


Chapter - 3

DOUBLE STAGE SHRINKAGE TESTIMATORS UNDER ASYMMETRIC
LOSS FUNCTION

3.1 Introduction

In this chapter we have extended our studies of chapter 2 in the sense that 

now instead of drawing only one sample form the population, the experimenter 

may possibly drawn one or two samples. Estimation of the mean from double 

sample in the presence of a priori information was first considered by Katti (1962) 

and later by many others. Katti’s method consisted in constructing a region R using 

the a priori information available in the form of a guess value say 90 of the

parameter 0 and the observations x15x2..... ,xn from the first sample. If the

estimator constructed or proposed belonged to R; there was no need to draw a 

second sample of size n2. However, if it did not lie in R; a second sample of size 

n2 was drawn and the proposed estimator used observations from both samples. 

Shah (1964) used this method in estimating variance of a Normal distribution when 

a guess of the population variance is given. He also proposed a pre-test estimator 

of the variance. The procedure adopted by Shah has something in common with 

the two stage procedure due to Stein (1945). Arnold and Al-Bayyati (1970) 

modified the estimator proposed by Katti using the shrinkage technique and 

studied the properties of the estimator. Waiker and Katti (1971) have also studied 

two stage estimation of the mean. Pandey (1979) considered estimation of variance 

of a normal population using a priori information.
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Waiker et al (1984) have suggested and studied a two stage shrinkage 

testimator of the mean of a normal population when the variance of the population 

may be known or unknown. Their approach is different from that of Katti and 

others in the sense that (i) no region R is constructed in the sample space (ii) the 

shrinkage factor k is no longer arbitrary but is a function of the test statistic used in 

testing the hypothesis regarding the given a priori information. In both techniques 

k being arbitrary or not, no assumption is made regarding the distribution of the 

parameter 9 on (the parameter space). At the most one may take it a singular 

distribution with entire mass concentrated at a single point 9= 90.

Similar studies for estimating the scale parameter 9 in one parameter 

Exponential distribution with p.d.f.

fOciB) = (?«*(-*/«■ * * °-« > 0 _____(3.1.1)
l 0 , otherwise

have been made. Using the priori information available in the form of an initial 

estimate say 90 of the parameter 9. Shah (1975) considered estimation of 9 in 

censored sampling. Ojha and Srivastava (1980) have studied a pre-test double 

stage shrunken estimators of 9 using complete samples. The object of the present 

chapter is to propose and study shrinkage testimators for scale parameters of 

(3.1.1).

Recently Srivastava and Tanna (2007) have studied the risk properties of a 

Double stage shrinkage testimator under General Entropy Loss Function. Further 

Srivastava and Tanna (2012) have studied the risk properties of such estimators 

under Asymmetric Loss Function.
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DOUBLE STAGE ESTIMATION:

The first stage sample is used to test H0 and if Ho is not rejected, it is 

suggested to use the prior knowledge being supported by a test, in estimating 0. 

However, if H0 is rejected, we do not use the prior knowledge and obtain a second 

sample size n2 = (n — nt) to make up for the loss of the prior knowledge and 

estimate 0 using both the samples.

In section 3.2 we have proposed the three different shrinkage testimators for 

scale parameter of an Exponential Distribution and we have studied the risk 

properties of these three shrinkage testimators under Asymmetric Loss Function. 

Section 3.3 deals with the derivation of the risk(s) of these three estimators. 

Section 3.4 deals with the relative risk(s) of these three estimators. Section 3.5 

concludes with the comparison of UMVUE and the proposed shrinkage testimators 

in terms of their relative risks. Further in the same section a suggestion for the 

shrinkage factor is made.

In section 3.6 we have proposed the two different shrinkage testimators for 

the variance of a Normal Distribution and we have studied the risk properties of 

these two shrinkage testimators under Asymmetric Loss Function. Section 3.7 

deals with the derivation of the risk(s) of these two estimators. Section 3.8 deals 

with the relative risk(s) of these two estimators. Section 3.9 concludes with the 

comparison of UMVUE and the proposed shrinkage testimators regarding their 

choice in terms of their relative efficiency. Further in the same section a 

suggestion for the choice of shrinkage factor is made.
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3.2 Shrinkage Testimator(s) for Scale Parameter of an Exponential 

Distribution.

Let xn, X12,., xinl be the first stage sample of size ni from and exponential 

population is given by (3.1.1). Let 0O be the guess estimate of the mean 9.

