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1. Introduction

INTRODUCTION

The main Endeavour of any scientific method is to help human being 

towards its betterment, to this end and statistical studies have been continuously 

playing an important role.

Today the science of statistics is an indispensible part of any and every 

sphere of human activity and is extensively applied in framing polices and 

formulating decision in a large number of diversified fields Covering Natural, 

Economic, Physical, Social sciences and Life Sciences. According to Prof. P.C 

Mahalnobis, “statistics is essentially an applied science. Its only justification lies in 

the help it can give in solving a problem.”

The formulation and growth of the theory of probability during 18 th and 19th 

centuries brought about a sharp and important changes in the basic premises of 

scientific thinking. Scientific investigators during this period began to realize a 

close resemblance between the laws of uncertainties governing the outcome of 

games of chance and the laws of variations observed by them in apparently 

uncontrolled phenomena in their fields of study. This led astronomers, physicists, 

geneticists, engineers, agriculturists etc. to believe that a stochastic or probabilistic 

model (or approach) could possibly explain the variability of observations in fields 

of scientific inquiry, where such variations were unavoidable.

It became, however, apparent even as early as in nineteenth century that no 

matter how strongly one believed in the deterministic model, it was not possible to 

use them beyond limits. A stochastic model was clearly needed as a realistic basis
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for explaining natural phenomenon characterized by inherent variability. Neyman 

in Journal of American Statistical Association (1960) reaffirmed that ‘currently in 

the period of dynamic indeterminism in science, there is hardly a serious piece of 

research, which, if treated realistically does not involve operations on stochastic 

processes’. It was the growing complexity of physical sciences and later in 

biological and social sciences that inadequacy of deterministic models was realized 

and led to the gradual replacement of such models by stochastic models.

1.1 STATISTICS AS A SCIENCE OF INDUCTIVE INFERENCE

As we have already remarked earlier statistics is concerned with collection 

of data and with their analysis and interpretation. The methods by which data are to 

be collected has given rise to different techniques and this itself has given a branch 

or area in statistics called sampling. Next comes the question as to what the data 

tell us. This answer depends not only on the data but also on the background 

knowledge of the situation or phenomenon; the latter is formalized in the 

assumptions under which the analysis enters. The process of inference involved in 

statistics is of an inductive nature - inferring from particular to the general or from 

sample to the population. It is here that the effectiveness of statistic lies which has 

evolved and is in a continuous process of evolving the scientific methodology 

based on the theory of probability to meet the challenging needs of such 

inferences. Thus the development in probability theory and statistical inference are 

to go hand in hand. Statistics today has become an indispensible tool in planning of 

experiments for any scientific inquiry and in drawing valid inferences on the basis 

of data that could be quantified. Instead of going into how the data are to be 

obtained, we would assume for our purpose that they are rather given and describe 

in brief some principal lines of approach of statistical analysis.
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CONDITIONAL INFERENCE

One of the fundamental problems in statistics is that of specification of an 

appropriate model to represent the phenomenon under study and to make analysis. 

It is indeed obvious that the validity of statistical inference depends on the 

appropriateness of the model. In most applications the model is parametric and if it 

can be determined in advance from theoretical considerations, and statistical 

inferences can be drawn using classical theory. This is the view of late Prof. R. A. 

Fisher according to whom there is 1: 1 correspondence between the model and its 

analysis.

There are situations when we come across data that are collected from 

operational studies or a researcher feels that it is extremely unlikely that any 

particular specification will represent exactly the phenomenon under investigation. 

In the former, data are not taken from well designed experiments or surveys having 

a specific underlying frame work. In such cases data analysis cannot confine itself 

to a prescribed model and hence cannot be unique. We have to examine and 

discuss more or less the adequacy of any proposed framework before we build 

statistical theories on it. The main difficulty faced by the statistician in analyzing 

data collected from operational studies is that he has first to evolve a model from 

the data, test its adequacy on it or a similar data and then to make final inferences. 

