


Chapter - 2

ONE SAMPLE SHRINKAGE TESTIMATORS UNDER ASYMMETRIC
LOSS FUNCTION

2.1 Introduction

The present chapter deals with one sample shrinkage testimators under 

Asymmetric Loss Function (ASL) for single parameter Exponential distribution 

and Normal distribution.

2.1.1 Exponential Distribution

Exponential distribution plays an important part in life testing problems. For 

a situation where the failure rate appears to be more or less constant, the 

Exponential distribution would be an adequate choice.

Exponential distribution also occurs in several other contexts, such as the 

waiting time problems. Maguire, Pearson and Wynn (1952) studied mine accidents 

and showed that time intervals between accidents follow Exponential distribution.

Exponential is a very interesting continuous type distribution due to its being 

endowed with the Markovian character of having ‘complete lack of memory’. Its 

importance is stressed by Epstein (1961) by saying that the Exponential 

distribution occupies as commanding a position in life-testing, fatigue testing 

and other types of destructive test situations as does the Normal distribution in 

other areas of statistics. It may be defined as a special case of Gamma or Weibull 

distribution. Situations such as sampling from the Income-distribution, waiting 

time for telephonic conversation or waiting time for scooter services etc. can also 

be modeled by Exponential distribution.
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In the estimation of reliability function use of symmetric loss function may 

be in appropriate as has been recognized by Canfiled (1970). Overestimate of 

reliability function or average failure time is usually much more serious than 

underestimate of reliability function or mean failure time. Also, an underestimate 

of the failure rate results in more serious consequences than an overestimate of the 

failure rate. For example, in the recent disaster of the space shuttle (Ref; Basu and 

Ebrahimi (1991)) the management underestimated the failure rate and therefore 

overestimated the reliability of solid-fuel rocket booster.

2.1.2 Normal Distribution

The Normal (or Gaussian) distribution is often used as a first approximation 

to describe real-valued random variables that tend to cluster around a single mean 

value. Normal distribution is commonly encountered in practice, and is used 

throughout statistics, natural sciences as a simple model for complex phenomenon.

The Normal distribution plays an important role in both the application and 

inferential statistics. In modeling applications, the normal curve is an excellent 

approximation to the frequency distributions of observations taken on a variety of 

variables and as a limiting form of various other distributions. Many psychological 

measurements and physical phenomena can be approximated well by the Normal 

distribution. In addition, there are many applications of the Normal distribution in 

engineering. One application deals with analysis of items which exhibit failure due 

to wear, such as mechanical devices. Other applications are, the analysis of the 

variation of component dimensions in manufacturing, modeling global irradiation 

data, and the intensity of laser light, and so on. Indeed the wide application and 

occurrence of the Normal distribution in life testing and reliability problems are a 

wonder. In the context of reliability problems and life testing, a number of failure
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time data have been examined and it was shown that the Normal distribution give 

quite a good fit for the most cases.

In the estimation of a parameter sometimes there exists in certain situations 

some prior information about the parameter which one would like to utilize in 

order to get a better estimator (say in the sense of efficiency). This prior 

information could be either in the form of an initial guessed value or an interval in 

which the parameter lies (Thompson 1968 a, b) or a relation between the parameter 

e.g. Coefficient of Variation, Kurtosis (Khan 1968, Searles 1964). In all these 

cases no apriori distribution of the parameter is assumed.

According to Thomson sometimes there is a natural origin say 0O of the 

parameter 0 and one would like the MVUE 6 of the parameter 0 to move it close 

to 0q. This leads to shrinkage estimator of 0 which performs better (in the sense 

of smaller mean square error) than 0 in the neighbourhood of 0q. Searles (1974), 

Pandey and Singh (1977) and others have proposed such estimators utilizing guess 

value(s) of the parameter coupled with sample observations. In proposing 

shrinkage estimators the available prior information is always used along with the 

sample observations. However, if we do not want to use it, indiscriminately, we 

may decide to use it or not on the evidence of a test of significance. This gives us 

what is known a preliminary test estimator, pre-test estimator or a testimator. The 

pre-test estimator or a testimator has two components viz. : (i) when the outcome 

of the test of significance results in acceptance of the hypothesis Ho: 0 = Oo, then 

we use 0Q along with sample observations which leads to a shrinkage testimator 

and (ii) the minimum variance unbiased estimator or the minimum mean square 

error estimator, when the hypothesis is rejected.

Mathematically, a Testimator of the parameter 0 is defined as follows
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k90 + (1 — k)9 or 9S , if H0 is accepted 
q , if Hq is rejected (2.1.1)

6St is the shrinkage estimator of 9 with shrinkage factor k (0 < k < 1) and 9 is 

the best estimator of 6.

In the present chapter we have considered shrinkage testimators for (i) Scale 

parameter of an Exponential distribution, (ii) variance of a Normal distribution, 

and studied their risk properties. In all these cases it has been assumed that we are 

given an initial estimate (or guess) of the parameter and a single random sample of 

size n from the underlying populations. The salient feature of the proposed 

testimators is that the arbitrariness in the choice of the shrinkage factors has been 

removed by making it dependent on the test statistics.

In section 2.2 we have proposed four different testimators for the parameter 

9 (mean life time) of the Exponential distribution and we have studied the risk 

properties of all the four shrinkage testimators under Asymmetric Loss Function. 

Section 2.3 deals with the derivation of the risk(s) of these four estimators. Section 

2.4 deals with the relative risk(s) of these four estimators. Section 2.5 concludes 

with the comparison of UMVUE and the proposed shrinkage testimators in terms 

of their relative risks. Suggestions for the choice of shrinkage factor, level of 

significance and degrees of asymmetry have been made.

