


Chapter — 4

SINGLE SAMPLE SHRINKAGE TESTIMATORS UNDER GENERAL
ENTROPY_LOSS FUNCTION

4.1 Introduction

The present chapter deals with one sample shrinkage testimators under
General Entropy Loss Function (GELF) for single parameter Exponential

distribution and Normal distribution.

The aim of systems reliability is to forecast of various system performance
measures such as mean life time, guarantee period and reliability etc. In general,
the type of failure distribution depends on the failure mechanism of components. If
the failure rate is constant, which is mostly true for electronic components during
the major part of their useful life, the failure time follows an exponential

distribution with the p.d.f.

exp(—x/6), x=0,6>0

1
fx;0) = {50 @1

, otherwise

In the context of life testing and reliability estimation, numerous data have
been examined and it has been found that exponential distribution fits well for
most of the cases. Several authors have proposed estimators, testimators with
different choices of shrinkage factors (S.F.) under different loss functions. The
choice of an appropriate loss function is guided by financial consideration apart
from other considerations such as over estimation being more serious than under-

estimation or vice-versa.
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Shrinkage testimators for the mean u of a Normal distribution N(u, 02) when
variance ¢ is known or unknown, have been proposed by Waiker, Schuurman and
Raghunandan (1984). Recently Pandey et. al. (1987) considered some shrinkage
testimators for the variance estimator under Mean Square Error criterion (MSE).
Parisan and Farsipour (1999), Misra and Meuten (2003), Pandey et. al. (2004),
Ahmadi et. al. (2005), Xiao et. al. (2005), Prakash and Singh (2006), Prakash and
Pandey (2007) and others have considered the estimation procedures under the
LINEX loss function in various contexts. Pandey et. al. (2007) have proposed
shrinkage testimator(s) variance and have studied the properties of these under the
Asymmetric loss function (ASL). The present work is an attempt to study the risk
properties of shrinkage testimator(s) for the variance of Normal distribution under
a more general loss function viz. (GELF). Pandey et. al. (2007) have studied the
risk properties of the same for positive degree of asymmetry only, under ASL.
Where as this study attempts to find the range for positive as well as negative
degrees of asymmetry under GEL where the shrinkage testimator of variance
performs better than the UMVUE. |

4.1.1 General Entropy Loss Function (GELF)

A suitable alternative to modified LINEX loss is the General Entropy Loss
(GEL) proposed by Calabria and Pulcini (1996) given by:

LE(é,Q)oc{(é/@)p~pln(é/0)~l}, p£0 ECRRRY
Whose minimum occurs at 8 = 6.

This loss is a generalization of the entropy loss used by several authors (for
example, Dey and Liu, 1992) where the shape parameter ‘p’ is equal to unity (1).

The more general version of (4.1.1.1) allows different shapes of the loss function
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to be considered (say when p > 0, a positive error (é>¢9) causes more serious

consequence than a negative error and when p < 0, then negative error is more
serious). If we are considering prior distributions, then the Bayes estimate of 4

under GELF is in a closed form and is given by
65 = £, (o)) 7 (4.1.1.2)

provided that E,(9~7) exists and is finite.

4.1.2 Incorporating a Point Guess and O

In many real life situations the experimenter may have some prior
information regarding the parameter being estimated due to some past experience
or similar kind of studies and it is thought to apply this information to inference
procedures of the original model. If the prior information is available only in the
form of a point (a single) value (say) 6, for . For example a medical practitioner
knows that in how many days the patient may get cured (say) 7 days or 10 days
due to his past experience of treatment. Here we may take 6, = 7 days. For such
situations it is suggested to start with the current (sample) information, construct an
estimator & (MVUE or UMVUE) and modify it by incorporating the guess 6,
(sometimes called natural origin) so that the resulting estimator or testimator

though perhaps biased, has smaller risk than that of  in some interval around 4.

In this chapter an attempt has been made to demonstrate that how

shrinkage testimation procedure works under GELF.

We have proposed the shrinkage testimators for the scale parameter of an
Exponential distribution in section 4.2. The risks of the proposed testimators have

been derived in section 4.3. The section 4.4 deals with the relative risk(s) of these
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two estimators. Section 4.5 concludes with the comparison of UMVUE and the
proposed shrinkage testimators in terms of their relative risks. Suggestion for the
choice of shrinkage factor is made and recommendations regarding the choice of

level of significance and degree of asymmetry have been made.