Compute the sample mean = - £fii xu and test the preliminary hypothesis Ho

9 = 0O vs. Hi: 0 ^ 0o, using the test statistic T = which follows x\n. . It is

to be noted that Ho is accepted if x{ <2 2nl*l Jl< x2 and Ho is rejected, otherwise.

Then take n2 = n - nx additional observations x2i,x22,_ _,x2n2 and use the

pooled estimator xp as the estimator of the mean where xp n1x1+n2x2
nx+n2

x\ and x'i being given by

P[x%ni > x\] + P[xlni <xl\ = a .(3.2.1)

where a is the pre-assigned level of significance.

When 9 = 0O, the probability of avoiding the second sample is (1- a) and the 

expected sample size is given by

n* = E[n\ 0 = 0O]

= ni P [xf < < xi] + (nt+ n2) P < x\ U

or, n* = iit (1 + ua) where u = n2/ni •

2nx*i
90 >

When 0 ^ 0O, the probability of avoiding the second sample is

1 finP = — — ■ (^~J (xj)”1-1 0o ^dxt and the expected sample size is
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Now we propose a shrinkage testimator 0DST1 of 9 defined as:

9DSTl
k1x1 + (1 - kf)e0 ; if x\ < 2%%

X-r otherwise

< 4

(3.2.2)

Where XP
niXi + n.2X2 

ni+n.2
and Xs n. ^>j=lxij ' i 1*2

271^1
and being dependent on test statistic is given by = 9q x2

where x2 — (x2 — xf)

Now, taking the ‘square’ of kt (i.e. k2 = k2), another testimator is defined as

0DST 2
+ I1 - I ®0 ; if »o is accepted

(3.2.3)
Xyvp ; otherwise

Finally, taking k3 , the third testimator can be proposed as

9,
k3 x±+ (1 — k3)90 ; if H0 is accepted

DST 3 Xy, otherwise .(3-2.4)

Where k3 = X1 and x2 = (x\ - x\ )

In this case ‘/c3 ’ exactly lies between ‘O’ and ‘1’.

3.3 Risk of Testimators

In this section we derive the risk of all the three testimators which are defined in 

the previous section.
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3-3.1 Risk of eDST1

The risk of 0DSTl under L(A) is given by

R0Dsr^Bl3DSTi\L(A)-]

kx x, +(l~kx)0ojXi <~-

(33.1.1)

zi&o
2n,

= ^ J

^nixi (xs-0Q)+eo

f(*x) dxx
Xt&o
In,

Z2&Q

a
In,

JXi&o
In,

2"lX' fe -<?„)+<?„
0n

9 /(Xj) dxx

X2&b 2 n.
Z\Op
2w» oo (x.J f(xx) d5cx +ea J je ^ ' f(xx)f(x2)dxx dc.

Xi&o 

2 »,
X\0q 
2/lj oo

0 0

Mis.
2/7} OO

a rm — l^f (Xj) f (x2 ) dx, dx2 ~ J J fix 1 )/(x2 ) dxx dx-
0 0 0 0

oo OO f x

J /•e j |e
X2&b 0 
2 n,

f (X1 )/TX2 ) dxx dx2

w ay > . w w« J j{^L~-l)f(xx)fix2)c&ldx2- J J f(xx')f{x2')dxxdx2

xl&a °
2n,

Zi_ 0
2 n.

(3.3.1.2)

62



Where fix1)— i f?hT
Tni V e

faf' -«i*i1 e 9

and /02) =
1 nr„2 V2

(xj^e 9
Tn2y9j

Straight forward integration of (3.3.1.2) gives

,n, +2

2ariy

x2 r^+n-2

I
f x\(f>

w,

f x\ (f> 

\ 2

fly +2

«j +1

V ^
» -f-

Wj +1

/ (a$ — a + \)+\lf v2x2 <f)
,nx

xf (/) \3
riy

am
nx+n2 r a \«l+«2

1-
V. rh+rh)

r

>+

\

/ \«I+«2<3
V V tty +n2 j

.(3.3.1.3)

Where

xf $
2

I* = ea*-° J <2*f 4>

T-at1 2at

«! $XZ XZ -J— e"'
F /2j ; 0 = j and

2

/(x;/>) = (l/r/?) J e~x xp'1 dx refers to the standard incomplete gamma function

0

3,3.2 Risk of 9DST2

Again, we obtain the risk of 9Dst2 under L(A) with respect to xl9 given by 

R(Pdst2 )= E [ &£>st2 j A(a)]
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= E nxxx V/.
\xz)