In section 2.6 we have proposed the two different shrinkage testimators for 

the variance of a Normal distribution and we have studied the risk properties of 

these two shrinkage testimators under Asymmetric Loss Function. Section 2.7 

deals with the derivation of the risk(s) of these two estimators. Section 2.8 deals 

with the relative risk(s) of these two estimators. Section 2.9 concludes with the 

comparison of UMVUE and the proposed shrinkage testimatiors in terms of their
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relative risks. Further in the same section a suggestion for the choice of shrinkage 

factor, level of significance, degrees of asymmetry have been made.

ASYMMETRIC LOSS FUNCTIONS

The loss function L(6,0) provides a measure of financial consequences arising 

from a wrong estimate of the unknown quantity 9. As in many real life situations, 

particularly in insurance claims, estimating any health statistics parameter the over­

estimation and under-estimation are having different impacts. So giving ‘equal’ 

importance to these as the squared error loss function (SELF) does, may not be 

appropriate. Several authors such as eanfield (1970), zellner (1986), Basu and 

Ebrahimi (1991), Srivastava (1996), Srivastava and Tanna (2001), Srivstava and 

Shah (2010) and others have demonstrated the superiority of the Asymmetric Loss 

Functions, over squared error loss functions in several contexts.

A useful Asymmetric Loss Function known as LINEX loss function was 

introduced by Varian (1975), extended by Zellner (1986) is given by

L(A) = b[e“4 — a& — 1] , a * 0, b > 0 where A = (£ - l) ---- (2.1.2)

The sign and magnitude of ‘a’ represents the direction and degree of asymmetry 

respectively. Positive values of ‘a’ are suggested for situations where 

overestimation is more serious than the under estimation, while negative values of 

‘a’ are recommended in reverse situations, ‘b’ is constant of proportionality. L(A) 

rises exponentially when A < 0 and almost linearly when A > 0. Hence, the loss 

function defined by (2.1.2) is known as LINEAR EXPONENTIAL (LINEX) loss 

function, ‘b’ is the factor of proportionality.
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2.2 Shrinkage Testimator(s) for Scale Parameter of an Exponential 

Distribution.

Let X: (x,,x2..... ,xn) have the distribution

/fefl) = expC-^/0), x>0, e>0j ___ (221)

It is assumed that the prior knowledge about 8 is available in the form of an initial 

estimate 0O. We are interested in considering an estimator of 6 possibly using the

information about 9 and the sample observations xx,x2..... ,xn from (2.2.1). We

then propose a testimator of 8 which can be described as follows:

_ J n1. Compute the sample mean x = — Vx/( which is the best estimator of 0 in
n m

the absence of any information about 8. Actually it is UMVUE.

2. Test the hypothesis Ho : 8 = 80 against the two sided alternative

Hi : 8 f 6q at level a using the test statistic which follows %2 - 

distribution with 2n degrees of freedom.

3. If Ho is accepted, i.e., Zi <lfi < X2 , where xi2 and xi are the lower 

and upper points of %2 - distribution with 2n degrees of freedom at a given 

level of significance, use the conventional shrinkage estimator 8ST with

shrinkage factor k ; otherwise, ignore 80 and use x, when the hypothesis 

Ho is rejected.

The shrinkage testimator 0ST1 of 8 is defined as:

^ _ (kx + (1 — k)80 , if H0 is accepted
5ri — 1 x , if H0 is rejected (2.2.2)
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Estimators of this type with ‘k’ arbitrary (0 < k < 1) have been defined and studied 

in different contexts by Bhattacharya and Srivastava (1974), Hogg (1974), Panday 

and Shah (1983).

We observe that ‘k’ defined in (2.2.2) can take any value between ‘O’ and cl\ We 

know that the test statistic for testing Ho: 9 = 90 against the two sided alternative

2nx oHi : 9 f 90 at level a is given by which follows % - distribution with 2n

degrees of freedom. Pandey and Srivastava (1987) and others have proposed 

shrinkage testimator where the arbitrariness in the choice of shrinkage factor has 

been removed by making it dependent on the test statistics. Waiker (1984) at el. 

have proposed and studied the properties of shrinkage testimator of the parameter 

of Exponential distribution.

Now we propose a shrinkage testimator in which the shrinkage factor depends on 

the test statistics.

The shrinkage testimator 9ST2 of 6 is defined as:

gCT2 = |(|?)*+ ■ if Ho is accepted

(if , if H0 is rejected
,(2.2.3)

2 nx _ _
where k = $oZ2 , x2 = (x2 - x2). Properties of these estimators §ST1 & §ST2

have been studied by Srivastava and Shah (2010) using Asymmetric Loss 

Function.

In all these studies it has been shown that shrinkage testimators perform better than 

the conventional estimator, if k is near zero, n is small, 9a (the guess) is in the 

vicinity of 9. This motivated workers to select a shrinkage factor which
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approaches to zero rapidly and an obvious choice was to take the square of the 

shrinkage factor.

Thus the shrinkage testimator 0ST3 of 9 is defined as:

0ST3 = j(0)2 * + (i - (0)2) . If «o is accepted ____(2_2i4)

If , if Ho is rejected

Where k=(^) , x2 = (xf ~ xf)

It may be noted that different choices of ‘k’ have been taken by several authors 

keeping in mind that it should lie between ‘0’ and 4’. But these limits are not 

attained unless %\2 = 0 or %22 = °°- So, we propose another estimator of 0 as 9ST4 

given by

{
/2 nx x2\ f x2 2nx\
\6>0x2 x2/ \ x2 0qXzJ^°

x

if H0 is accepted 

if Hq is rejected

(2.2.5)

where k = — —• , x2 = (x| — x2) with this choice of ‘k’ the limits ‘O’ and ‘ 1 ’
dgX* X*

can actually be attained.