Thus the inferences drawn are always conditional. The decision to use conditional 

or unconditional inference has to be made by the experimenter (researcher) before 

the experiment and may be based on his prior knowledge obtained from his own 

experience and / or of other workers in that field. If the decision is to use 

unconditional inference, then available inference procedures (Classical or 

Bayesian) may be used. However, if the decision is to use conditional inference;
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then the research worker has to base his inferences on the specification evolved 

through the data and then to go for final inference.

Examples and need of such inference procedures are abound. They occur in 

econometrics, regression analysis, ANOVA models, outliers, and other branches of 

statistics. In all these cases, uncertainties exist and one has to resolve them before 

making final inferences; hence they were given the name testi-testing, testi-mating 

and testi-predicting by Bancroft (1975). For testimating a new name ‘testimator’ 

has been proposed by Sclove, Morris and Radhakrishnan (1972). In all such cases, 

where we use conditional inference it is important that the effect of preliminary 

test(s) on subsequent inference should always be taken into account. This aspect 

was often neglected by applied statisticians.

Suppose we are interested in the estimation of 9 in f(x ; 9) when a random

sample of size n say (xl,x2..... ,xn) is available, f is completely known say for 9 and

in addition either a guess of 9 say 90 or an interval (91,9Z) both known, is given 

in which 9 is assumed to lie. This priori information is sometimes available from 

past experience or similar studies and we are interested in estimators of 9 which 

behave nicely in the neighbourhood of 90 (or in an interval). However, we do not 

assume any distribution of 9 but wish to utilize the information about 9.

CLASSICAL INFERENCE

In this type of inference the data are assumed to be repeated values on random 

variables which, we postulated to follow a joint probability distribution p 

belonging to some known class P. Frequently, the distributions are indexed by a 

parameter 0 (say) taking values in a set Q, so that P = {Pg!0 e Q}. The aim of 

statistical analysis is to specify a plausible value of 6 in terms of a statistic 

t-t(x,,..... ,xn) where t is supposed to be measurable. But there is no unique
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method for the specification of t, though various methods for choosing t have 

been proposed in the literature. This is the problem of point estimation of B as 

enunciated by Fisher about 1920s. If instead of giving a single value of ‘f as, an 

estimate of 9, we determine a set of values for which we can plausibly assert that 

it does or does not contain 6 , we call this estimation by confidence sets or 

hypothesis testing. It was fist formulated by Jerzy Neyman in his 1937 paper and 

later developed by Wolfwitz, Stein, Hodges, Guttman and others. It was remarked 

by them that in some sense estimation by confidence sets or methods may be more 

meaningful.

In contrast to point estimation in which we try to find out a plausible value 

of the parameter on the basis of the information provided by the sample 

observations, in statistical hypothesis testing we are to choose between two 

possible actions regarding the hypothesized value(s) of the parameter, i.e., to 

decide that the distribution is a particular member of a family which is known 

except for the parameters. In the context of testing of hypothesis these two actions 

are called acceptance or rejection of the hypothesis.

1.2 BAYESIAN INFERENCE

In Bayesian approach the parameter is assumed to be random variable with 

an a priori density function, this distribution expresses the state of knowledge or 

ignorance about 9 before the sample data are analyzed. Given the probability

model, the prior distribution and the data set (xi,x2.......,x„), Bayes theorem is used

to calculate the posterior probability density function P(9/D) of 9 where D 

denotes the prior and sample information and on the basis of posterior distribution 

inferences about 9 are drawn. Thus the Bayesian method of reasoning seems rather 

deductive.
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Bayesian inference is an especially important consideration in those areas of 

application where the sample data may be either expensive or difficult to obtain, 

such as reliability and life testing, experiments.