2n, 

0,

xt 0O^)+ 0O /%j <2 ^ 2;?, x, < ^,2

+ .B x„
2/7, X,

<2ff U
2/7, X,r2x> 2/t, x, 

6L

2 2 /7, ,A~, o
< _J_i. < ^2

2 | | 2Wj o
<-*1 U -- 1 1 > ^2

C7a

(3.3.2.1)

2«,

J

\2

g02T2y (*i -00 )+0o

/Oi) dxx
Xx&o 
2 k,

X-j&o
2k,

a J
xr<?0
2/a,

1nxx Y
l-'M

9.7'
(xa <90)+ 6>0

y

9
f(xx ) dxx

X?.0Q
2k,

X\0q
2k, oo „f *

J f C-*!) +e° J J e ^ ^ (xi) f Cx2 ) d*:
X\0Q
2k,

Xx&o

0 0

2Wj 00 / \ ■£,ni °o

J aBc2 - J J f(xx)f(5c2)dxxdx.

X\0Q 
2n,

a
o o O 0

oo oo | *p

«"* J Je
Xl^o 0

/0l)/02)^l ^2
2/7,

OO OO

a

OO OO /■ \ OO oo

J J-!)/(*.- J J f(x,)f(x2)dx,dx2
X2 0Q 0 
2k,

xi&o 0 
2 k,

(3.3.2.2)
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Where f (xi)
Ini V 9 J

-*h*i{xxf~le 0

Sf- x 1 (n2
and fix2)------- 1

Tn2 V <9
(*2)”2

-«2*2

A straight forward integration of (33.2.2) gives:

d/3 \ _ T * _ +1X”i +2)
^2 (^2)2

4aw,fa*!) f/xU -

r %\$ ^^-,nx+ 3 ~If^-3
l 2 1 J l 2 1 J

2^ 1/|-Y-’«1+2
*0r>

- a +1)+ aW
»j +n2

/ 2 - "\ X2 f ,nx
x\$

I
L V

y

+1

,Mj + 2

\ / Ji

./ *10
v

-</ 

v 

y.

. 4-

\
-I\xUAJ 2v z y

nx +1 >+

^ anx
nx+n2 r a \»i+^

v n\+n2 y

>+
1— a

\"l+«2

v V n\+n2 J

13.3.2.3)

yrf#

Where
• = e«(#-i> . e,

Z.J

X\<1>
2

4ar
.«,^2(^2)2 *or2)2 dt

3.3.3 Risk of Qdst3

Finally, we obtain the risk of @dst3 under L(A) with respect to x1, given by

*(4s?) = £[^|i(A)]
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E k3X} +(i-k3)e0/x\ <<xl •p
2 ^ 2nlx1 2

XlZl < a0

+ E x„
ln'x' <xf^~~L> xl

ft 9n
^n\X\ ' v2\\ ^n\X\ ^ r2 ~~x~~<X\ u-—— >%2

% C'n

(3.3.3.1)

xldo a
2 n.

- I

/,2«1jc1 jcj2 ^ 

V.0O*2 *2 (*i-^o)+<9o

/Ol) ^
2Ti^o2«]

2|0q2/j,

a J
2/j,

( 2^2^ 5_
2 _2

2 \
O0 x x j

(xj -0O)+0O

e
f(x!> ^

2f0o2/j,
2|20q 2/i, ,

J f(xx)dxx + ea J 6 J f{xx)f(x2)(B1dx2

Xl 0Q 

2/j, 0 0

2f0o 2/J, oo
2,20q
2/J] co

a j J (^ -l)/(x,)/(x2)dxldx2- J j f{x,)f(x2)dxldx.

0 0 0 0

+ & f{xl)f{x2)dxi dx2

<30 OO

- J J‘
2|0q 0 
2 nx

OO OO / v OO 00

J J - l)/(X! )/(x2 )dxxdx2 - J J /(X! )/(x2 ) dx, dx2

(3.3.3.2)

xlBp 0
2/j

2-|0q 0
2«,
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Where f(xi)
Tnx

r
\

5_
0

Wr
-»l*l'X~x e 9

and /02)
1 f n

Tn2 v e

»2 fe)”2_l«

A straight forward integration of (3.33.2) gives:

