


Chapter-5

DOUBLE STAGE SHRINKAGE TESTIMATORS UNDER GENERAL
ENTROPY LOSS FUNCTION

5.1 Introduction

In situations when there is no a priori knowledge is available for the 

parameter 9 (scale parameter) the sample mean 5c is the BLUE (Best Linear 

Unbiased Estimator) of 9 based on complete set of observations.

However in many real life situations such as mean life time of a component / 

system, average number of days required to get cured from a disease, etc. A guess 

value of 9 in terms of a point (single) or interval is available to the experimenter 

either due to past studies or similar studies or his familiarity with behavior of the 

characteristic under study. Then this guess may be utilized to improve the 

estimation procedure. In order to use this information for constructing an estimator 

for 9, the use of preliminary test of significance has been suggested by Bancroft 

(1944). An extensive bibliography in this area is provided by Han and Bancroft 

(1977) and Han, Rao and Ravichandran (1988).

Several authors have proposed estimators / testimators for the mean life 

(scale parameter) with different shrinkage factors and under different loss 

functions mostly under Squared Error Loss Function (SELF). Recently Srivastava 

and Tanna (2007) have proposed a double stage shrinkage testimator under 

General Entropy Loss Function (GELF) and they have shown the superiority of the 

proposed testimators, over the usual estimator.
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The shrinkage testimators are proposed when the shrinkage factor can take 

any arbitrary value between ‘0’ and *1\ In the present paper this arbitrariness in 

the choice of shrinkage factor is removed by making it dependent on the test 

statistics and hence for a given level of significance and degrees of freedom, the 

shrinkage factor is no longer arbitrary. The choice of an appropriate loss function 

is often guided by economic considerations and the situation^) under which the 

parameter is being estimated.

In this chapter the problem of estimation of the mean life 9 of exponential 

population is considered when a guess 90 of 0 is available to the experimenter. 

The double stage estimation for 9 is to use the mean of the first sample and the 

guess value if Ho 9 - 90 is accepted; otherwise use pooled mean xp of the two 

samples if H0 is rejected.

In section 5.2 we have proposed the two different shrinkage testimators for 

scale parameter of an Exponential Distribution and we have studied the risk 

properties of these two shrinkage testimators under General Entropy Loss 

Function defined in section 4.1.1. Section 5.3 deals with the derivation of the 

risk(s) of these two estimators. Section 5.4 deals with the relative risk(s) of these 

two estimators. Section 5.5 concludes with the comparison of unbiased pooled 

estimator and the proposed shrinkage testimators in terms of their relative risks. 

Further in the same section a suggestion for the shrinkage factor is made.

In section 5.6 we have proposed the two different shrinkage testimators for 

the variance of a Normal Distribution and we have studied the risk properties of 

these two shrinkage testimators under General Entropy Loss Function. Section 5.7 

deals with the derivation of the risk(s) of these two estimators. Section 5.8 deals 

with the relative risk(s) of these two estimators. Section 5.9 concludes with the
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comparison of unbiased pooled estimator and the proposed shrinkage testimators in 

terms of their relative risks. Further in the same section a suggestion for the 

shrinkage factor is made.

5.2 Shrinkage Testimator(s) for Seale Parameter of an Exponential 

Distribution.

Let xn, X12,-------- , xini be the first stage sample of size ni from the exponential

population

f(x;0) =
(1/0) e

0

-x/0 x, 0 > 0 
otherwise

.(5.2.1)

1 -y ,Let 0O be the guess value of 6. Compute the sample mean 3c, = — Yxu and
n fzt

test the preliminary hypothesis Hp : 0 = do, using the test statistic (2«,x, /<90) 

which has Xi,h distribution. It is to be noted that HP is accepted if x\ < 2nQ— <
V 0

x| and Hp is rejected, otherwise where x\ and xf being given by F[x|nj > 

x|] + P [x|Hl < x|] = a where a is the pre-assigned level of significance.

Now, if Hp is accepted, take the estimator k (x, - 0O) + 0O (0 <k < 1) and if it 

is rejected then take n2 = n - ni additional observations x2i, x22,______, X2n2 and

fl 'X -\-fl x
use the pooled estimator xp = as the estimator of 6. The properties of

such estimators have been studied by Srivastava and Tanna (2007) under General 

Entropy Loss Function.