PRIOR DISTRIBUTION :

The prior distribution g(9) on the parameter space fl is specified before 

data became available and is modified using the data to determine a posterior 

distribution, which is the conditional distribution of 9 given the observations say

Xj,..... ,xn. The other difficulties in Bayesian analysis are :(i) There is no

convincing definition of optimality, (ii) The optimal procedure depend heavily oon 

the assumed nature of probability model.

Some other concepts used in Bayesian analysis stem from decision theory 

such as risk, Bayes risk, Minimax and Bayes rules etc. Since the Bayes risk of a 

decision rule depends on the choice of the prior distribution and is a real number, it 

is possible to order. The optimal choice then would be the one which minimizes 

the Bayes risk. How does one select a known density g(9) to express uncertainty 

about 9, is a problem which remains open and controversial? In many practical 

situations the statistician will possess some subjective apriori information 

concerning possible values of 9. This information may often be summarized and 

made objective by the choice of a suitable prior distribution on the parameter 

space. It is perhaps the most difficult task in Bayesian analysis. Although a few 

guidelines have been given regarding the choice of a prior distribution; yet none 

seems satisfactory. Summarizing about the Bayes rules we may say that we are 

interested in them because of (i) they are admissible and (ii) form complete class.

In Bayesian set-up the experimenter expresses his belief about the parameter 

by prior distribution and his misjudgment by a loss function.
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Bayesian methods are now becoming widely accepted as a way to solve 

applied statistical problems in industries and government. Research groups in 

various disciplines like econometrics, education, law, archaeology, engineering, 

medical and life sciences are using Bayesian inferential methods to obtain 

optimum solutions to their problems.

DIFFERENCE BETWEEN CLASSICAL AND BAYESIAN INFERENCE

In simple language, the main difference between Bayesians and classical statistics 

is that the Bayesians treat the state of nature (e.g., the value of a parameter) as a 

random variable, whereas the classical way of looking at is that it’s a fixed but 

unknown value, and that putting a probability distribution on it does not make 

sense.

Bayesian methods provide alternatives that allow one to combine prior information 

about a population parameter with information contained in a sample to guide the 

statistical inference process.

The classical estimation method originally proposed by Hamilton involves a two 

step procedure in which model parameters are estimated first (usually by maximum 

likelihood estimation), and inference on hidden states is subsequently drawn 

holding these parameter estimates fixed.

Advances in computational capacity have more recently spurred a number of 

papers employing alternative, Bayesian estimation methods based on Monte-Carlo 

techniques. In contrast to classical methods these methods permit simultaneous 

inference on both the model parameters and hidden states.
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1.3 VARIOUS TYPES OF LOSS FUNCTIONS

Any decision-making situation consists a non-empty set 0 of possible states 

of nature, sometimes referred to as the parameter space and a non-empty set A of 

actions available to decision maker. Under these two situations, nature chooses a 

point 9 in © and the decision maker without being informed of the choice of 

nature, chooses an action d in A. As a consequence, there may incur some loss 

which will depend on d and 9. Thus, loss is a function of 9 and d defined the 

product space © x A say L(9,d). The function L(.,.) is known as the loss function.

In point estimation problems, the action space consists of the set of all 

possible values of 9. Thus, it may be the whole parameter space or a subset of it. 

To ease the problem a sampling experiment is often conducted to collect the data. 

The data is considered to be an observation of the random variable x which is 

assumed to have a probability distribution f(x/$), when the true state of nature is 9. 

The decision maker chooses an estimate/ class of estimates 9 as the value of the 

function of the random variable x say T(x) for the given observed value x i.e. 

9 = T(x). The function T(.) is called the estimator and its value T(x) when x is 

observed is the estimate for 9. Naturally, the loss L(0,d) now reduces to L(0,T(x)) 

which is a random variable and depends on the sample outcome.

The basic problem of decision theory is : Given a loss function L(0,d), a 

decision d and the risk R(0,d) which criterion should one choose for adopting d? 

