.769
1.80 1.358 1.411 1.444 1.376 0.762
2.00 1.247 1.308 1.358 1.328 0.756

Table : 4.9.1.3 Relative Risk of <T2sr, a = 0.1%, vx = 8, a = -1.75

X k = 0.2 li o * k = 0.6

00 • 
:

o
II

44 k = 1.0
0.20 0.346 0.486 0.623 0.745 0.825
0.40 0.562 0.703 0.782 0.79 0.709
0.60 1.237 1.288 1.197 1.013 0.738
0.80 1.914 1.741 1.466 1.131 0.723
1.00 1.913 1.756 1.506 1.16 0.695
1.20 1.565 1.532 1.406 1.136 0.666
1.40 1.24 1.28 1.255 1.081 0.639
1.60 1.003 1.072 1.106 1.014 0.615
1.80 0.837 0.914 0.977 0.945 0.594
2.00 0.719 0.795 0.871 0.881 0.577
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Table : 4.9.1.4 Relative Risk of <J2si\ a = 1%, v1 - 5, a = -2

X

C
M•

©
II k = 0.4

©©
II

00•
©
II k= 1.0

0.20 0.859 0.991 1.058 1.047 0.863
0.40 1.127 1.172 1.157 1.073 0.816
0.60 1.277 1.263 1.21 1.099 0.81
0.80 1.273 1.247 1.196 1.093 0.805
1.00 1.21 1.193 1.156 1.072 0.801
1.20 1.138 1.132 1.111 1.048 0.798
1.40 1.074 1.078 1.07 1.025 0.797
1.60 1.02 1.031 1.033 1.003 0.797
1.80 0.976 0.991 1 0.984 0.798
2.00 0.939 0.957 0.973 0.967 0.801

Table : 4.9.2.1 Relative Risk of d'1sr1 a = 0.1%, vx = 5

X p = -0.2 p = -1.75 p = -1.5 p = -1.25 P = -lo

0.20 1.242 1.057 0.876 0.728 0.601
0.40 1.632 1.558 1.317 1.053 0.815
0.60 1.839 2.029 1.899 1.579 1.215
0.80 1.824 2.151 2.179 1.907 1.489
1.00 1.714 2.026 2.106 1.904 1.521
1.20 1.584 1.824 1.879 1.714 1.396
1.40 1.464 1.627 1.639 1.488 1.226
1.60 1.361 1.459 1.433 1.288 1.065
1.80 1.273 1.321 1.267 1.125 0.931
2.00 1.2 1.209 1.134 0.995 0.822

Table : 4.9.2.2 Relative Risk of <J2st2 a = 1%, v* = 5

X p = -0.2 p = -1.75 p = -1.5 p = -1.25 p = -1.0
0.20 1.169 1.085 0.967 0.846 0.727
0.40 1.256 1.217 1.084 0.908 0.723
0.60 1.3 1.347 1.282 1.125 0.914
0.80 1.266 1.339 1.323 1.207 1.013
1.00 1.199 1.254 1.24 1.146 0.978
1.20 1.129 1.152 1.121 1.03 0.884
1.40 1.066 1.058 1.008 0.915 0.782
1.60 1.012 0.979 0.913 0.816 0.694
1.80 0.967 0.913 0.835 0.736 0.621
2.00 0.929 0.86 0.773 0.673 0.564