Now, we define the shrinkage testimator 0DSTi and 0DS% of 9 as follows:
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\kxi + (l-k)0o ; if £ (2nxxx/0Q) <%\

[ xp ; otherwise .(5.2.2)

where k being dependent on test statistic is given by k ^In^jO^x2 and 

Finally, taking the ‘square’ of k (i.e. kx =k2), another testimator is defined as

®dst2

5.3

_< (2n\ X, /00 X2 J X + [l ■- (2«J x, 10O X2 f ]#0 ; tf Hois accepted 

x ; otherwise
k r

Risk of Testimators

.(5.2.3)

In this section we derive the risk of all the two testimators which are defined in the 

previous section.

5.3.1 Risk of Odsti

The risk of 0DSTj under LE{e,o) is defined by

= E[kx\ + (l “ k)do/Xi < 2nixildz<xl\p[x2\ < 2Pxi 1% < Xl]

^ | 2wjXj /0O < X\ U 2ntxlj0o > Xi\' P [2w,X] /$0 <X\ U 2nxxxj0Q > Xi,

(5.3.1.1)

2«]

(5.3.1.2)
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Where /(xj = (l/r^) («,/#)”' (x,)”‘ 1 exp(-~ ^x, /<9) 

/(*2) = (Vrw2) fe/6')"2 fe)”2_1 exp(-r^xjff)

A Straight forward integration of (5.3.1.2) gives

*(<W = /i- h- /
f „2 jt \x2 ^
V 2 y

r „2 - \
-I X, (f)

0 >W1 
v z y

+

(/3+/4)-(/5+/6)- / X,2 (/) 1 / X2 <p AUL w -/ -2-ZL W2 1 j 2 1 + 1

(5.3.1.3)
x

Where /(x;p) = (l/h/?) J e~x xp~x dx refers to the standard incomplete gamma
function and

Ad
/,= } Itfln^x'Y&l Xl)+'!>]P(Vrnt)e-‘t-'-'dt

*\4
2

J2 = J J7 In [(2? 7n\ <!> X2 )- (27 2T2 )+ (l/r n^ef tn'x dt

A
n

0 0
(n*i)(r«2)(W. +«2)'

(?j +t2)p e *' t{n' 1 e ?2 ^2”2 1 dt2

«j uu
JJ

si 0
2

f£#
2 00

(r«i)(r«2)(«, +n2Y
(tx +t2)p e >] t"' 1 e ‘2 t2ni 1 dtx dt2

*>= H In (/; +t2)e t} t*' 1 e h 1 dtx dt
o o (rwi)(r«2)(w,+«2y
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/ = r f________p.....
it l (r^)(r«2)(^i +n1)p

2

ln(?j +t2)e h t"1 1 e"h t22 1 dtx dt.

5.3.2 Risk of gnc-r-,

Again, we obtain the risk of 0DSTt under LE{p,o) given by

= E[^x,/e0 z2)2fe -Q,)+Gjif < 2nxxx /0O < zl j-p[zi < 2nxxxM < Z2 ]

+ e[xp I 2«,Xj /$0 < U 2nlxl/eo>zi\p[2nlxl/0o<^{)2nlxl/0o >z2]

(5.3.2.1)

Mk
2n,

m
2m,

Z2&0
2n,

2«,X, ^
^7 (xi ^o)+^o I9 f{xx)dxx

- \ Ph

2m,

2h,

f O - V 2«1x1

j
[xx-e{)+e() 0 f{xx)(Bx

~ J /(* 1)
A
2t?j 00

+

2m,

+
co eg
1J

z\% 0
2m,

X V
ZL 
6

■pin

jp_
l e

(x

y
-pin /> -1

/
f(xl)f(x2)(Bxdx2

-1 f{xx)f{x2)dxx(%2

_(5.3.2.2)

Where /M = (l/F^) fo/#)”' (x,)"' 1 exp(-r^xjd)
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/(x2> = (Vr«2) iniieY fe)”2 1 exp(-772x2/0) 

A straight forward integration of (53.2.2) gives:

= /2-
2 # \ ,2 1 y

•71
y y

> 4.

(i3+i4)-(i5+i6)-h
f Jl A \ f J2. A \

*h
Xj <J)

0v z y
x2 <f>

V 2 ,
+1

Where

L

A T

J ^/n^1{x1j)-^t2l^{x2)') + ^P (l/r«,)
if

2
*2 0
j pin (4/3/«/ {x2j)~{tf/tY)*)+(*>. (Vr«i)

*1 #
2 »a - n

0 0
<AJ \JJ

'< = II
J# Jo(rwi)(r«2)(^+^2)"

•(*, +r2)/’e“?1 /,”* 1 e^t,”2'

2 °on

0 0
(r«i)(r/22)(«, +n2)f

ln(£j +t2)e h txn' 1 e~h t2>h~

L
OJ w

= H

x|# 0

P
(r«i)(r/22)(«,+«2)"