The ideal solution would be to choose a d for which R(0,d) is minimum for all 9. 

Unfortunately, this is not possible. The decision theory as formulated and 

developed by Wald in a series of paper beginning in 1939 was an attempt to unify 

the statistical theories of estimation and testing of hypothesis which become 

especial cases now.
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For point estimation a number by loss functions are available in the 

literature. These can be broadly classified into two groups, viz. symmetric and 

asymmetric. More generally we may have the idea of General Entropy Loss 

functions which includes Asymmetric Loss Function(ASL). Both types of loss 

functions have extensively been used in estimation problems. Among various 

symmetric loss functions (Berger (1985), Martz & Waller (1982)), the quadratic 

loss function or the squared error loss function (SELF) is very popular and widely 

used in Bayesian analysis. The main reason behind its popularity is that, it was 

used in estimation problems when unbiased estimators of parameter 6 were being 

considered. A second reason is its relationship with classical least square theory. 

Finally the use of ‘SELF’ makes the calculation relatively straight forward and 

simple (mean of the posterior distribution). A number of situations may arise in 

practice where ‘SELF’ may be appropriately used, especially when under 

estimation and over estimation are of equal importance.

Inspite of above mentioned justifications for ‘SELF’ there may be practical 

situations when the real loss function may not be symmetric i.e. overestimation and 

underestimation are not equally penalized. Situations may exist when the 

overestimation may lead to more serious consequences than the underestimation or 

vice-versa.

For example suppose that a producer produces some electronic device, wants 

to estimate the failure rate of his products. If his estimate is larger than the real 

value, he will have to incur additional resources to improve the technology to 

increase the reliability of his products. On the other hand if he underestimates the 

real value, he may lose customers and his market share may decrease because the 

real reliability of his products will now be less than the value he offers. In extreme 

cases, underestimating the failure rate may even cause the ruin. Hence,
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underestimation of the failure rate will lead to worse consequences than 

overestimation. Similarly, overestimation (space shuttle challenger case Ref: Basu 

and Ebrahimi (1991) ) may lead to worse consequences than underestimation. Due 

to these reasons and others, Berger (1985) points out that justification for ‘SELF5 

has a little merit. In order to bring the statistical model nearer to practical 

situations, the use of asymmetric loss functions and General Entropy Loss 

Functions (GELF) is suggested. Varian (1975) in his applied study to real estate 

assessment introduced an Asymmetric Loss Function called LINEX (Linear 

Exponential), which rises approximately exponentially on one side of zero and 

approximately linearly on the other side of zero. This loss function was extensively 

used by Zellner (1986) in estimation of scalar parameter and prediction of a scalar 

random variable in Gaussian (normal) model. Use of LINEX function has been 

justified by Lindley (1968), Zellner and Geisel (1968), Canfield (1970), Smith 

(1980), Schabe (1986), Basu and Ebrahimi (1991), Pandey and Rai (1992), 

Srivastava & Rao (1992), Srivastava (1996), Srivastava and Kapasi (1999), 

Srivastava and Tank (2001), Srivastava and Tanna (2001) and others.

1.4 ASYMMETRIC LOSS FUNCTIONS

Various loss functions have been considered under the category of 

Asymmetric loss functions and some of them are described as below.

LINEX LOSS FUNCTION

The Linex loss function is an Asymmetric Loss Function, which was introduced by 

Klebanov (1972) and used by Varian (1975) in the context of real estate 

assessment. Zellner (1986) used it for estimation of a scalar parameter and 

prediction of a scalar random variable. Both Zellner (1986) and Varian (1975) have
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discussed its behaviour and various applications. The linex loss function is defined 

as L(0,a)=exp(a(0—0))—a(0—0)—1 , a^O

For small values of \a\

W,d)^{0-0f

Thus, Linex is almost symmetric and not too different from a Squared Error Loss 

Function (SELF) and, therefore, Bayes estimates and predictions, based on linex 

loss, are quite near to those obtained from SELF.