In section 4.6 we have proposed the two different shrinkage testimators for
the variance of a Normal distribution and we have studied the risk properties of
these two shrinkage testimators under General Entropy Loss Function. Section 4.7
deals with the derivation of the risk(s) of these two estimators. Section 4.8 deals
with the relative risk(s) of these two estimators. Section 4.9 concludes with the
comparison of UMVUE and the proposed shrinkage testimatiors in terms of their
relative risks. Further in the same section a suggestion for the shrinkage factor is

made, along with the choices of degrees of asymmetry and level of significance.

4,2 Shrinkage Testimator(s) for Scale Parameter of an Exponential
Distribution.

Let x have the distribution defined in (4.1.1). It is assumed that the prior
knowledge about € is available in the form of an initial estimate 6,. We are

interested in constructing an estimator of 6 possibly using the information about 6

and the sample observations: X;,X,....... »X,. The proposed shrinkage testimator

can be described as follows:

: =_ 1< C : .
(i) Compute the sample mean x=—) x, which is the ‘best’ estimator of 6 in
L=

absence of any information about 6. (ii) Test the hypothesis Hy: 8 = 8, against

. . .. 2nx . e
H;: 8 # 8, at o level using the test statistic ““5;5‘ which follows ¥* — distribution

with 2n degrees of freedom.
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We define the shrinkage testimator &, and &g, of 0 as follows:

6 :{kf_%— A-k)8, ; if x} <(2n%/6,) <3 @21

X ; otherwise
where & being dependent on test statistic is given by & =2n%/6, * and

7=t -22)

Now, taking the ‘square’ of k (i.e. k = &%), another testimator is defined as

ésr, ={( fi/@e x"‘)z X+ [1——(21155/60 )[2)2]90 ; if H,is accepted 4.2.2)

x ; otherwise

4.3 Risk of Testimators

In this section we derive the risk of these two testimators which are defined in the

previous section.

4.3.1 Risk of O¢rq

The risk of HASTI under L, (é, 9) is defined by
R(Bgp)=El b7, Ly (6.0)1

= E[kx+(1-k)6,/ x> < 2n%/6, < 22| p|x? < 2n%/6, < 23]
+E[§| 2nx[6, < x7 U 2nx/6, >;g§]-p[21’135/90 <2t U 2n%/6, >;£’22]

43.1.1)
T 2nx ¥ 2nx _
- I K z}(x”eo)“*'eo/ej} f(x) dx - j Phl{ Z(x—ﬁo)-}-é’o/Q} f(x) dx
4% % P G, x
3;;9 ﬁﬁ)‘ 2n
2n 2n L]
- [ r@a&+ | [@oy - puo)-tlr@azs | [w6y - pin(ro)-1)rnax
grs ’ “h
(4.3.1.2)
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Where f(%)=(1/Tn) (n/0) ()" exp(—rx/6)
A Straight forward integration of (4.3.1.2) gives

(4.3.1.3)

Where 1(x;p) = (//Tp) I e x"dx  refers to the standard incomplete gamma
0
function and

x3 ¢
2
2

1, = [(2t2/n¢;(2)—- (2t/ x? )+¢]p O/Trn) e t"" dt

*

o

o
-

pln [(212/n¢;52)-(2t/ ZZ)+¢] (iyTn) et at

NN
il
'——'NI

li‘*
NN
S

Ry
.

pln (¢/n) (/Tn) e t" dt

N
1l
o*-—.wi =

I, = T pln (t/n) (Tn)e™ " dt

X

NG
.

4.3.2 Risk of O,

Similarly, we obtain the risk of 9’\373 under ,(6,6) given by
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R(@y;)=E[0;)| L (6.6)

=EK2]?55/(90 12)2(55"90)’*"90/2’12 < 2nx/6, <Z§JP[Z12 < 2nx/6, <Z§}
+E[5‘?k 2n%(6, < 7 U 2n%/6, >z§]-p{2ni/90 < U2nx/6, >X§]

(4.3.2.1)
1% ) » % 5
2ol 2nx ) _ g 2nx | _
= J 0 2 (x-90)+99 0| f(x)dx - J.pln 0 2 (x"ga)"’go 0|f(x) dx
720, o X 70 0 4
In n
2% 2%
2n 2n » v
- [ r@ &+ | (710 - p(0)-1lf@a + | [F0Y - pmo)- 1l
4.32.2)
Where f(X)=(1/T'n) (n/0) (%) exp(~nZ/0)
A straight forward integration of (4.3.2.3) gives:
R@sy) = I, — I,— {](%qé—nj-l(§%£nj} +
(i/n)? F(?;: ) {I[x,;qb ,n+p)——l(%ﬁ,n+pJ+l} -
{](xf ¢ ,n)»—~](x§ ¢ ,n]—t—l}-— I, -1,
2 2
(43.2.3)