R(0Dsn)=I-. * 2a(nx +1) ( „2%2<i>

/
rxU

n, +19fll
r xU

n, +2
^ (xU
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X X ih+n%

,n, +1
xlfa f f xl<!> „ 1 /x\<i> x

f (xii IxU ^* ~ 9’Hu ,nx
\ V

X

(a^ - a -1) + 

r
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I
l V
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(A* \

,nx
\

,nx ■/i

an,
«j +n2

»+-
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V «l+n2/

!------- *-

VV «!+«2y

(3.3.33)

Where
L *

^2 ^ r *> o ?
^2™ I 2ar 2a* j xi

- J eL" t Z J Z z
<px x x x"

xf$ Fn,
■<T* tn'~1 dt

3.4 Relative Risks of

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator xt in this case. For this 

purpose, we obtain the risk of xt under L(A) as:
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/?£(xj)= jE[x1|Z(a)]

= e
o o

/ 0l)/02)^1^2

00 0O ,___ V

-aj J (f-l) /(x^/Xxj)^
0 0

OO 00

dx2 — II f(xi)f(x2)dx1dx2 
0 0

.(3.4.1)

A straightforward integration of (3.4.1) gives

Rb(x i) 1 .(3-4.2)

Now, we define the Relative Risk of Omrx with respect to x, under L(A) as 

follows -

R(@DSTt )
(3.4.3)

Using (3.4.2) and (3.3.1.3) the expression for RRi given in (3.4.3) can be obtained;

Similarly, we define the Relative Risk of &dst2 with respect to xx under L(A) as 

follows

RR2^
R-E^Xl) 

R(@DST2 )
.(3-4.4)

The expression for RR2 given in (3.4.4) which can be obtained by using (3.4.2) and 

(3.3.2.3).

Finally, we define the Relative Risk of 0DSr3 with respect to x, under L(A) as 
follows
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RR (3 4 5)

Using (3.4.2) and (3333) the expression for RR3 given in (3.4.5) can be obtained.

Now, it is observed that RRi, RR2 and RR3 are functions of ‘ni’, ‘n2\ 

‘a’ and ‘a’.In order to study the behaviour of Relative Risk(s), we have taken a set 

of values of (m, n2) = (4,4), (4,6), (4,8), (4,10) and (4,12), as = 1%, 5% and 10% 

, 0 = 0.6 (0.2) 1.8 and a = ± 1 to ±3. The recommendations regarding the 

applications of proposed testimators are provided as follows:

The values of n* and n** are defined in section 3.2. For some values of (ni, n2) 

these values are obtained as follows:

Table -1 shows the values of n* for <j> = 1.0 and ni = 4, n2 =8 and table - 2 

shows the values of n** for ^ = 0.8 and ni = 4, n2 = 10

Table -1 ^ = 1.0

(ni, n2) sa 11 >-
»

s® O
'" a = 5%

(4, 8) 4.08 4.40

Table -2 ^ = 0.8

(ni, n2)

N
®

0sII55 a = 5%
(4, 8) 4.17 4.62
(4,10) 4.21 4.78

Similarly the other values of n* and n** can be computed for other values of 

(nl5 n2) considered here.
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3.5 Recommendations for 0DSTt

/V A

In this section we wish to compare the performance of @dst: , @dst2 and

y\

@dst3 with respect to the best available (unbiased) estimator of x, .

3.5.1 Recommendations for 0DStx

1. For various set of values of (nj, n2), keeping a = 1% and allowing the variations 

in all the values of ‘a’, it is observed that the proposed testimator 0DST1 

performs better than xx for 0.6 < 0 < 1.4 considered here, except for few 

higher values i.e. 0 = 1.8. The magnitude of RR is higher for all the values of 

‘a’ however maximum gain is achieved at a=3 and a= -3. Similar pattern is 

observed for other values of as i.e. 5% and 10% but the magnitude of Relative 

Risk is higher at a' = 1%. It is also observed that for a = -3 and (ni, n2) = (4,8), 

Sdsti performs better.

2. In the next comparison stage we have fixed a=3, and have allowed the variation 

for values of as such as a = 1%, 5% and 10%. Maximum gain in risk is 

observed at 0 = 1.0 (though it is true for the whole range of 0) again at a = 

1%, relative risk values are higher than those at 5% and 10% so a lower level of 

significance i.e. a = 1% is recommended for better performance of the proposed 

testimator.

3. We have kept ‘a’ = 3.0 and have allowed the variation in a for ni = 4, n2 = 12. 

It is seen that the Relative Risk values are much higher than unity, indicating 

superiority of the proposed testimator under Asymmetric Loss Function. A

70



value of a = 1% shows maximum relative risk value implying that it is the most 

preferred value.