In (f, +/2)e (| 1 e h t2‘

___(5.3.23)

tn'-x dt

f”1"1 dr

1 dtx dt2

d/t j ^^2

di ^ d^t2 

!_1 dtx dt2
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A

5.4 Relative Risks of 9mr.

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator xp in this case. For this

purpose, we obtain the risk of funder LE(§,0) as:

re(xp) = EixP

CO CO

= n0 0

(5.4.1)

A straightforward integration of (5.4.1) gives

pin

Re(x) - (w — p{ y/(ri) — ln(/t) }
Tn(np) ^ (5.4.2)

Where y/(ri) = {d/dn ) In Tn refers to the Euler’s psi function.

Now, we define the Relative Risk of 6DSt\ with respect to funder LE{§,d) as 

follows:

SR1=Rls(xp)/R0Dsl.) _______(5.4.3)

Using (5.4.2) and (5.3.1.3) the expression for RRi given in (5.4.3) can be obtained;

Similarly, we define the Relative Risk of &dst2 under LE{3,0) as follows

RRi=RB(xp)lR(6xh) _______ (5.4.4)

The expression for RR2 given in (5.4.4) which can be obtain by using equation 

(5.4.2) and (5.3.23).
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Now, it is observed that both RRj and RR2 are a function of ‘0’, , ‘n25,

‘a’ and ‘p\ To observe the behavior of the risk(s) of 0DSTi and 0DSTi , we have

taken several values of these viz a = 1%, 5%, 10%, (n^ n2) = (4,6), (4,8), (6,10), 

(4,12), 0 = 0.2 (0.2) 1.6 and p = -3, -2, -1, 2, 3, 4 ; ‘p’ is the prime important 

factor and decides about the seriousness of over/under estimation in the real life 

situation. The recommendations regarding the applications of proposed testimators 

are provided as follows:

/N

5.5 Recommendations for 0osTt

A J\

In this section we wish to compare the performance of @dstx and @dst2 with 

respect to the best available (unbiased) estimator of xp .

(1) Taking ni = 4, n2 = 6 and fixing a = 1% we have allowed the variation in ‘p’ 

which represents the degree of asymmetry. As the shrinkage factor depends on 

test statistics and hence on ‘a5. It has been observed that the RR1 values are 

higher than 1 (unity) in the whole range of <j>, demonstrating that 0DS1[ 

performs better than xp. For p = -3 (negative) and p = 2 (positive) its 

performance is ‘best’ however it performs better for the other values of ‘p’ 

also.

(2) It is also observed that 0DSn performs still better for nj = 4, n2 = 8 (n2 = 2ni) 

i.e. perhaps second sample should be twice as much compared to the 1st stage 

sample.

(3) For a = 5% and a = 10% a similar pattern of performance is observed however 

the magnitude of RRi is highest at a = 1%.
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(4) For a = 10% and nj = 4, n2 = 6, it observed in particular that RRj is highest for 

p = 2 (positive) and then followed by p = -3 (negative) a trend not observed 

earlier. However for other values of (ni, n2) considered here, p = -3 shows 

larger values of RR*.

(5) In the next comparison stage, we have fixed p = -3 and have allowed variation 

in a values. Maximum gain in RRi is observed at <j>= 1.0. So, we have fixed <j> 

= 1.0 again for the whole range and for all the combination(s) of (ni, n2). 

0DSTX fairs better than the usual estimator. It is also observed that there is a 

minor difference in the values of RRj for (4, 8) and (4, 12). So again second 

stage sample may be chosen in this light.

(6) It is observed that (6,10) sample combination does not give better control over 

risk as the values of RRi are smaller in magnitude compared to other RRi 

values.

(7) The data set considered here is ni = 4, n2 = 10 and <f>= 0.8 (different from 0 = 

1.0 i.e. 0^6O) again for a = 1%. We have allowed the variation in the values 

of shape parameter ‘p’ and it has been observed that 0Dsn dominates the usual 

unbiased estimator for all values of ‘p’ and the performance is at its best for 

p = -3.

(8) It has been observed that positive values of ‘p’ considered here, the maximum 

RRi values have been observed at p = 2, for different values of or*.The highest 

values in terms of magnitude are observed at a = 1% for different n! and n2 

combination values.
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The present investigation has also considered the square of S.F. and we have 

proposed another testimator viz 0DST2. We have also studied the behaviour of 

Relative risk(s) of 0DST2 with respect to xp and have computed RR2 values, to 

observe the behaviour of 0nsT2 . For all the values of (n2, n2), #, a and p 

considered for RRj, we have computed RR2 values for the same set of values. 