Where I(x;p) = (Ip) _[ e*x""dx  refers to the standard incomplete gamma
G

function and

a2/ np? (2 7 )-(ar2/ 82 F )+ ) (yrm) e 7 i

LIS ’»54»
b

I, =

=

Xé
2

g5



=
&Y
AN

pinfar/ng? (2P - 42/ (2 F )+ 9| Q/Tn) &t 0 i

-
I
W{

1_*4
o =N
A=

pin(t/n) (/Tn)e™ " dt

3

~
Il
© Yy ) ‘:::’

I, pin(t/n) (1/Tn) e " dt

ll
G 8

AN

X

4

2

4.4 Relative Risks of s

A natural way of comparing the risk of the proposed testimators, is to study its
performance with respect to the best available estimator ¥ in this case. For this

purpose, we obtain the risk of ¥ under L,(§, «9) as:

R.(®=E[x|L,(0.6)]

- [ &0y - pin 510)-1lr 44.1)

0

A straightforward integration of (4.4.1) gives

I'(n+ P)
I'n (n?)

R:(®)= [ ~ ply () —In(n) }] ~1 (4.4.2)

Where w(n)= (d/ dn ) In['n  refers to the Euler’s psi function.
Now, we define the Relative Risk of ém with respect to X under LE(é,a) as

follows:

_ Re(®)
R(6s;)

1

‘ (4.4.3)
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Using (4.4.2) and (4.3.1.3) the expression for RR; given in (4.4.3) can be obtained,;

Similarly, we define the Relative Risk of HASTZ by

= R )

R(Osz,) (449
The expression for RR, is given by (4.4.4) which can be obtained by using
equations (4.4.2) and (4.3.2.3).

Now, it is observed that both RR; and RR, are functions of ‘@, ‘n’, ‘o’ and ‘p’.

~

4.5 Recommendations for 95;;.

In this section we provide the comparison of UMVUE and the proposed
shrinkage testimators in terms of their relative risks. Recommendations regarding

the applications of proposed testimators are provided.

e In order to study the behaviour of és,; and éSTZ and the effect of shrinkage

factor (S.F.) on the proposed testimators we have computed the values of
Relative Risk (RR;) for the following set of values. n= 5, §, 10, 12; o = 1%,
5%, 10% ; p=-3,-2,-1 and p=2, 3, 4. In all there will be several tables of
RR for different variations in ‘p’, ‘o’ and ‘n’. We have considered ¢ = 0.2
(0.2) 1.6. Some of the tables have been assembled in the appendix by (i)
keeping ‘@’ to be fixed and varying ‘p’ (ii) keeping ‘p’ to be fixed and

varying ‘e’ as we wish to recommend for these two values.

e Forn =35, a = 1% and for different values of ‘p’ (positive as well as
negative) ésyi performs better than the conventional estimator for all the

values of ‘p’ with its best performance for p = -3 and p = 2 for the whole

range of ¢. Considered here i.e. 0.2 < ¢ < 1.6.

97



Next we have changed to a = 5%. Similar pattern of behaviour is observed
for the relative risk and p = -3 and p = 2 provide the best results. However

the magnitude of RR is small compared to o= 1% values.

We have also considered a = 10%. In order to observe the behaviour for still
higher level of significance just to confirm whether under different loss
function the value of ‘0’ gets changed or not. We found that éSTI performs

still better than the conventional estimator but the magnitude of RR values is

still small though in all the cases it is above unity.

So, a small value of a = 1% is recommended. Also by varying ‘n’ it is
observed that RR values are higher for n = 5 compared to its other values of
8, 10 and 12. Hence a smaller ‘n’ is suggested. A higher RR; value indicates

a ‘better’ control over the risk. So, by choosing appropriate value of ‘p’ and

‘o’ a better gain in terms of performance of &, can be achieved.

A

Osz, , is another testimator proposed by taking the ‘SQUARE’ of shrinkage
factor. We have again prepared the relevant tables of Relative Risk (RR,) of

éSTZ with respect to the conventional estimator for the same set of values as

we have considered to study the behaviour of és,;. We observe the

following:

For és:; where we have considered the square of S.F. Following behaviour

of RR is observed. For almost the entire range of ¢ ie. 0.2 < ¢ < 1.4 the
values of RR (in terms of magnitude) are higher than those for S.F.(without

square).
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e Almost similar pattern of RR for different values of ‘p’ and ‘a’ has been
observed for the values of n considered here. The S.F. can be made small
either by taking smaller values of a or by fixing o and taking higher powers
of ‘’k’.

o So, the proposed testimator is having smaller risk than the conventional

estimator provided n is small, o is small and square of S.F. is considered.