4. Again, for ni = 4, n2 = 10, 0 = 1.2 for different values of as , the table of 

0Dst i, indicates that, it dominates the usual estimator for the whole range of 0, 

with best performance at a = 1% and a = 3.

5. It has also been observed that the relative risk increases as 0 increases from 0.6 

to 1.0 reaches its maximum at 0 = 1.0 and then it decreases. The relative risk 

increases as n2 increases for fixed value of ni, and is maximum at (4, 8).

6. Thus, our recommendation for the use of dDST1 is to take ni = 4 and n2 = 8 i.e. 

n2 = 2 ni and small values of as.

3.5.2 Recommendations for Qdst2 ant* ®dst3

We have considered two other choices of the weight functions viz. square of ‘k’ 

and making the values of ‘k’ to lie exactly between ‘0’ and ‘1’ and with these 

choices of shrinkage factors we have proposed 9DST2 and 8DST3, so it is natural to 

suggest which ‘k’ should be taken. This can be achieved by making a comparative 

study of the relative risks of values for all the three choices.

However a comparison of the values of relative risks for 9DST1, 0DST2 and 8DST3 

reveals that

(i) 9DST2 is better than the usual estimator for 0.6 < 0 <1.8 however if ni is 

small similar pattern is observed for 0DST3 . However the magnitude of 

relative risk is smaller in case of 9DST1 and 9DST3 in comparison to 9DST2.
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So, we conclude that Oust2 is preferred in comparison to Ousti and / or

&DST3-

(ii) Our focus is also on recommending the degree(s) of asymmetry. A careful 

study of the table of Relative Risks, reveals following choices:

For Ousti 5 it is recommended that a = 3 and a = -3 for almost all the 

choices of ni and n3

For Ousti > it is recommended to take a = -3 and a = 3 for several choices of 

ni and n2

For 0DST3 , it is recommended to choose a = -3 and a = 3 and a = 1% . The 

performance of 0DST3 is better than xt in almost the whole range of 0 (0.6 

<0< 1.4)

CONCLUSION

To conclude it is recommended to use ‘square’ of the weight function (Shrinkage 

factor) with high positive / negative values of degrees of asymmetry along with 

lower level(s) of significance viz 1% and 5%. However 1% is preferable as the 

magnitude of relative risk is higher in this case showing better control over risk of 

the proposed estimator.
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Tables showing relative risk(s) of proposed testimator(s) with respect 

to the best available estimator.

A

Table : 3.5.1.1 Relative Risk of @DStx ct = 1%, ni = 4, n2 = 4

0 a = -1 a = ~2 a = -3 a = 1 a = 2 a = 3
0.60 1.028 1.286 1.435 1.063 2.592 3.138
0.80 2.103 2.656 3.197 2.061 3.394 4.895
1.00 3.852 4.902 6.384 3.835 4.388 6.405
1.20 3.508 4.076 5.113 2.64 3.159 5.44
1.40 1.893 2.129 2.629 1.535 2.009 4.921
1.60 1.036 1.195 1.508 0.855 1.162 3.1
1.80 0.639 0.765 0.995 0.5 0.664 1.849

Table : 3.5.1.2 Relative Risk of 9ds% a = 1%, nj = 4, n2 = 8

0 a = -1 a = -2 a = -3 a = 1 a = 2 a = 3
0.60 1.255 1.467 1.583 1.885 2.328 2.959
0.80 2.392 2.892 3.419 3.06 3.122 4.804
1.00 4.015 5.052 6.564 3.769 4.379 6.689
1.20 3.432 4.039 5.095 2.691 3.188 5.48
1.40 1.839 2.101 2.611 1.571 2.031 3.952
1.60 1.011 1.181 1.499 0.872 1.173 2.119
1.80 0.625 0.758 0.989 0.508 0.669 1.858

A

Table : 3.5.1.3 Relative Risk of @dstx a - 1%, ni = 4, n2 = 10

0 il a = -2 il a = 1 ii a = 3
0.60 1.339 1.528 1.631 1.109 3.77 3.586
0.80 2.49 2.967 3.488 4.83 6.044 6.737
1.00 4.064 5.096 6.617 3.75 4.375 9.438
1.20 3.411 4.029 5.09 2.706 3.195 7.49
1.40 1.825 2.094 2.605 1.581 2.037 4.96
1.60 1.004 1.177 1.496 0.877 1.176 3.123
1.80 0.622 0.755 0.987 0.511 0.671 1.861
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A