Following observations have been made.

1) It is observed that 0DST2 performs better than the usual estimator xp. For

all the values considered here. However the magnitude of RR2 values” are 

higher than RRi values, indicating a better control over risk by the proposed 

estimator 0DST2 •

2) Almost similar recommendations as above in case of 0Dsn (1-8) follow 

here also. But definitely 0DST2 has better performance compared to 0DSTX .

CONCLUSIONS:

The present chapter studies the risk properties of double stage shrinkage 

testimator(s) of the scale parameter (average life) of exponential life model using 

General Entropy Loss Function. Two choices of the shrinkage factor have been 

made making it dependent on the test statistics, hence the choice of ‘a’ plays an 

important role. We conclude that a lower value of level of significance i.e. a = 1% 

is suitable for almost all values of ‘shape’ parameter of the loss function but in 

particular when p = -3, at a = 1% its performance best for (ni = 4, n2 = 8) and 

similar recommendation holds for p = 2 (positive).

The ‘square’ of S.F. gives better control over the relative risk as has been observed 

by Comparing the relative risk values. So, to conclude take a = 1% square of the 

shrinkage factor, p = -3 or p = 2 and (ni = 4, n2 = 8).
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Tables showing relative risk(s) of proposed testimator(s) with respect to the 

best available estimator.

A

Table : 5.5.1.1 Relative Risk of &dst{ ol = 1 %, ni = 4, n2 = 8

0 p = -3 p = -2 p = -l p = 2 p = 3 p = 4
0.20 1.324 0.684 0.321 0.873 0.836 0.94
0.40 2.225 1.741 1.218 1.147 1.53 1.187
0.60 4.729 3.217 2.278 2.453 2.241 1.664
0.80 6.102 4.69 3.54 3.62 3.33 2.444
1.00 9.883 6.898 5.369 5.147 5.883 5.062
1.20 4.447 4.8 - 3.533 3.998 3.576 3.01
1.40 2.284 3.01 2.017 2.712 2.016 1.833
1.60 1.614 1.688 1.786 1.089 1.032 0.916

A

Table : 5.5.1.2 Relative Risk of ^dstx ol = 1%, ni = 6, n2= 10

0 p = -3 T3 II i p = -l p = 2 p = 3 p = 4
0.20 0.953 0.431 0.153 0.159 0.483 0.831
0.40 1.224 0.445 0.209 0.282 0.643 0.897
0.60 2.002 1.096 1.388 1.904 1.618 1.783
0.80 5.362 4.12 3.789 4.027 3.218 2.866
1.00 9.259 8.591 6.399 7.714 6.367 5.165
1.20 5.908 4.197 4.218 5.025 3.737 3.165
1.40 2.954 2.985 2.58 3.073 1.633 1.421
1.60 1.722 1.329 1.766 1.513 0.823 0.698

A

Table : 5.5.1.3 Relative Risk of &dst{ ol - 5%, ni = 4, n2 = 8

0 p = -3 p = -2

W
*1IIa

. p = 2 p=3 IIa
<

0.20 1.103 0.564 0.461 0.598 0.641 0.86
0.40 1.237 0.76 0.987 0.819 0.753 1.689
0.60 2.103 1.771 1.639 1.313 1.468 2.096
0.80 4.103 3.631 3.238 2.819 2.694 2.437
1.00 6.684 6.075 5.758 5.097 4.771 4.413
1.20 4.04 3.068 2.587 3.111 2.581 1.988
1.40 2.15 2.019 1.627 2.098 1.627 1.077
1.60 1.04 0.957 0.804 1.203 0.787 0.653
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A

Table : 5.5.1.4 Relative Risk of @dstx a ~ 5%, ni = 6,112= 10

0 p = -3 tJ II lts
>

p = -l P ~ 2 p = 3 p = 4
0.20 0.702 0.52 0.147 0.177 0.248 0.845
0.40 0.806 0.834 0.258 0.886 0.548 1.053
0.60 1.702 1.44 1.249 1.202 1.023 1.241
0.80 2.891 2.484 2.841 2.514 2.702 2.311
1.00 5.888 5.073 4.069 4.667 3.992 3.893
1.20 3.214 2.334 2.23 2.871 2.667 2.378
1.40 1.066 0.417 1.077 1.911 1.754 1.716
1.60 0.025 0.16 0.678 0.363 0.429 0.927