Pandey, Srivastava and Malik (1989) considered another choice of shrinkage 

factor which lies exactly between 0 and 1.

We have considered all the four different choices of the shrinkage factor(s) 

and proposed four different estimators.

2.3 Risk of Testimators

In this section we derive the risk of all the four testimators which are defined in the 

previous section.
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2.3.1 Risk of Osti

/VThe risk of 0S7[ under L(A) is defined by 

R0STl)= E{§STt\L{A)]

E kx + (l - k)0o/%l < < Z2

+ E

0n
2 nx 2 1 1 2 nx 2
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2 nx 2 1 1 2«jc 2-X~<Xi U — > 2T2

(2.3.1.1)
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(2.3.1.2)

Where /(x) = — (xj B dx 

Straight forward integration of (2.3.1.2) gives
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X

Where I(x;p) = (l/F/?) j e“* x^1 dx refers to the standard incomplete gamma 

function and 0 0o

2.3.2 Risk of 0ST 2

A

The risk of under L(A) given by

J?(4T3)=£[4rJi(A)]

= £
/ 2 2«x 2
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Where /(*)
1 ( nTtrYn\0) '

A straight forward integration of (23.2.2) gives:

dx
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and I(x; p) as defined previously.

233 Risk of 0ST3

The risk of 6Sj3 under L(A) defined by

*(4ri)=£[4Ji(A)]
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and I(x;p) refers to incomplete gamma function defined previously.

2.3.4 Risk of 9ST4

The risk of Qsta under L(A) given by
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Where = (xf

A straight forward integration of (23.4.2) gives:
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and I(x;p) refers to incomplete gamma function defined previously.

A

2.4 Relative Risks of 0ST

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator x in this case, which is 

also the UMVUE. For this purpose, we obtain the risk of x under L(A) as: 

i?£(x)=£[x|z(A)]

oo ('x/\ 00 00

= e~a J e ^ 0' f(x)dx—aJ (f — i)f(x}dx — J f{x)dx 
0 0 0

.(2.4.1)
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A straight forward integration of (2.4.1) gives
e~a

Re(x) =
(l-a/)n 
v / w

■1 (2.4.2)

Now, we define the Relative Risk of @st, * — 1 - -4 with respect to x under L(A) 

as follows

RR,
RE(X)

R0se ) ,(2.4.3)

Using (2.4.2) and (2.3.1.3) the expression for RRj is given by (2.4.3). It is 

observed that RRi is a function of <j>, n, a, k and ‘a’.

A

Again, we define the Relative Risk of 0ST by

RR, R0stJ
(2.4.4)

The expression for RR2 is given by (2.4.4) which can be obtained by using 

equations (2.4.2) and (2.3.2.3).

Now, we define the Relative Risk of 0ST as follows

RR,
Re(x)

,(2.4.5)

Using (2.4.2) and (2333) the expression for RR3 is given by (2.4.5).
A

Finally, we define the Relative Risk of 0ST as follows

RR, =
J2.4.6)
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Same way the RR4 is given by (2.4.6) which can be obtained by using equations 

(2.4.2) and (2.3.43)

It is observed that RR2, RR3 and RR4 are functions of (j>, n, a, and ‘a’.

A

2.5 Recommendations for ^s%

In this section we provide the comparison of UMVUE and the proposed 

shrinkage testimators in terms of their relative risks. Recommendations regarding 

the applications of proposed testimators are provided in terms of the range of ‘k’ 

and ‘0’. The objective of present investigation is also to make recommendations 

for the degrees of asymmetry and level of significance. The following sections 

provide these separately for all the proposed testimators.

2.5.1 Recommendations for 9srx

We observe that the expression for RRi is a function of ‘k’, ‘0’, ‘a’, ‘n’ and 

ia\ To study the behaviour of RRi , we have taken these values as k = 0.2 

(0.2)...0.8,0 = 0.2 (0.2)...1.6, a = 1%, 5%, 10%, n = 5, 8, 10 and a = ±1, ±2, ±3 

,’a’ is the prime important factor and decides about the seriousness of over/under 

estimation in the real life situation. It is observed that 0SJ. performs better than the

conventional estimator for almost the whole range of k. The performance is best at 

k = 0.2, n = 8, for a = -1, however as ‘k’ increases to k = 0.4, there is a sudden 

change and the performance improves at a = 1 (positive) and the same trend 

remains for a = 2 and 3 but the range of 0 changes. It may be stated that for 

smaller weights a negative value of ‘a’ is suggested however for higher weights 

positive value particularly a = 3 should be used. We have taken a = 5% and a = 

10% also, it is observed that the 0ST still performs better for these values of <xs, but 

the magnitude of relative risk is maximum at a = 1% out of the three values of a,
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so a = 1% is the recommended level of significance. As regards the choice of 

degree of asymmetry ‘a’ no fixed pattern is observed for various values of ‘k’ i.e. 

for some values of‘k’, positive ‘a’ and for some values of‘k’ (particularly lower), 

negative values of ‘a’ are recommended (say a = -1 for k = 0.2). Looking at the 

different values of ‘a’ for different choice of ‘k’ it seems more logical to remove 

the arbitrariness in the choice of !k\ eSTi removes this arbitrariness and our 

conclusions for 3sli are as follows:

2.5.2 Recommendations for @rt:

There will be too many tables for varying ‘0’, ‘a’, and ‘a’ all the tables are not 

presented here. However our recommendations based on all these computations are 

summarized as follows:

• For small n = 5 and for different levels of significance considered here 0STi

performs better than the usual estimator in the whole range of 0. However, 

its performance is best for a = ±3, (still better for a = 3) and a = 1%. Hence it 

is recommended to use the proposed estimator for the positive values of ‘a’ 

and small values of ‘n\ Similar results hold for n = 8 and 10 however the 

magnitude of RR2 is maximum for n = 8.