MODIFIED LINEX LOSS FUNCTION

According to Basu and Ebrahimi (1991), when the parameter 9 is a scale 

parameter, we may take A= (0/69-1, where 9 is an estimate of 9. They define 

modified linex loss function as

L(A) = b[ eaA- aA -1], b > 0, a f 0 Where A =
A

9
9

,(1.4.1)

The sign and magnitude of ‘a’ represents the direction and degree of asymmetry 

respectively. The positive value of ‘a’ is used when overestimation is more serious 

than under estimation, while a negative value of ‘a’ is used in reverse situations. 

L(A) rises exponentially when A < 0 and almost linearly when A > 0. The loss 

function defined by (1.4.1) is known as the LINEX loss function, ‘b5 is the factor 

of proportionality.

GENERAL ENTROPY LOSS FUNCTION

Calabria and Pulcini (1996) defined generalized entropy loss function as
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L{O,0)=b p^0,b>0
f0\p

-p In 0

e ,(1.4.2)

as a valid alternative to the modified linex loss.

This loss is a generalization of the entropy loss used by several authors (for 

example, Dey and Liu, 1992; Dey et al, 1987) where the shape parameter ‘p’ is 

equal to unity (1). The more general version of (1.4.2) allows different shapes of 

the loss function to be considered when p > 0, a positive error (3>0) causes more 

serious error than a negative error and when p < 0, a negative error (3<0) causes 

more serious error than the positive error).

In particular, for p = 1, we have entropy loss function given by

L(0,0} = b

However, if

v

0—0

0 , 0 . ---- In------1
0 0

0 °» we have L(0,0) 0
0 i • which resembles SELF.

1.5 BAYESIAN POINT ESTIMATION

In Bayesian estimation, statistical inference is made when we are given a 

model, a distribution of parameters and a loss function associated with the 

decision, we make for the parameter under this setup and experimenter expresses 

his belief about the real situation via a prior distribution and the misjudgment by 

loss function. Before collecting the sample data, the experimenter specifies a prior 

distribution say g(0) which reflects his knowledge or ignorance about the 

parameter on the basis of the sample data. The experimenter specifies the loss 

function say L(x/0). The prior information g(0) with sample information L(x/9) is 

then combined by Bayes theorem to get the posterior distribution P(0/x) as:
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pro /r^ _ WQgQO
r^fx) /L(x/0)0(0)d0 .(1.5.1)

Where integration is taken over the whole parameter space. This posterior 

distribution P(0/x) is thus, an inferential statement in the Bayesian view point. 

Consider that we wish to obtain a point estimate for 9 under some specified loss 

function L(0, 9) where 9 is the estimate of 9. In Bayesian approach an estimate 9 

is selected such that it minimizes the posterior risk, which is the average loss for 

the specified prior distribution P(0/x). Under different loss functions different 

Bayes estimaters may be obtained for the same prior distribution.

ESTIMATION UNDER SQUARED ERROR LOSS FUNCTION

A loss function which is often used for point estimation problem is the 

Squared Error Loss Function.

L{9,9) = A2

Where A = (9 — 9) and may be considered as error due to estimation. 

The Bayes estimator under the loss (1.5.2) is the value which minimizes.

(1.5.2)

E[L(9,9)/x]= f(§-9)2 P{9/x)dd 

Obviously, 9 = 9S= E(9/x) = f 9 P(9/x) dd

.d-5.3)

_(1.5.4)

Minimizes (1.5.4) and thus posterior mean is the Bayes estimator.