A

Table : 5.5.1.5 Relative Risk of &dstx ct = 10%, ni = 4, n2 = 6

0 II 1 u> P = -2 p = -l p = 2 11 w p = 4
0.20 0.685 0.716 0.338 0.784 0.236 0.669
0.40 1.404 0.938 0.535 0.809 1.092 1.585
0.60 1.949 1.789 1.331 1.409 1.37 2.07
0.80 2.554 2.537 2.486 3.054 2.418 2.382
1.00 3.934 3.443 3.3 4.881 3.789 3.148
1.20 2.282 2.631 2.737 2.097 2.087 2.07
1.40 1.136 1.306 1.206 1.598 1.34 1.286
1.60 0.075 0.168 0.591 0.784 0.672 0.94

Table : 5.5.2.1 Relative Risk of @dst2 a = 1%, ni = 4, n2 = 8

0 p = -3 *9 II p = -l p = 2 P ~3 p = 4
0.20 1.154 0.626 0.311 0.739 0.683 0.939
0.40 2.047 1.697 1.213 0.815 1.399 1.084
0.60 3.742 1.212 2.277 1.715 2.221 1.785
0.80 4.696 2.893 4.553 2.974 3.468 1.866
1.00 6.42 7.955 5.443 4.653 4.094 2.279
1.20 4.318 5.692 3.556 2.173 2.259 2.267
1.40 3.548 2.514 2.147 1.516 1.416 1.441
1.60 1.491 1.63 1.882 0.868 0.768 0.763
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5.6 Shrinkage Testimator for the Variance of a Normal Distribution

Let X be normally distributed with mean n and variance a2, both unknown. 

It is assumed that the prior knowledge about a2 is available in the form of an 

initial estimate Oq. We are interested in constructing an estimator of a2 

using the sample observations and possibly the guess value We define a 

double stage shrinkage testimator of a2 as follows:

1. Take a random sample xu (i = 1,2,__ , %) of size nx from N(ju, a2)

1 1and compute xt = — %xu , s} = — E(*it - *i)2-

2. Test the hypothesis H0 : a2 — Uq against the alternative H1 ■ a2 =£ Og

2
at level a using the test statistic , which is distributed as x2 with vi

«0

= (nx — 1) degrees of freedom.
2

3. If H0 is accepted at a level of significance i.e. x\ < ^y- < x2 , where
°0

x2 and x2 refer to lower and upper critical points of the unbiased 

portioning of the test statistic at a given level of significance a, take 

k\ s2 + (1 — /ci)oo as the shrinkage estimator of a2 with shrinkage 

factor ki dependent on the test statistic.

4. If H0 is rejected, take a second sample x2]- (} = 1,2,__ , n2) of size n2 =

(n - nt) compute x2 = j-lx2J , s'j = -—£(*2; ~^)2 and take
n2 n2 *

(Vjs2 + v252)/+ v2) where v2 = (n2 — 1) as the estimator of a2.

To summarize, we define the double- stage shrinkage testimators ff^STi and 

°dst2 °f 0-2 as follows:
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&DSTI

+ (1 — fe)oo , 
(Visf + v25j) 

(Vl + V2)

if H0 is accepted 

if H0 is rejected

Estimators of this type with k arbitrary and lying between 0 and 1 have 

been proposed by Katti (1962), Shah(1964), Arnold and Al-Bayyati (1970), 

Waikar and Katti (1971), Pandey (1979) and k being dependent on the test 

statistics by Waikar, Schuurman and Raghunandan (1984), Pandey, 

Srivastava and Malik (1988).

pi si + (1 - ki)<jQ ,&DST2 = ) 2 _ (yl5l + V2SP
lSp" (Vi+V2) '

if H0 is accepted 

if H0 is rejected

Where k^ being dependent on test statistic and is given by k± = -.

We have studied the risk properties of these testimators under GELF defined 

in section 4.1.1.

5.7 Risk of Testimators

In this section we derive the risk of proposed testimators which are defined in the 

previous section.

5.7.1 Risk of alST1
The risk of d2DST\ under LE{a2,(72) is defined by 

Ric^DST,)■= E[&2dstx \ Le(<j2,a2)]
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= E
fc?,2+(l k)cljxx< 1 2 <xl

P
2 ^l2 2

Xi < 2 < %2
L ! °o J L j

+ E
2 2 

»S i 2 i i  ̂l 2
1 f - < *1 U -4“ > *2

cr;

2 2 
t^l *?, 2 l l ^1 *^l 2< Xx U -H- > 4

crn CTn

(5.7.1.1)

*!*o

*12*Q2

4)+4

O'
/W) ^l2

2 2 

*i*o

J2 2 
*1*0

^(y,2-o-02)+o-02

O'
f(sI2) ^i2

2 2 

*2^0
2 2 

*1*0
U CO

J /(^i2) +11
*12*02 0 0

/ 2 V f 2\
p In

\a'j _2
^ ;

f (*?)/(??)&?&?