• For a = 5% and for n = 5, 8, 10 and for 0.2 < 0 < 1.6, the magnitude of 

relative risk is still higher, i.e. usual estimator has more risk under L(A) 

compared to &S7i. Again, 0STi performs better for positive values of “a”, 

The higher magnitude of relative risk values implies better risk control in 

this situation, for the proposed testimator 0STi compared to x .

• For a = 10%, rest of the findings are same, i.e., values of n considered here, 

range of 0 (0.2 < 0 < 1.6) and a = ±1, ±2, ±3. But comparing the values of
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relative risks for varying a s (the level of significance) ; It is observed that 

the magnitude of these values is maximum for a = 1% and a = 1 for all the 

values as “n” considered here and for 0.2 < 0 < 1.6
A

So, it is recommended to use 0St2 for n = 8, a = 3, 0.2 < 0 < 1.6 and a = 1%

However, it performs well for other values of ‘n’ and ‘a’ also, considered 

here, but for the above values its performance is at its best.

/V

2.5.3 Recommendations for @st3

For various values of n = 5, 8, 10 by fixing a = 1% and also varying the 

degree of asymmetry ‘a’ = ±1, ±2, ±3, it is observed that the magnitude of

relative risk of 0ST% is higher for all these values of ns and as for the whole

range of 0. However, it is still higher for the positive values of ‘a’ in 

particular a=3. It is suggested therefore, to use this estimator for a=3, a = 

1%.

Next we change the level of significance to a = 5% for the same set of 

values of other parameters, again 0STi performs better than the conventional

estimator in the whole range of ‘0’ and for different values of ‘n’ and ‘a’. 

However the magnitude of relative risk is higher in case of a = 1% compared 

to a = 5%.

While taking a = 10% and observing the behavior of relative risk, it is found
A

that 0STi performs better for positive values of £a’ in particular for a = 2.

In all the above situations it is observed that the magnitude of relative risk 

decreases as £a5 increases and shows higher values of it for ‘positive5 values 

of a.
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A

So, we recommend to use 0STs for all values of ‘n’ and as considered here. 

In particular its performance is at its best for a = 1%, a = 3 and n = 8, 10.

/v

2.5.4 Recommendations for @st4

a

The testimator 0STi behaves nicely compared to the conventional estimator 

in the sense of having ‘smaller’ risk for different values of ‘n’, ‘a’, and ‘a’.
A

In fact &STi has lower risk for almost whole range of 0 = 0.2(0.2) 1.6. As ‘n’

increases the magnitude of relative risk decreases and it is lowest for n = 10, 

a = -1, for a = 1%. However, for smaller values of n i.e. n = 5 and n = 8,
A

@st4 has better control over risk values and in particular for n = 5 and a = 3 

the magnitude of relative risk is highest.

A

For the other value of a = 5% and different values of n = 5, 8, and 10, &st4

performs better for higher positive values of ‘a’ compared to the negative 

values of ‘a’. Particularly for a = -3, -2 there is not much difference in the 

performances however, the trend starts changing from a = 1 and the highest 

magnitude of it is observed at a =3 for the values of n, in particular for n = 5, 

the gain is maximum, which remains true for n = 8 and to some extent for 

n = 10 for the whole range of 0.

Finally taking a = 10% for various values of ‘n’ and ‘a’ again the
A

performance of $st4 is better compared to the conventional estimator, in

particular for n = 5 and a = 2, a = 3, still the magnitude of relative risk is 

higher for a = 3. For n = 10 and for the negative values of ‘a’ the
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performance of its relative risk is not so good as compared to conventional 

estimator.

CONCLUSIONS:

A a

1. It is concluded that both @st3 and &st4 perform better than the UMVUE

for almost the whole range of 0 = 0.2 (0.2) 1.6, various values of n = 5, 8,10 

and different ‘positive’ values of‘a’. The performance is not so good for the 

negative values of‘a’.
A A

2. Comparing the values of relative risk(s) of @st3 and ^r4 , it is observed

A

that the magnitude of relative risk is higher for @st3 , so the choice of 

weights (Shrinkage factor) suggested is to take the ‘square’ of the shrinkage 

factor making it ‘dependent’ on test statistics.

3. It is observed that using the Asymmetric Loss Function the effective range
A A

of 0 for which &st3 or &sta perform better than the usual estimator

increases considerably as compared to the same in case of squared error 

loss function.
A A

4. In particular both the testimators @st3 and @sta perform better for a = 3, a

= 1% and n = 5. Positive value of ‘a’ indicate that it should be used in those 

situations where over-estimation is more serious than underestimation, 

which remains true in case of insurance and re-insurance problems.
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Tables showing relative risk(s) of proposed testimator(s) with respect 
to the best available estimator.