ESTIMATION UNDER LINEX LOSS FUNCTION

The LINEX loss function suggested by Varian (1975) is 

L(0,9) = b eaA — cA — b ; a, c =£ 0, b > 0 .(1.5.5)
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Since, the loss function should be such that it has a minimum value viz. zero at 

9=9 we must have ab = c

Therefore (1.5.5) reduces to

L{0,0) = b [eaA - aA - 1] ; a * 0, b > 0 ____ (1.5.6)

LINEX loss has two constants, a and b which give the freedom to tailor the loss 

according to our needs by choosing them appropriately. The function for various 

choices has been shown graphically by Zellner (1986). Thus, LINEX loss could be 

used in situation where loss function is asymmetric.

While estimating 9 by 9, and denoting EP0ST as the posterior expectation we have: 

L(A) = b — a(0 — 0) — l] ; where A= (0 — 9)

Eposr L(A) = b [ Eposr &a^ — a EPOST(0 — 0) — l]

^ = b [ EP0ST eaM - a EP0ST( 1) - o] = 0

=> EP0ST ea(^-0) = l

i.e. 9= log Eposr (e~aQ)

Provided EP0ST (e~a0) exist and is finite.

Thus, we see that Bayes estimator which is the mean of posterior probability 

distribution function under ‘SELF’, is proportional to the Moment Generating 

Function of posterior probability distribution function under LINEX loss.

Basu and Ebrahimi (1991) modified the loss function for estimating a scale 

parameter i.e. they defined A as:
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A= (jj — 1^ then

L(A) = b e a
1

therefore
dEP0STL(A) 

d9

e<1EpOST Q-) , solving this we get Bb, the

estimator under L(A).

ESTIMATION UNDER GENERAL ENTROPY LOSS FUNCTION

A suitable alternative to modified LINEX loss is the General Entropy Loss 

(GEL) proposed by Calabria and Pulcini (1996) given by:

Whose minimum occurs at 6 = 6.

If we are considering prior distributions, then the Bayes estimate of 0 under

exists and is finite.

• When p = 1, the Bayes estimate (4.1.1.2) coincides with the Bayes estimate 

under the weighted squared error loss function (e-e)2 /&, used by Varde (1969) 

for deriving Bayes estimate of R(t).

• When p = -1, the Bayes estimate (4.1.1.2) coincides with the Bayes estimate 

under the squared error loss function.

GELF is in a closed form and is given by 3J[e{0-p |jc)]/^ provided that E0(o p)
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The Bayes estimator of 0 under entropy loss function is obtained by putting 

p = 1 in &:=\E{0~P \x'fr//p which is the posterior harmonic mean.

For the negative values of p, i.e., p = - u (say), the form of the generalized
- ( 0 Y 9

entropy loss function reduces to 0^=\j§) .

- 0 6In particular for u = 1, L(9,9)=-x-\n-^-\ jn thiS case the Bayes estimator 

works out to be posterior arithmetic mean.

PROBLEM OF TESTIMATION

Any given real life situation can be modeled via some probability 

distribution having some known mathematical form except for the constants 

(parameters) involved in it. Almost every parameter has its own physical 

interpretation in terms of real life situation.

The efforts are to estimate these parameter(s) in the best possible manner so 

as to provide ‘best’ estimator(s). Sometimes we might have ‘additional’ 

information about the parameter of interest which could be utilized to hopefully 

improve the estimator. Such type of informations are common in Bio-statistics 

and health statistics. For example we might know due to past studies that the 

hemoglobin level of school going girls is 90 and we wish to use this information 

for the estimation of the hemoglobin level for some population of school going 

girls. We might take this information as such and use it in while proposing an 

estimator for 9 (say the hemoglobin level of entire population under study) or this 

available information might be tested (verified) using a test of significance and the 

given information is incorporated on the basis of outcome of this test.
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TESTIMATION PROCEDURE:

Suppose that we have the guess information: in the form of a point 60 or an

interval (61,6Z) and the sample information (xux2..... ,xn) then obtain: (i) The

‘best’ estimator of 0 using (xvx2..... ,jc„) by Maximum Likelihood Estimator or

some other suitable method of estimation (ii) Test Ho : 0 = 9q against a suitable 

alternative (one tailed or two tailed, mostly two tailed), if Ho is accepted utilize 

this information, otherwise ignore it. Thus, we combine testing procedure with the 

estimation procedure and in the literature such procedure has been termed as 

‘TESTIMATION’.