+1 1
*1*0 0

( 2 V
fp_

v<72 
V /

-p In a2, f{h)fih)dsxds2

Where f(si u,/ / /\ )
2 /2 r 4

JLiMi2''
2 dlss

(5.7.1.2)

f(^ = ^Av ysWT'2 /2 r °*

^ u? s7~
2 cr2

ds0

Straight forward integration of (5.7.1.2) gives
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Ii-Iz-{l(x!*.y)-l(x5*,y)}

-I3-I4

(5.7.1.3)
x

Where Hx;p) = (l/l>) | e~x xpA dx refers to the standard incomplete gamma

0
2function, X = ^ , and

a1
h = »i 1,„' £j/ (k eXzh tl -t1 dti

h =

2z r(f)
P {$l4k{rrx)+’L)e~®tlt^ldti

a
22 r

5.7.2 Risk of ffj)sT2

Again, we obtain the risk of d2DSTl under Lb{§,o) with respect to s|, given by

R(S2dsti)=E[&2dst1 LE(S,d) ]

E
K sf +(l k,)cr70/< 1 2‘ <^|

\P
2 ^1 ^l2 2Xx < 2 < Xl

<*0

+ E
&■* *^1 2 l t
-H- < Xx U '>^2 P

Sl
■<^2u

»i A'l

<T„
■>Xl

(5.7.2.1)
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f(s I2) ds2

O; j 2 2 i 2driah 2rf°o

f{s2)ds2- j p In
„2_,2Zi<7q

2 2 KV0 Z
s\2 ~ °o )+O0

/Wo 2 2 Jl^O

V ®

j /(^l2) ^l2 + | |

0 0

( 2 v 

v0" y
-/?ln

Z' 2 ^ 
SJS_ f{Sx)f(h) dsi2ds22

00 00

\ \

Mi
v

f 2\P
_ 2

y
-/> In

2\
f(si) f(s22) ds2 ds22

(5.7.2.2)

Where ./W) =
2/2r n

and f(s2 ) — uj/
2 /2 r ul

^ i

2 V-r—1

2ii£i
2 er2

2 >\
(is/

/ , 2 "N
ds.

Straight forward integration of (S.7.2.2) gives

«(^2)= Sr2©72

+

-K^.7)-'(x?*© + l]

^|l[l(x?X,f+p)- l(x§*.^ + p) + l]

I3 -14

(5.7.2.3)
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5.8 Relative Risk of

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator s| in this case. For

this purpose, we obtain the risk of under LE [a2, a2) as:

RE(sp) = E[sp2\L(a2,a2)]

= J J {(sp2/cT2y-p\n {sp2/cT2)-l f(Si2)f(s22) ds
0 0

, 2ds 2>J UA2

(5.8.1)

Where

272 n
lai
2 or2 J j 2

ev 2 as1
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and /022) 1
2/2 r

ds2

A straightforward integration of (5.8.1) gives

,(5.8.2)

Where W(n) - {d/dn ) lnD? refers to the Euler’s psi function.

Now, we define the Relative Risk of &2m ,i = 1,2 with respect to s2 under 
l(<x2,cr2) as follows:

RR1 =
^(sp2)

R^^DSTl) ,(5.8.3)

Using (5.8.2) and (5.7.1.3) the expression for RRi given in (5.8.3) can be obtained; 

it is observed that RRi is a function of‘A’, i(v1, v2)’, ‘a’, ‘k’ and £p’. In order to 
study the risk behaviour of <rj5ri we have considered the following values of 

these quantities, k = 0.2 (0.2) 1.0, A = 0.2 (0.2) 2.0, p = -3, -2.5, -2.0, -1.5, -1.0, 1.0 

and 1.5, a = 1% and 0.1%, (vt,v2) = (5,5), (5,8), (5,10), (5,12).

*2
Finally, we define the Relative Risk of & dst2 by

RR2 =
Re( sp2)

R(&2 DST2) (5.8.4)

The expression for RR2 is given by (5.8.4) can be obtained by using (5.8.2) and 

(5.7.2.3). Again we observed that RR2 is a function of ‘A’, i(v1,v2 )’, ‘a’ and ‘p\ 

We have considered same values of these as in case of RRi not ‘k’. i.e. A = 0.2
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(0.2) 2.0, p = -3, -2.5, -2.0, -1.5, -1.0, 1.0 and 1.5, a = 1% and 0.1% , {vt,v2) = 

(5,5), (5,8), (5,10), (5,12).