Tables showing relative risk(s) of proposed testimator(s) with respect to the

best available estimator.

Table : 4.5.1.1 Relative Risk of 955 a=1%,n=35

¢ |p=-3| p=-2 | p=-1 | p=2 | p=3 p=4
0.20 0.959 0.777 0.568 1.002 0.953 0.968
0.40 1.327 0.918 0.595 1.935 1 1
0.60 1.893 1.327 0.745 2.369 1.144 1.071
0.80 2.183 1.821 0.949 3.448 1.966 1.476
1.00 3.003 1.934 1.048 4.583 3.359 2.257
1.20 1.669 1.641 1.626 3.008 2.301 1.453
1.40 1.383 1.291 1.362 1.772 1.654 1.464
1.60 1.175 1.026 1.113 0.744 0.723 0.741

Table : 4.5.1.2 Relative Risk of &, a=1%,n=8

¢ (p=-3| p=-2 p=- p=2 p=3 p=4
0.20 0.995 0.995 0.984 0.957 0.976 0.968
0.40 1.046 0.998 1 1.004 0.977 0.986
(.60 1.429 1.215 1.087 1.006 1.002 1.001
0.80 2.149 1.742 1.371 2.11 1.394 1.197
1.00 2.435 2.124 1.603 4.259 3.894 2.992
1.20 1.943 1.839 1.505 3.227 2.768 1.824
1.40 1.411 1.351 1.211 1.408 1.166 1.096
1.60 1.071 1.002 0.942 0.48 0.513 0.528
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Table : 4.5.1.3 Relative Risk of 957; a=5%,n=5
¢ | p=-3]| p=-2 p=-1 | p=2 p=3 p=4
0.20 1.12 1.026 0.991 1.049 1.022 1.012
0.40 1.371 1.179 1.051 1.09 1.04 1.021
0.60 1.449 1.437 1.197 1.314 1.122 1.058
0.80 1.575 1.589 1.36 2.17 1.375 1.17
1.00 1.587 1.63 1.404 3.488 2.793 1.404
1.20 1.28 1.391 1.299 2.844 1.771 1.35
1.40 1.139 1.182 1.132 1.524 1.233 1.136
1.60 1.035 1.02 0.979 0.722 0.739 0.76
Table : 4.5.1.4 Relative Risk of fs; a=5%,n=8
¢ |p=-3| p=-2 p=-1 p=2 p=3 p=4
0.20 1.033 1.017 1.007 1.008 1.004 1.002
0.40 1.151 1.088 1.047 1.096 1.053 1.035
0.60 1.341 1.203 1.097 1.11 1.047 1.023
0.80 1.545 1.403 1.216 1.303 1.089 1.007
1.00 1.555 1.487 1.304 2.055 1.396 1.18
1.20 1.324 1.326 1.232 1.998 1.319 1.111
1.40 1.099 1.094 1.063 1.062 0.992 0.951
1.60 0.947 0.918 0.907 0.556 0.606 0.627
Table : 4.5.2.1 Relative Risk of gsg a=1%,n=5
¢ p=-3| p=-2 p=-1 p=2 p=3 p=4
0.20 0.919 0.883 0.916 0.82 0.883 0.923
0.40 1.302 1.027 0.932 0.968 0.983 0.99
0.60 2.034 1.608 1.231 1.261 1.091 1.035
0.80 2.215 2.396 1.671 3.366 2.363 1.621
1.00 2.463 2.508 1.843 6.484 5.819 3.158
1.20 1.786 1.993 1.617 4.733 4.083 3.031
1.40 1.449 1.5 1.288 1.617 1.273 1.237
1.60 1.219 1.169 1.023 0.495 0.513 0.54
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Table : 4.5.2.2 Relative Risk of QSTZ a=1%,n=8

4.6

¢ p=-3| p=-2 p=-1 p=2 p=3
0.20 0.979 0.943 0.952 0.874 0.881 0.886
0.40 0.978 0.994 1.001 0.906 0.948 0.969
0.60 1.405 1.183 1.057 1.008 1.004 1.003
0.80 2.361 1.878 1.431 2.305 1.385 1.144
1.00 2.628 2.306 1.697 5.258 3.935 2.094
1.20 1.883 1.774 1.467 2.069 2.689 1.952
1.40 1.29 1.205 1.09 0.768 0.759 0.764
1.60 0.963 0.871 0.816 0.291 0.322 0.331