16 REVIEW OF LITERATURE

In this section a review of the literature related to the problems under study 

in the area of inferences based on Asymmetric Loss Function and those utilizing 

guess information has been made.

Bancroft (1944) was the first statistician to consider the impact of 

preliminary test of significance on subsequent problem of estimation.

Thompson (1968) was the first to introduce the idea of shrinkage technique 

using point as well as interval guess. Canfield (1970) introduced the idea of 

Asymmetric Loss Functions.

Several authors have proposed estimator(s), weighted estimator(s), shrinkage 

testimators for the scale parameter of single parameter Exponential distribution. 

Pandey and Srivastava (1987) among others, proposed some improved shrinkage 

testimators, where the arbitrariness in the choice of shrinkage factor was removed.
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Earlier studies were confined to the use of symmetric loss functions (mostly 

‘SELF’) but later on in several studies the superiority of Asymmetric Loss 

Functions was established, like Zellner (1986), Basu and Ebrahimi (1991), 

Calabria and Pulcini (1994, 1996) among others..

Srivastava and kapasi (1999) have proposed Conditional - Guess 

testimator(s) for the mean life in single parameter & two parameter exponential 

distribution. Srivastava and Tank (2003) have proposed sometimes pool estimator 

for Exponential distribution. Properties of these estimators have been studied under 

asymmetric loss function.

Pandey and Srivastava (1987), Pandey and Singh (2007) have proposed 

shrinkage testimator(s) for the variance of Normal distribution and have studied the 

properties of these using ‘SELF’ and asymmetric loss function (ASL).

Katti (1962), Shah(1975), Arnold and Al-Bayatti (1970), Waiker et al. 

(1989) have proposed double stage shrinkage testimator of the mean for an 

Exponential distribution and the variance of Normal distribution.

Srivastava and Tanna (2007 & 2012) have proposed double stage shrinkage 

testimator for the mean life of an Exponential distribution under ‘General Entropy 

Loss Function’ and under asymmetric loss function.

Pandey and Singh (1984) considered estimating shape parameter of Weibull 

distribution by shrinkage towards an interval. Pandey, Srivastava and Malik 

(1989) studied some shrinkage testimators for the shape parameter of Weibull 

distribution.
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1.7 AN OUTLINE OF PROBLEMS UNDER INVESTIGATION

In the present thesis, an attempt has been made to study the properties of 

various parameters of Exponential distribution, Normal distribution and Weibull 

distribution using various asymmetric loss functions and we have proposed some 

improved estimator(s) for various parameter(s) for different probability 

distributions in terms of reduced risk(s).

CHAPTER-I

Chapter -1 is introductory, and it covers the basic idea of Classical and Bayesian 

Inference procedures. It also provides a brief review of literature. In the same 

chapter Bayesian estimation procedures under various loss functions have been 

discussed.

CHAPTER-II

Chapter - II deals with the problems of one sample shrinkage testimators of 

Exponential Distribution and Normal Distribution under Asymmetric Loss 

Function. The Exponential distribution has a variety of statistical applications in 

life testing and reliability and other fields. Normal distribution occupies a very 

important place in Statistical studies. Vaious testimators for different parameters of 

both the distributions have been proposed and their risk properties have been 

studied.

Several authors have proposed estimator(s), weighted estimator(s), shrinkage 

testimators for the scale parameter of single parameter Exponential distribution. 

Pandey and Srivastava (1987) among others, proposed some improved shrinkage 

testimators, where the arbitrariness in the choice of shrinkage factor was removed.
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Srivastava and kapasi (1999) proposed Conditional - Guess testimator(s) for the 

same distribution. Srivastava and Tank (2003) proposed sometimes pool estimator 

for Exponential distribution under asymmetric loss function.