5.9 Recommendations for o2DSTi

a2 a2
In this section we wish to compare the performance of cr dstj and cr dst2 with 

respect to the best available (unbiased) estimator of a2.

5.9.1 Recommendations for a\ST1

There will be several tables of RRi , some of these tables are assembled at the end 

of the chapter. Recommendations for the use of Sdsti are as follows:

1. For (v\,v2) = (5, 5), a = 1% the following table provides the effective 

ranges of ‘2’ for different choice of £k’ (shrinkage factor) values. Various 

degrees of asymmetries are also presented.

k A P
0.2 0.6 < A < 2.0 p = -3 to -1.5

0.4 0.6<A<2.0 p = -3 to -1.5

0.6 0.8 < A < 1.6 P = -l

0.8 0.8 < A < 1.4 p = 1 & 1.5

From the above table it is observed that the range of ‘A’ decreases as ‘k’ 

increases and it remains true for extreme negative and positive values of ‘p\ 

2. As (v1(v2) change i.e. (5,8), (5,10) the values of RRi also change in their 

magnitude but still higher than unity. A high value of v2 is not 

recommended. In this case, also for 0.2 < k < 0.8 the effective range of ‘A’ 

varies slightly as in the above table as for p = -3 it is 0.6 < A < 2.0 for k = 0.2 

where as for k = 0.8 it becomes 1.0 < A < 2.0 for p = 1.5 .
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3. Next, we have considered a = 0.1% as it is reported by several authors that 

shrinkage testimators perform better for smaller level of significance. RRi 

values obtained for this choice of ‘a’ are better than those obtained for 

earlier value of ‘a’ as their magnitude is higher. A higher value of relative 

risk indicates better performance of the proposed estimator.

4. The effective ranges of‘A’ are more or less the same obtained previously i.e. 

for p — -3 it is 0.6 < A < 2.0 and for p = +1 it is 0.8 < A < 1.6 However as 

mentioned above the numerical values are larger.

5. As (vt, v2 ) change to (5,8) and (5,10) the RRi values are better in the range 

of 0.6 to 2.0 for ‘A’ when p is upto -1.75, however ‘A’ range becomes 0.8 to 

1.8 for p = -1.5 and -1.0. This range reduces further to 0.8 to 1.6 for both the 

positive values of‘p\

A

5.9.2 Recommendation for Ojysii

There will be several tables of RR2 some of these are assembled at the end of

the chapter. The recommendations are as follows:

1. For a = 1% and all the negative values of ‘p’ i.e. -3 upto -1.5 Gdst2 

performs better than s| for fairly large range of A i.e. 0.6 < A < 2.0. 

However for p = -1 this shrinks and it becomes 0.8 < A < 1.6. For p = +1 

and 1.5 the values of

RR2 are better i.e. greater than unity for a range of ‘A’ i.e. 0.8 < A < 1.6 for p 

= +1 however for p = 1.5 it becomes 0.8 < A < 1.4 it reduces very slightly. 

So, &dst2 can be considered for various degrees of positive / negative 

asymmetry. This behaviour is observed for (v1 ,v2) = (5,5).

2. As we have considered another data sets for (vx, v2 ) it is observed that as 

v2 increases i.e. (5, 8), (5,10) etc. still (Jdst2 behaves nicely for different
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positive / negative values of ‘p\ But it is observed that the performance is 

better for larger negative values of‘p’ as compared to positive values of ‘p\ 

Further, it is noted that the magnitude of RR2 values decrease as 

v2 increases. However it does not change the effective ranges of ‘A’ i.e. 

again for p = -3 it is 0.6 < A < 2.0 which reduces by 0.2 units as ‘p’ changed 

from -3 to -1 but even for p = -1, it is 0.6 < A < 1.6. For much higher values 

of v2 i.e. v2 = 12 and more the performance is not very good.

3. Next we reduce ‘a’ further to a = 0.1% then still better values of RR2 are 

obtained in the sense that they are higher in magnitude as compared to those 

obtained for a = 1%.

4. The effective ranges of ‘A’ are more or less same as obtained previously i.e. 

for p = -3 it is 0.6 < A < 2.0 and for p = +1 it becomes 0.8 < A < 1.6. Again, it 

performs better for both positive/ negative degrees of asymmetry for almost 

all the data set considered here. But the magnitude of RR2 values are higher 

uniformly than those obtained at a = 1%.