Shrinkage Testimator for the Variance of a Normal Distribution

Shrinkage testimators for the mean u of a Normal distribution N(u, 6%)
when variance o2 is known or unknown, have been proposed by Waiker,
Schuurman and Raghunandan (1984). Recently Pandey et. al. (2007) have
studied the risk properties for the positive degree of asymmetry. Where as
this study finds the range for positive as well as negative degrees of

asymmetry where the shrinkage testimator perform better than the UMVUE.

Let X be Normally distributed with mean u and variance o?. We have
proposed a single sample shrinkage testimator. It is assumed that the prior
knowledge about ¢? is available in the form of an initial estimate o¢. Using
the sample observations X;,X;....... ,X, and possibly the given information

we wish to construct a shrinkage testimator. The procedure is as follows:

. First test with a sample of size n, the null hypothesis Hy : 02 = of against

2
the alternative H, : 02 # of using the test statistics % , where v = (n -1)
0
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and s? = ;_%Z(xi — X%)%. The test statistics is distributed as y? with v

degrees of freedom.

2
. . . v vs
. If Hy is accepted at o, level of significance i.e. xf < — < x3 where x?
0

and xZ are the lower and upper points of the uniformly most powerful

unbiased (UMPU) test of Hy, use the conventional shrinkage estimator with
2
shrinkage factor k = fzs? , which is inversely proportional to y? and it
0

depends on the test statistic, so the arbitrariness in the choice of shrinkage
factor has been removed by making it dependent on the test statistic.
. If Hy is rejected, use s?, the Uniformly Minimum Variance Unbiased

Estimator (UMVUE) as the estimator of o2,

Now, the proposed shrinkage testimator 6 of o2 is

ks?+ (1-k)o , if Hyis accepted

2

05271 = {
S , Otherwise

The next proposed shrinkage testimator 6%, of a2 is

kis?+ (1—kyog , if Hyis accepted

52 , otherwise

A2
asT2 = {

vs?

Where kq =

ag? x?

Estimators of this type with and arbitrary k (0 < k < 1) have been proposed

by Pandey and Srivastava (1987) and others. In all such studies it has been

found that the shrinkage estimators work well if k is near zero and ‘n’ is small

and ‘e’ is also small. The present work deal with the shrinkage factor

dependent on the test statistic and arbitrary ‘k’.
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We have studied the risk properties for several choices of level of signiﬁcance,b

sample sizes, a wide range of A and several values of degrees of asymmetry.

4.7 Risk of Testimators

In this section we derive the risk of these two testimators which are defined in the

previous section.
4.7.1 Risk of 6%,
The risk of 6%¢p; under L, (é, 9) is defined by

R(6%sn)= E[6%s1) L, (6,6)

2 2
= E[ks2+(1~k)0§/zf <2S7<z§}-p[zf <l—)5;-<'z§]
Oy T,
vs? vs? vs? vs?
+El:82 2 <sz U 2 >Z22 P 2 <212U—~_2—>/1/22
Sy ) Oyq O

4.7.1.1)

;‘\fN
§N

4.7.12)
S (2 e(% 2"*) ds®

Where J(s )=m

Straight forward integration of (4.7.1.2) gives

N
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Lt~ {1(80.5) - 1(80.3))
2 o\ /2 -[r (Xﬂ»}z{)— I(X%?t,%)-!‘-l]

R (557'1 ) = ("57—) ( + p)

NQ@

5 [ ( -%A,lz'--;-p) - x(xgx,—;»-x»p) +1]

1 — 1,
(4.7.1.3)
Where I(x;p) = (/Ip) j e~ xP" dx refers to the standard incomplete gamma
0
§

. a,
function, 1 = pr il and

= b (G- +a) e (? i de
b= g L kG- 2)+2) O e

I3 = S — j. ln(—i—) en(l)t 71 dt

7 )

r.oty (1
I, = --1;7—-?-'—-—13-* f ln(—&) e ( ) —“1dt
272 r(-i) x5
4.7.2 Risk of 6%,

Again, we obtain the risk of &gy, under L, (6,6) with respect to s2, given by

R(6’sp) = E[&ZSTEI Ly (é= 9) ]