In this chapter, we have proposed single stage shrinkage testimator(s) for the scale 

parameter of Exponential distribution for several choices of the shrinkage factors 

and the properties of these have been studied using asymmetric loss functions.

Pandey and Srivastava (1987), Pandey and Singh (2007) have proposed shrinkage 

testimator(s) for the variance of Normal distribution and have studied the 

properties of these using ‘SELF’ and asymmetric loss function (ASL). In this 

chapter, we have proposed several estimators for the variance of Normal 

distribution for different choices of shrinkage factors, and the properties of these 

have been studied using asymmetric loss function. It has been found that the 

proposed testimators dominate the usual estimator(s) in terms of reduced risk.

Further the use of asymmetric loss function facilitates to provide better control 

over the ‘risk’ of the proposed testimators by choosing the degree of asymmetry 

and level of significance carefully. Recommendations regarding these two have 

been attempted.

CHAPTER-III

Chapter - III deals with the problems of double stage shrinkage testimators of 

Exponential Distribution and Normal Distribution under Asymmetric Loss 

Function.

The first stage sample is used to test H0 : 6 = 90 and if Ho is not rejected, it is 

suggested to use the prior knowledge being supported by a test, in estimating 9.
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However, if H0 is rejected, then take n2 = (n - ni) additional observations 

x2i>x22>'"-x2n2 and use the pooled estimator i.e. we do not use the prior 

knowledge and obtain a second sample to make up for the loss of the prior 

knowledge and estimate 9 using both the samples.

Such techniques were presented by Katti (1962), Shah (1975), Arnold and Al- 

Bayatti (1970), Waiker et al. (1989). We have proposed ‘Double stage shrinkage 

testimators’ for the scale parameter of an Exponential distribution and the variance 

of Normal distribution. Properties of these proposed testimator(s) have been 

studied under asymmetric loss function and attempts have been made regarding the 

use of such procedures.

It has been observed that General Entopy Loss Function has appeared as a valid 

alternative to Modified LINEX loss function, so it is of interest to study the risk 

properties of various testimators using General Entropy Loss Function (GELF).

In particular not many attempts have been made to study shrinkage 

testimators under GELF with this motivation the next chapters of the present 

work have been devoted to such study.

CHAPTER-IV

Chapter - IV has been devoted to the study of risk properties of single stage 

shrinkage testimators for various parameters of interest in Exponential and Normal 

distribution under ‘General Entropy Loss Function’. The risk properties of these 

have been studied and recommendations regarding the degrees of asymmetry and 

level of significance have been made.
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CHAPTER-V

In the Chapter - V, we have extended the work done by Srivastava and Tanna 

(2007 & 2012) they have proposed double stage shrinkage testimator for the mean 

life of an Exponential distribution under ‘General Entropy Loss Function’. Some 

new estimators have been proposed by removing the arbitrariness in the choice of 

shrinkage factors and ‘Double stage shrinkage testimators’ have been proposed for 

Exponential and Normal distributions for their mean life and variance respectively. 

Properties of these testimator(s) have been studied using ‘General Entropy Loss 

Function’ and recommendations for sample sizes, level(s) of significance and 

degrees of asymmetry have been made.

CHAPTER-VI

Pandey and Singh (1984) considered estimating shape parameter of Weibull 

distribution by shrinkage towards an interval. Pandey, Srivastava and Malik 

(1989) studied some shrinkage testimators for the shape parameter of Weibull 

distribution.

In this chapter, we have proposed some improved shrinkage estimators for the 

shape parameter of the Weibull distribution when it is known apriori that P (shape 

parameter) lies in the interval (pi, P2). We have studied the properties of this 

estimator using asymmetric loss function and it has been found that it is preferable 

to the other estimators, in terms of having smaller risk.
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