Table : 2.5.1.1 Relative Risk of 0ST^ a = 1%, n = 5, a = 3

0 k = 0.2 k = 0.4 k = 0.6

ooo
11

M

0.20 1.14 1.139 1.132 1.104
0.40 2.35 2.363 2.231 1.796
0.60 4.994 4.847 4.182 2.747
0.80 5.484 5.384 5.558 2.985
1.00 7.01 6.884 6.813 3.743
1.20 5.007 5.805 5.08 2.414
1.40 3.547 4.792 3.578 2.097
1.60 1.872 2.516 2.499 1.813

Table : 2.5.1.2 Relative Risk of @stv a = 1%, n = 8, a = 3

0 •11 .
©
11

44 k = 0.6

00•
oit
44

0.20 1.035 1.135 1.032 1.023
0.40 2.726 2.752 2.67 1.416
0.60 4.516 4.742 3.672 2.093
0.80 5.648 6.379 4.874 2.191
1.00 7.952 7.332 5.137 4.971
1.20 5.452 5.507 2.877 2.708
1.40 2.473 2.887 1.857 1.453
1.60 1.593 1.924 1.206 1.224

Table : 2.5.1.3 Relative Risk of 0STi a = 1 %, n = 8, k = 0.2

0 II 4* a = -2 a = -3 a = 1 a = 2 IIS3

0.20 0.777 0.824 0.826 1.163 1.059 1.035
0.40 0.31 0.393 0.417 2.525 2.409 1.726
0.60 0.41 1.548 1.611 3.185 3.17 3.516
0.80 1.327 2.836 2.147 5.678 4.517 4.648
1.00 7.861 6.177 5.585 6.878 6.385 5.952
1.20 5.257 4.641 3.796 3.946 3.958 3.452
1.40 1.796 1.663 1.831 1.928 1.139 1.473
1.60 0.833 0.835 0.96 0.434 0.493 0.593
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/V

Table : 2.5.2.1 Relative Risk of @st2 cl = 1%, n = 5

0 a = -1

fS■

II03 a = -3 a = 1 a = 2 a = 3
0.20 0.511 0.596 0.61 1.03 1.263 1.153
0.40 1.337 1.47 1.535 2.529 2.397 2.689
0.60 1.568 2.813 2.967 3.227 3.697 4.451
0.80 2.383 3.917 4.357 4.635 4.988 5.131
1.00 3.418 4.376 5.560 5.088 6.05 6.953
1.20 2.863 4.073 3.837 3.298 3.687 5.94
1.40 1.987 2.031 2.384 2.218 2.537 2.421
1.60 1.031 1.102 1.331 1.654 1.824 1.361

/V

Table : 2.5.2.2 Relative Risk of @st2 cl — 1%, n = 8

0 II ■ » 11 a = -3 a = 1 a = 2 a = 3
0.20 0.74 0.796 0.799 1.217 1.075 1.042
0.40 1.292 1.405 1.457 2.289 2.49 2.173
0.60 2.394 2.585 2.698 3.074 4.374 4.346
0.80 3.051 3.489 4.791 4.246 5.618 6.676
1.00 4.398 5.162 6.000 5.284 6.945 7.321
1.20 2.362 4.888 4.246 3.853 3.166 4.534
1.40 1.903 2.694 2.854 2.829 2.997 2.216
1.60 0.918 1.875 1.994 1.414 1.476 1.566

A

Table : 2.S.2.3 Relative Risk of @st2 cc = 5%, n = 5

0 a = -1 a = -2

roiII03 a = 1 a = 2 a = 3
0.20 0.64 0.707 0.712 1.387 1.125 1.074
0.40 1.346 1.468 1.526 2.568 2.848 2.814
0.60 1.426 1.639 2.783 3.349 3.178 3.858
0.80 2.858 2.33 3.713 3.842 4.059 4.918
1.00 3.468 4.358 5.224 4.634 5.705 5.714
1.20 2.648 2.185 3.285 2.718 3.42 3.977
1.40 1.996 2.058 2.006 1.887 2.302 2.193
1.60 1.66 1.643 1.721 0.532 1.757 1.269
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A

Table : 2.5.2A Relative Risk of 0St2 cr = 5%,n=8

0 a = -1 II »N
> i11a

a = 1 a = 2 a = 3
0.20 0.865 0.895 0.894 1.082 1.03 1.017
0.40 0.346 1.457 1.501 2.889 2.213 1.523
0.60 1.317 1.48 2.583 3.834 3.592 3.959
0.80 1.633 2.006 3.286 4.481 4.075 4.202
1.00 2.505 3.319 4.006 5.561 6.554 6.761
1.20 2.44 2.757 3.861 3.184 3.692 4.207
1.40 1.856 2.484 2.739 2.567 2.806 2.052
1.60 1.256 1.607 1.456 1.334 1.445 1.555

A

Table: 2.5.4.1 Relative Risk of 6St4 a= l%,n = 5

0 a = -1 a = -2 a--3 a = 1 a = 2 a = 3
0.20 0.348 0.455 0.502 1.145 1.487 1.185
0.40 0.165 0.246 0.303 1.584 1.805 1.547
0.60 1.233 1.346 1.435 1.921 2.051 2.491
0.80 1.644 1.918 2.155 2.002 2.679 3.985
1.00 2.908 3.724 4.625 3.111 4.019 5.748
1.20 1.483 1.096 3.966 2.455 3.018 2.151
1.40 0.305 0.77 2.581 1.251 1.562 1.256
1.60 0.235 0.687 1.741 0.159 0.334 0.74

A

Table : 2.S.4.2 Relative Risk of $sr4 a= l%,n = 8

0 a = -1 a = -2 a = -3 a = 1 II&

a = 3
0.20 0.603 0.701 0.732 1.579 1.15 1.065
0.40 1.15 1.225 1.273 2.467 1.875 2.166
0.60 1.161 1.244 1.304 2.486 3.193 3.056
0.80 1.426 2.625 2.779 3.201 4.255 3.827
1.00 2.404 3.893 4.775 3.874 4.511 5.151
1.20 1.331 1.749 1.328 2.294 3.602 3.998
1.40 1.203 1.52 1.073 1.152 2.297 1.488
1.60 0.155 0.454 1.15 0.095 1.17 0.258
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2.6 Shrinkage Testimator for the Variance of a Normal Distribution