2 2 2 2 U 2
=E[k152+(1"k1)06/l'1_ <%§§“<Z§}'P[Z12 <“‘;_£2’“<Z§1
0 g @721

2 2 2 2
Pl DS ~ s S 9 s
+E[S' ——-<x U — >x§]-p[-—~62 <x;U—-—->Z§]
0

)
0 0 Oy
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P

2
s [ o)
= | |2 £5%) ds - j pin| DL fs?) ds’
2 2 (o2 (22
Xi0g Xﬂ'o
z%:’ P , 2 , B
jf(s)ds +j [ ) pln( ] 17 (s?) ds® + j ( ] -p m[;;)wlf(f)dsz
k‘lﬂ'o Zz"o
4.7.2.2)

ISE

Nl""

Where f(s?) 57?(7) (S _—I )

Straight forward integration of (4.7.2.2) gives

-1 - {I(X%)‘"\zi) - I(X%A’—;‘)}
~[1(én3) - 1(80.5) +1]

R(asm)“—“( )% r(y+ ) oy .y
O W_’T?f s

(4.7.2.3)

Where I(x;p) = (/Tp)

oY ——

“xPdx refers to the standard incomplete gamma

2
. [ -
function, 4= =3, and

1 23 [ t? t Py, z_
Il"mfxza (W—F-”L) e (Z)ttz dt
P x4 A t 1
27 7 I’(g) fx%‘zh ( rp - - ﬂ.) e ( ) tz " dt
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o]

2"/ F(v f

x4

t7L g

4.8 Relative Risk of &%

A natural way of comparing the risk of the proposed testimators, is to study its

performance with respect to the best available estimator s? in this case. For

this purpose, we obtain the risk of s? under L (5'2,0'2) as
R (s*)=E[s*| L(6%,07)]
= T [(s2/0'2)P —pln (s2/<3'2)---1]}’(s2)a!5‘2
| e
Where  f(s?) -2—7—:[:(7) (s2) —'"1 A 27

A straightforward integration of (4.8.1) gives

S e6)

Where  w(n) = (d/dn ) InI'n  refers to the Euler’s psi function.

4.8.1)

(4.8.2)

Now, we define the Relative Risk of 0 s7,i=L2 with respect to s under

L(é'Z,O‘Z) as follows:

R.(s?
RR, =’_""—‘€(2 )
R(6sn)

(4.8.3)

Using (4.8.2) and (4.7.1.3) the expression for RR; given in (4.8.3) can be obtained;

it is observed that RR; is a function of ‘A’, ‘v ’, ‘a’, ‘k’ and ‘p’

Finally, we define the Relative Risk of & 51 by
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R.(s®)
RR, = —£—— 4.8.4
2 R(6%sr2) ( )
The expression for RR; is given by (4.8.4) which can be obtained by using (4.8.2)

and (4.7.2.3). Again we observed that RR, is a function of ‘A’, ‘v ’, ‘a’ and ‘p’.

49 Recommendations for Gy

. . . 2 ~2 .
In this section we wish to compare the performance of O sz and O sn with

respect to the best available (unbiased) estimator of 2.
4.9.1 Recommendations for G3;,

It is observed that RR; is a function of v, a, 4, k and the degrees of asymmetry "p".

In order to study the behaviour of o 2ST, with respect to the best available estimator
we have considered several values of above mentioned quantities viz. k = 0.2 (0.2)
1.0, 4=0.2 (0.2) 2.0, v = 5,8,10,12, and p = -2, -1.75, -1.5, -1.25, -1.0, 1.0 and
smaller values of & = 1% and 0.1%. As we have observed that RR; values start
getting negative even for p = +1, so other higher values of ‘p’ are not considered
with a view that for positive values of ‘p’ the usual estimator may perform better
than the proposed one. Also, several studies have pointed out that smaller level of
significance should be taken, this motivated us to consider smaller values of a°
considered as above. There will be several tables of RR; . Some of these have
been assembled at the end of the chapter. However our recommendations based on

all these tables are as follows.

1. O'sp performs better than 62 at a = 1% for the whole range of ‘A’ for p =

-2 i.e. the values of RR; are greater than unity for 0.4 < A4 < 1.8. In this

situation the range of ‘k’ is 0.2 <k < 0.8. It is observed that as p assume
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other negative values upto p = -1, still the performance is better but the
range of ‘A’ changes and forp=-1itis 0.8 <A1 <1.2.ie. it reduces. These
values are obtained for v = 5. However, for other values of v i.e. 8, 10 and
12 again a similar pattern is observed but now the recommended values of p

are upto -1.50.