5. It is recommended that use large negative value of ‘p’, smaller level of 

significance and a small sample (vt, v2 ).

CONCLUSIONS:

We have propose two double stage shrinkage testimator(s) for the variance of a 

Normal distribution viz. ffosri and &dst2- h is observed that both the 

testimators dominate the usual unbiased estimator of a2 for various sample 

sizes, degrees of asymmetries, levels of significance and a wide range of‘A’. It 

is found that the use of GEL is beneficial for those situations where 

underestimation is more harmful than overestimation or vice- versa. In 

particular for p = -3 and p = 1.0, a = 0.1% and (vx,v2) = (5,5) both the
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testimator(s) perform at their best. However for other values also the 

performance is satisfactory. So, it is recommended take smaller sample sizes, 

smaller level of significance for both positive and negative values of degrees of 

asymmetry. In particular alsT2 may be preferred as it removes the arbitraryness 

in the choice of shrinkage factor. So, it can be mentioned that shrinkage 

testimators perform better under GELF.

Tables showing relative risk(s) of proposed testimator(s) with respect to the 

best available estimator.

Table : 5.9.1.1 Relative Risk of O'1 dstx a = 0.1%,( v1,v2) = (5,5), p = -3

X

c
*

o
1!

44 ®
II

44 k = 0.6

Q
O

©
II

44

0.20 0.129 0.179 0.192 0.149
0.40 0.598 0.669 0.564 0.337
0.60 2.371 1.989 1.272 0.596
0.80 4.35 4.172 2.479 0.936
1.00 7.854 6.174 5.214 1.365
1.20 5.518 4.561 4.974 2.173
1.40 4.134 4.009 3.873 2.43
1.60 3.264 3.496 3.612 1.966
1.80 2.854 2.903 2.845 1.426
2.00 2.03 1.868 1.981 1.237
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Table : 5.9.1.2 Relative Risk of O'2dstx a = 1% ,( v1,v2) = (5,5), p = -3

X

*1©
II

a

k = 0.4 k = 0.6
00©
II

0.20 0.149 0.19 0.196 0.153
0.40 0.596 0.646 0.551 0.346
0.60 2.024 1.756 1.198 0.611
0.80 5.209 3.658 2.122 0.94
1.00 6.541 4.929 3 1.301
1.20 4.996 4.615 3.434 1.65
1.40 3.588 3.75 3.372 1.93
1.60 2.712 2.998 3.049 2.104
1.80 2.176 2.464 2.69 2.176
2.00 1.823 2.085 2.367 2.167

Table : 5.9.2.1 Relative Risk of &2dst2 a=l%, (vt, v2) = (5,5)

X p = -3 p = -2.5 ■■

IIa

■o II 2* In p = -1.0 P = 1 P = 1.5
0.20 0.265 0.263 0.263 0.246 0.182 0.172 0.282
0.40 0.874 0.71 0.594 0.481 0.326 0.279 0.426
0.60 2.409 1.917 1.528 1.199 0.839 0.647 0.828
0.80 4.943 4.708 4.041 3.324 2.612 1.629 1.6
1.00 5.67 6.903 7.338 7.522 5.091 4.169 2.647
1.20 4.464 5.371 5.886 6.642 6.524 5.442 2.541
1.40 3.3 3.597 3.627 3.772 3.394 2.829 1.547
1.60 2.529 2.548 2.399 2.327 3.175 1.43 0.899
1.80 2.041 1.942 1.745 1.617 1.972 0.844 0.566
2.00 1.715 1.563 1.364 1.226 1.401 0.561 0.387

Table : 5.9.2.2 Relative Risk of o"dst2 a = 0.1% , (v1( v2) = (5,5)
X

rnIIa

p = -2.5

r
i*IIa

p = -1.5

©T**l1

IIa

P = 1 P = 1.5
0.20 0.235 0.234 0.236 0.226 0.176 0.174 0.278
0.40 0.858 0.697 0.6 0.52 0.409 0.379 0.507
0.60 2.857 2.144 1.711 1.415 1.146 0.9 0.977
0.80 3.38 5.283 3.631 4.47 3.602 2.143 1.984
1.00 6.92 6.46 6.591 6.884 6.081 4.099 3.357
1.20 5.342 5.642 5.793 4.171 6.213 3.131 2.613
1.40 4.746 4.677 4.464 3.557 3.007 1.588 1.373
1.60 3.506 3.577 2.72 2.12 1.749 0.887 0.768
1.80 2.351 2.554 1.902 1.458 1.179 0.562 0.482
2.00 1.661 1.982 1.453 1.099 0.876 0.392 0.33
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