Shrinkage testimators for the mean n of a Normal distribution N(/i, a2) when 

<r2 is known or unknown, have been proposed by Waiker, Schuurman and 

Raghunandan (1984). In this section we have proposed single sample shrinkage 

testimator(s) for the variance of a Normal distribution. Let X be normally 

distributed with mean fx and variance a2, both being unknown. It is assumed 

that the prior knowledge about cr2 is available in the form of an initial estimate

<7q . Using the sample observations xvx2..... ,x„ and possibly the given

information we wish to construct a shrinkage testimator for the variance. The 

procedure described as follows:

1. First test with a sample of size n, the null hypothesis H0 : a2 = against
O 9 VS^

the alternative H1 a =£ <Jq using the test statistics — , where v = (n -1)
°o

and s2 = ~~x)2. The test statistics is distributed as x2 with v

degrees of freedom.
9 V S ^ 9 9

2. If H0 is accepted at a level of significance i.e. x2 < — < x\ where x2
ao

and x2 are the lower and upper points of the uniformly most powerful 

unbiased (UMPU) test of H0, use the conventional shrinkage estimator with

shrinkage factor k = , which is inversely proportional to x2 and it

depends on the test statistic, so the arbitrariness in the choice of shrinkage

factor has been removed by making it dependent on the test statistic.

3. If H0 is rejected, use s2, the Uniformly Minimum Variance Unbiased 

Estimator (UMVUE) as the estimator of a2.
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Now, the proposed shrinkage testimator g2t1 °f 0-2 is

Gsri
kx s2 + (1 — ki)oo

c.2
if H0 is accepted 
otherwise

Where ki vs
(Tq2 X2

Estimators of this type with an arbitrary k(0<k<l) have been proposed by 

Pandey and Singh (1976,77), Srivastava (1976) and others. In these studies it has 

been shown that the shrinkage testimators work well if k is near zero, n is small 

and |cr2 — Gq | is also small. Hence, we should select the shrinkage factor which 

approaches to zero rapidly. We have, therefore, define another shrinkage 

Testimator afT2 of a2 by taking square of the shrinkage factor k2 = k2.

-2G st2

r

V

vs2
lTq2 X2

2
S2 +

VS2 
Gq2 X2 ; if H0 is accepted

otherwise

2.7 Risk of Testimators

In this section we derive the risk of these two testimators which are defined in the 

previous section.

2.7.1 Risk of gzst1

The risk of g2STi under L(A) is defined by

R(u2zr,) ~ £ [ tr2s7j [ 1(a)]

= £

+ E

k]s2+{l~~kl )a2J j,2 < ^.< %l

Gn
OS ,2 I | VS 2

7. OS 2

■p Xx< 2 <xl
L °*o j

crn
<Xx U —T>Xi

crn
P <zf U

crn
>X2

(2.7.1.1)
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2 2 
Z2°0 a

= e
V

I

2 2 
VqZ

(s2- cr|)+cr|
„2_2
Z2a0

xftrj f(s2)ds2 - a J~2_2X\<*o

US f 2 2^ 2(s2~ct2)+(t2
2 2

■1
a

Rs2)ds2

2 2 2 2 

^1^0 j2

- J f(s2)ds2+e~a J e ^'/<r2Jf(s2)ds2 + e~fl J e^^cxZ^f(s2)ds
,2\ r„2

2„2 2 2 

^2^0

-,2__2 2l gp „2_2 /t ff0
t? co _ y CO

- J (^J-l)/(*s2)^2~ a J {^-l)f(s2)ds2- J f(s2)ds2- J f(s2)ds:
xfrl „,2_.2Xi^o

(2.7.1.2)

Where /O2)
l££•1 I '2 <x2

Straight forward integration of (2.7.1.2) gives

R{3sti) = (~) /2

2a
AX2 (?+1){z(X22;i' i+2)-;(xi2;i' i+2)}

+ 7+1)~ !{xi*. i+1)}(?+1)
- aX {/ , |) - / (zi A, |)}

[l-/(x|A, |)- l(x?A, |)]+ 1
272 (f-f)2

(2.7.1.3)
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Where /(*;/?) - (l/F/j) | e x xp 1 dx refers to the standard incomplete

gamma function, X r2 ’ and

I* = 272 r(|)

2.7.2 Risk of <r|y2

*1,xj_X
x\l eL-

at* 

kvx^ -if i-1 
e 2 12 dt

Again, we obtain the risk of vlSTz under L(A) with respect to s , given by 

fl(CTV,)=£:[<T2S72|£(A)]

= E vs
_2 „,2 

V^o X j

^2 f 
s2 +

f vs2 ^2 ~\

+ E vs
CTn

2 2
v0

VCTo Z J J
1 US2 2

U , > X 2
v0

VS
<y:

2 vs2 2

P Zi <—T<X2
Vo

■p
VS2 2 . . VS2 2

< Zi U j- > X2
Vn a:

(2.7.2.1)

e

zfo2 a
V

' I

' 2 2
iTfr’-s)

+ £Tn

2 2 

Z)Oo

JlJl/2ff0

f(s2)ds2-a J„2_2

U-S2 Ya2 2^ 2 

2 2 \ ^0+^0 

g~o2f Jj
cr

/(J2)*2

v2^2
^2^0

„2 _2

} f(s2)ds2+e- | f(s2)ds2 + e~“ | f(s2)ds



00 1} co
- a J (£-l)/(i2)<fe2-a | (i-l)/(i2)*2- J f(s2)ds2- J f(S2)

o xl°0 0 M.