. The positive values of ‘p’ (p = +1 reported here) are indicative of better
performance of o2, so it is suggested that the use of GEL would be

beneficial for under estimation situations.

. We have considered a = 0.1% also to observe the behaviour of & zsz; , here
the range of ‘A’ is increased as now it is 0.4 < A < 2.0 which holds even for
‘p’ upto -1.25 again when p = -1 the range changes slightly and becomes 0.4
<A<1.8. As visincreased to ‘8’ the range of ‘A’ decreases for different
negative values of ‘p’ and it isnow 0.6 <A<18forp=-2and 0.8 <A<1.2

forp=-1.

. Still increasing v to 10 and 12 we have observed that the range of A reduces

to 0.6 < A < 1.6 and now the values are better upto p = -1.50.

. For both the values of a° considered here the RR; values are more than ‘1’
but the magnitude of these values are higher for & = 0.1% and the range of

shrinkage factor for all the above recommendations is 0.2 <k <0.8.

. So, it is recommended to consider higher degrees of underestimation with a

small sample size and smaller level of significance. i.e. take v=35,p=-2, a

= 0.1% than O s% performs better than &2 for 0.4 <1 <2.0and 0.2 <k <

0.8.
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4.9.2 Recommendations for 6’%1-2

As the arbitrariness in the choice of ‘k’ is removed by making it dependent on test

statistic, now the relative risk of o 237; with respect to 62 is a function of p, 4, c,
and a. In order to study the behaviour of RR, we have considered p = -2, -1.75, -
1.50, -1.25, -1.0 and 1.0, 2 = 0.2 (0.2) 2.0, v = 5,8,10 and 12, @ = 1% and 0.1% .
Again the reason for considering only one positive value for degree is that RR;
values turn negative even at p = +1. Again there will be several tables of RR;;

some of these have been assembled at the end of the chapter however our

. ~n2
recommendations for 0 sz are as follows:

1. For 02 <A< 1.6,p=-2,v=>5and @ = 1% O s; dominates 62. However
the range of ‘A’ decreases as ‘p’ becomes -1.75, now itis 0.2 <A <1.4 and it
remains true upto -1.25. But for p = -1 the range of ‘A’ is shorter as it is now
0.8 < A <1.2. These values of RR, were observed for v = 5. For the other
values of ‘v’ almost similar pattern of RR; values is observed but the values

become smaller as v increase.
2. Here also for positive values of ‘p” &2 the usual estimator performs better
a2 e
than O 51 as the RR; values are negative in this case.
3. For another lower level of significance i.e. a = 0.1% the values of RR; are
higher in magnitude as compared to those at & = 1%. Also the range of ‘A’
increases and it becomes 0.2 < A < 2.0 upto p = -1.50, it slightly decreases

and becomes 0.6 < A < 1.6 for p = -1. Again for p = +1 the RR; values are

negative for the whole range of A.
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4. Changing v = 8, 10, 12 we observe that the range of ‘A’ reduces further and
it becomes 0.6 < A < 1.6. However for v = 12 none of the RR, values is

greater than “1°.

5. For both the values of a® considered here the RR, values are more than
unity but the magnitude of RR, values is higher for lower level of

significance.

6. So, it is recommended to consider the higher values of degree of asymmetry
when under estimation is more serious than over estimation and a lower

values of ‘v’.

CONCLUSION:

Two shrinkage testimators for the variance of Normal distribution have been
. oA2 A2
proposed viz. O s and O s7, .
. A2 . ~ . ~2 .
The values of RR; (i.e. O s; with respect to %) and RR, (i.e. 0 s5 with

respect to &%) are not much different in their magnitudes. However o 2ST2 is a
shrinkage testimator based on test statistic, so it could be used. It is observed
that the use of GELF does not provide good result for positive values of degrees
of asymmetry (i.e. overestimation being more serious). So, it is recommended

for the reverse situations.

A lower value v = 5 with p = -2, @ = 0.1% provide better result for almost the
whole range of ‘A’. However both the estimators perform better than the usual
estimator for other values also but the reported values are indicative of the best

performance.
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Tables showing relative risk(s) of proposed testimator(s) with respect to the
best available estimator.