Where /O2)
2/2 ry/

( »
|-1 ^ 2 <T2 J

J2.7.2.2)

Straight forward integration of (2.7.2.2) gives

4a

* (^5T2 ) = (if) ^

r (i+1)(i+2)
A2 (x2)2

{7(*2A' ^+3)-/(zi22, ^+3)}

+
4a

A(x2)2

{/(xlA, j+2)-/(xi2i, 1 + 2)}

- a{/(jiA, | + l)- /(xfA, |+l)} 
— al {/( j|A, £)- l\xU, I)}

_(2.7.2.3)

Where V

at3 at2
e“(,t 1} rx|'leu2i>(*2r a(*2)'

272 r(|) Ma e
-it £_1 e 2 t2 1 dt

x
Where I(x',p) = (l/Tp) J e~x xp~] dx refers to the standard incomplete gamma

function and X is same as defined earlier.
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2.8 Relative Risk of ajTi

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator s2 in this case. For

this purpose, we obtain the risk of s2 under Z,f(<x2,cr2) as:

RE(sz)= E[sz\L(&2 ,ct2)]

e “ | e ^ * f(s2)ds2 -a j —j--l f(s2)ds2 -j f(s2)ds
0 n O' n

_(2.8.1)

1Where /(V) = — .
2/2 riu/

(s>f
1 us2

1 l ~2~^r 
e

A straightforward integration of (2.8.1) gives

*,;U2) / 2\<T
J__£U
2

.(2.8.2)

Now, we define the Relative Risk of o~2st, ,i- 1,2 with respect to s2 under 

l(<x2 ,cr2) as follows:

Re(s2)
RR,

R(a\$n)
.(2.8.3)

Using (2.8.2) and (2.7.1.3) the expression for RRj given in (2.8.3) can be obtained; 

it is observed that RR* is a function of‘A’, ‘ v ‘a’ and ‘a’.

a 2Finally, we define the Relative Risk of g~st2 by

RR,
Ee(s2) 

R(&~s?2 ) .(2.8.4)
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The expression for RR2 is given by (2.8.4) can be obtained by using (2.8.2) and 

(2.7.2.3). Again we observed that RR2 is a function of ‘/T,1 v ‘a’ and ‘a’.

2.9 Recommendations for ff^Ti

■*2 * 2In this section we wish to compare the performance of cr st} and cr st2 with 

respect to the best available (unbiased) estimator of a2.

2.9.1 Recommendations for ffsri

It is observed that the expressions of RRi and RR2 are the functions of v, a,X and 

the degrees of asymmetry " a ". For the comparison of the proposed testimators 

with the best available estimator we have considered a = 1%, 5% and 10%, 

v = 5, 8,10 and 12 and a = —2.0, —1.0, 1.0, 1.5 , and 1.75 and X = 

0.2 (0.2) 2.0 . There will be several tables and graphs for RR values for both the 

testimators. We have assembled some of graphs at the end of the chapter. 

However our recommendations based on all these computations are as follows:

2 a 2
(i) o- stx Performs better than cr for a considerably large range of X for 

different degrees of asymmetry. For a= -2 the range is 0.6 < X < 1.8 , which 

changes slightly for a = -1 and becomes 0.6 < X < 1.6 . For the positive 

values of ‘a’ we have observed a different pattern for RR2 as when different
a 2 a 2values 0.8 < X < 1.4 , the performance of cr stx is better than cr Similar 

pattern is observed for the other two positive values of ‘a’ i.e. a = 1.5 and a = 

1.75. However the values of RRi are smaller in magnitude. Further the 

magnitude of RRi is higher when ‘a’ is negative as compared to those values 

of when ‘a’ is positive.
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(ii) For higher values of a i.e. 5% and 10% a similar kind of behaviour of 

RR values is observed but the range of ‘A' changes, it is 0.6 < A < 2.0 for a = 

-2 and a = 5% and this becomes 0.8 < A < 2.0 for a = -2 and a = 10% . 

Similarly for other values of negative ‘a’ when ‘a’ is positive the range of‘A’ is 

0.8 < A < 1.8 for a =1.75.

(iii) It is observed that for some negative values of ‘a’ as well as for some 

positive values of‘a’ the magnitude of RRi is greater than unity which indicates
A 2that cr st{ performs better than usual estimator.

(iv) As the value of ‘v’ increases there is a decrease in the RRi values for 

different values of levels of significance and degrees of asymmetries. However
a 2

the best performance of cr srt is observed at a = 1% for a = -2 and a = 1% 

for a = 1.75

(v) It is recommended therefore to consider a smaller level of significance 

(preferably a = 1% ) and smaller sample size v = ‘5’ or ‘8’ for positive / 

negative values of‘a’ in particular a = 1.75 and a = -2.0.

2.9.2 Recommendations for o‘|r2

A 2
Next we have considered another testimator cr st2 which is obtained by 

squaring the shrinkage factor, we have evaluated the expression RR2 for the 

same set of values as considered for RRi and our recommendations are as 

follows:

/>. 2 « 2
(i) <J st2 performs better than the usual estimator cr for different range of

i.e. for a = -2, it is 0.6 < A < 1.8, however for a = -1 it becomes 0.6

A

<
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A 2
A < 1.6 i.e. almost the same whole range as observed for cr but the 

magnitude of RR2 values are HIGHER than the magnitude of RRi values
A 2 A 2

indicating a ‘better’ control over the risk of cr st2 as compared to <J sq. 

This is observed when a = 1%, v = 5 and a = -1.0 also when a = +1.75.
A 2(ii) A Similar kind of pattern for the performance of cr st2 is observed for 

a = 5% and a = 10% for the range of ‘A’ as mentioned above.