Table : 4.9.1.1 Relative Risk of 5'2ST, a=0.1%,v,=5k=0.2
A p=-2|p=-1.75|p=-150 | p=-125| p=-1 p=1
0.20 0.833 0.671 0.558 0.476 0.411 -2.82
0.40 1.432 1.298 1.079 0.869 0.687 -2.13
0.60 | 1.801 1.962 1.827 1.522 1.18 137
0.80 | 1.831 2.171 2214 1.95 1.527 -1.101
1.00 | 1.727 2.058 2.16 1.966 1.575 -1.028
120 | 1.599 1.856 1.932 1.775 1.448 -1.081
1.40 1.48 1.661 1.691 1.547 1.277 -1.268
1.60 | 1379 1.494 1.485 1.346 1.117 -1.719
1.80 | 1.293 1.358 1.319 1.182 0.983 -3.129
2.00 | 1.221 1.247 1.186 1.051 0.873 -3.934
Table:4.9.12 Relative Riskof 6°s7, a=0.1%,v;=5,a=-1.75
» | k=02]k=04] k=06 | k=08 | k=10
0.20 0.671 0.867 0.994 1.027 0.839
0.40 1.298 1.428 1.411 1.255 0.821
0.60 1.962 1.911 1.733 1.429 0.818
0.80 2.171 2.05 1.84 1.502 0.807
1.00 2.058 1.976 1.818 1.517 0.796
1.20 1.856 1.829 1.738 1.5 0.786
1.40 1.661 1.674 1.639 1.466 0.777
1.60 1.494 1.533 1.538 1.423 0.769
1.80 1.358 1.411 1.444 1.376 0.762
2.00 1.247 1.308 1.358 1.328 0.756
Table:4.9.1.3  Relative Risk of 6757, a=0.1%,v,=8,a=-1.75
. | k=02 | k=04] k=06 | k=08 | k=10
0.20 0.346 0.486 0.623 0.745 0.825
0.40 0.562 0.703 0.782 0.79 0.709
0.60 1.237 1.288 1.197 1.013 0.738
0.80 1.914 1.741 1.466 1.131 0.723
1.00 1.913 1.756 1.506 1.16 0.695
1.20 1.565 1.532 1.406 1.136 0.666
1.40 1.24 1.28 1.255 1.081 0.639
1.60 1.003 1.072 1.106 1.014 0.615
1.80 0.837 0.914 0.977 0.945 0.594
2.00 0.719 0.795 0.871 0.881 0.577
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Table : 4.9.1.4  Relative Risk of O 2S7‘1 a=1%,vi=5a=-2
/8 k=02 | k=04 | k=06 | k=08 | k=10
0.20 0.859 0.991 1.058 1.047 0.863
0.40 1.127 1.172 1.157 1.073 0.816
0.60 1.277 1.263 1.21 1.099 0.81
0.80 1.273 1.247 1.196 1.093 0.805
1.00 1.21 1.193 1.156 1.072 0.801
1.20 1.138 1.132 1.111 1.048 0.798
1.40 1.074 1.078 1.07 1.025 0.797
1.60 1.02 1.031 1.033 1.003 0.797
1.80 0.976 0.991 1 0.984 0.798
2.00 0.939 0.957 0.973 0.967 0.801
Table:4.9.2.1 Relative Risk of & 2ST2 a=01%,v;=5
X p=-02 | p=-175 |p=-15|p=-125| p=-10
0.20 1.242 1.0587 0.876 0.728 0.601
0.40 1.632 1.558 1.317 1.053 0.815
0.60 1.839 2.029 1.899 1.579 1.215
0.80 1.824 2.151 2.179 1.907 1.489
1.00 1.714 2.026 2.106 1.904 1.521
1.20 1.584 1.824 1.879 1.714 1.396
1.40 1.464 1.627 1.639 1.488 1.226
1.60 1.361 1.459 1.433 1.288 1.065
1.80 1.273 1.321 1.267 1.125 0.931
2.00 1.2 1.209 1.134 0.995 0.822
Table:4.9.2.2 Relative Risk of 6°s7, a=1%,v;=5
r p=-02 [ p=-175 |p=-15|p=-125| p=-1.0
0.20 1.169 1.085 0.967 0.846 0.727
0.40 1.256 1.217 1.084 0.908 0.723
0.60 1.3 1.347 1.282 1.125 0.914
0.80 1.266 1.339 1.323 1.207 1.013
1.00 1.199 1.254 1.24 1.146 0.978
1.20 1.129 1.152 1.121 1.03 0.884
1.40 1.066 1.058 1.008 0.915 0.782
1.60 1.012 0.979 0.913 0.816 0.694
1.80 0.967 0.913 0.835 0.736 0.621
2.00 0.929 0.86 0.773 0.673 0.564
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