(iii) It is observed that the values of RR2 are more than unity for some 

positive and negative values of ‘a’. So, it is conclude that in both the 

situations i.e. over/under estimation the proposed testimators behaves 

nicely.

(iv) The maximum values of RR2 are observed for a = 1%, a = -2.0 and v 

= 5. Similarly for a = +1.75, a = 1% and v = 5.

(v) The general behaviour observed is that of‘decreasing’ values of RR for 

higher values of ‘v’ and ‘a’ .

(vi) So, it is recommended to consider smaller level of significance along 

with a smaller sample size with proper choice of ‘a’.

CONCLUSION:

We have proposed shrinkage testimator(s) for the variance of Normal distribution
A 2and we recommend that: A shrinkage testimator cr st2 (i.e. ‘square’ of shrinkage 

factor) should be considered for a = 1%, v — 5 or 8 and a = 1.75 (for situations 

where overestimation is more serious) and a = —2.0 (for situations where under 

estimation is more serious).
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Tables showing relative risk(s) of proposed testimator(s) with respect to the 
best available estimator.

Table : 2.9.1.1 Relative Risk of a§Ti a = 1% , v = 5

X 11 & a = -1 a = 1 a = 1.5 a = 1.75
0.20 0.699 0.597 0.497 0.176 0.718
0.40 0.76 0.794 0.642 1.071 1.229
0.60 1.311 1.116 1.196 1.934 2.047
0.80 2.606 1.939 2.693 2.92 3.307
1.00 4.647 3.256 2.817 3.448 4.375
1.20 4.64 3.092 1.725 2.436 3.071
1.40 2.935 2.288 1.187 1.763 2.246
1.60-—1.802 1.459 0.801 1.233 1.609
1.80 1.206 0.974 0.541 0.84 1.121
2.00 0.878 0.695 0.373 0.569 0.768

Table : 2.9.1.2 Relative Risk of a\T1 a = 1 %, v = 8

X II&

a = -1 a = 1 a = 1.5 a = 1.75
0.20 0.863 0.455 0.244 0.685 0.891
0.40 1.642 0.983 0.651 1.599 1.165
0.60 2.516 1.455 1.301 1.794 2.005
0.80 3.579 1.878 1.806 2.133 2.44
1.00 4.156 2.446 2.562 3.726 4.164
1.20 3.693 2.01 1.757 2.755 3.333
1.40 2.777 1.503 1.476 1.751 2.887
1.60 1.738 1.062 1.008 1.482 1.574
1.80 1.191 0.782 0.208 0.315 0.371
2.00 0.895 0.611 0.146 0.211 0.245

Table : 2.9.1.3 Relative Risk of <xfrl a - 5%, v = 5

X a = -2

i-iiII a = 1 a = 1.5 a = 1.75
0.20 0.802 0.617 0.663 0.362 0.672
0.40 1.018 0.876 0.981 1.162 1.278
0.60 1.714 1.167 1.923 2.117 2.03
0.80 2.833 1.598 2.442 2.548 3.336
1.00 3.641 1.909 2.665 3.117 3.632
1.20 3.279 1.886 1.879 2.254 2.977
1.40 2.465 1.627 1.188 1.762 2.116
1.60 1.829 1.334 0.828 1.049 1.771
1.80 1.416 1.094 0.523 0.568 1.031
2.00 0.92 0.666 0.249 0.429 0.583
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Table : 2.9.1.4 Relative Risk of of ri a = 5%, v = 8
X » II a = -l a = 1 a = 1.5 a = 1.75

0.20 0.768 0.781 0.315 0.475 0.603
0.40 1.003 1.076 0.971 0.916 0.713
0.60 1.801 1.583 1.387 1.59 1.374
0.80 2.621 1.963 1.638 2.464 2.563
1.00 3.265 2.377 2.219 2.764 3.103
1.20 2.221 1.844 1.843 2.105 2.34
1.40 1.909 1.631 1.474 1.611 1.744
1.60 1.601 1.193 0.937 1.231 1.51
1.80 1.374 0.766 0.711 0.831 0.974
2.00 1.009 0.684 0.393 0.438 0.582

Table : 2.9.2.1 Relative Risk of o\T2 a = 1%, v = 5
X a = -2 a = -l a = 1 a = 1.5 a = 1.75

0.20 0.426 0.393 0.343 0.789 0.996
0.40 0.499 1.193 0.458 1.225 1.689
0.60 1.059 1.907 1.494 1.874 2.768
0.80 2.782 2.614 2.389 2.751 3.961
1.00 6.727 4.124 3.826 4.747 6.296
1.20 5.728 3.306 2.129 4.055 4.127
1.40 2.833 2.432 1.28 3.227 2.709
1.60 1.592 1.309 0.781 2.05 1.72
1.80 1.04 0.836 0.495 1.265 1.081
2.00 0.754 0.589 0.328 0.785 0.686

Table : 2.9.2.2 Relative Risk of a2T2 a - 5%, v = 5
X iII88 a = -l a = 1 a = 1.5 a = 1.75

0.20 0.509 0.552 0.441 0.992 0.688
0.40 0.989 0.855 1.326 1.69 1.913
0.60 1.405 1.514 1.921 2.054 2.874
0.80 2.87 2.081 2.784 2.371 4.183
1.00 3.975 2.833 2.973 3.354 5.017
1.20 3.193 2.302 1.917 2.649 4.216
1.40 2.464 1.825 1.581 1.806 3.446
1.60 1.732 1.574 1.105 1.232 2.005
1.80 1.168 1.195 0.295 0.52 1.715
2.00 1.048 0.936 0.221 0.375 0.514