Table : 3.5.1.4 Relative Risk of 0^ a = 5%, nj = 4, n2 = 8

0 a = -1 II iN
J a = -3 a = 1 a = 2 as II w

0.60 1.073 1.348 1.498 1.741 1.821 2.276
0.80 2.022 2.668 3.206 4.55 5.587 4.22
1.00 3.75 4.78 6.103 5.637 6.942 7.115
1.20 3.899 4.253 5.206 2.619 3.632 5.939
1.40 2.301 2.4 2.89 1.451 2.068 4.08
1.60 1.302 1.405 1.73 0.859 1.218 3.564
1.80 0.82 0.929 1.179 0.541 0.74 2.132

Table : 3.5.1.5 Relative Risk of @ds% cc — 10%, ni = 4, n2 = 8

0

w
i1ii a = -2 a = -3 a = 1 a = 2 a = 3

0.60 1.005 1.283 1.439 2.066 2.578 2.588
0.80 1.833 2.523 3.065 3.567 3.055 3.929
1.00 3.771 4.873 6.119 6.985 7.386 7.903
1.20 4.793 4.72 5.529 2.753 4.258 5.462
1.40 2.972 2.739 3.167 1.417 2.208 4.227
1.60 1.668 1.635 1.947 0.858 1.291 3.059
1.80 1.053 1.106 1.365 0.567 0.81 2.431

/\

Table : 3.5.2.1 Relative Risk of @DSt2 a = 1%, m = 4, n2 = 8

0 a = -1 a = -2 ■

IIa

a = 1 a = 2 II&

0.60 1.224 1.41 1.508 1.531 1.661 2.664
0.80 3.037 3.746 4.437 3.93 3.367 3.359
1.00 6.154 7.193 8.043 6.574 7.717 8.331
1.20 4.046 4.508 5.469 3.635 4.902 5.35
1.40 1.61 1.817 2.243 1.512 2.192 3.766
1.60 0.82 0.969 1.241 0.724 1.02 2.237
1.80 0.501 0.62 0.822 0.399 0.522 1.578
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3.6 Shrinkage Testimator for the Variance of a Normal Distribution

Let X be normally distributed with mean \i and variance a2, both unknown. 

It is assumed that the prior knowledge about g2 is available in the form of an 

initial estimate Gq. We are interested in constructing an estimator of a2 

using the sample observations and possibly the guess value g§. We define a 

double stage shrinkage testimator of a2 as follows:

1. Take a random sample xu (i = 1,2,__ , nt) of size % from N(fi, a2)
1 1and compute xt = —2*it , 4 = —:2(*u “*i)2-

71^ 71

2. Test the hypothesis H0 ■ a2 = g§ against the alternative H1 • a2 =£ Gq

vs2at level a using the test statistic , which is distributed as x2 with Vi
°o

= (rij — 1) degrees of freedom.

3. If Hq is accepted at a level of significance i.e. x\ < v-^r < x2 ,where

x2 and x2 refer to lower and upper critical points of the unbiased 

portioning of the test statistic at a given level of significance a, take 

kt s2 + (1 — kt)GQ as the shrinkage estimator of g2 with shrinkage 

factor /q dependent on the test statistic.

4. If H0 is rejected, take a second sample x2j (j = 1,2,__, n2) of size n2 =

(n - nt) compute x2 = ^2% > 4 = ^2 Qc2j - x2f and take 

(visi + v2s|)/(v1 + v2) where v2 = (n2 — 1) as the estimator of g2.

To summarize, we define the double- stage shrinkage Testimator g^st1 of g2 

as follows:
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aDSTl ~

'kts} + (1 -&i)<70 ,
- 2 (Visj + V2sjj
, Sp (vx + V2)

if H0 is accepted 

if H0 is rejected

3.7

Where /q = ■ vf-_ 
oo2*2

Estimators of this type with k arbitrary and lying between 0 and 1 have 

been proposed by Katti (1962), Shah(1964), Arnold and Al-Bayyati (1970), 

Waiker and Katti (1971), Pandey (1979) and k being dependent on the test 

statistics by Waiker Schuurman and Raghunandan (1984).

We define another double stage shrinkage Testimator &^ST2 °f °2 by

taking square of the shrinkage factor as k2 = k\ which tends to

zero more rapidly than /q as follows

&DST2

nsj
o'o 2X2

Si + I 1
o-o2 X2

Risk of Testimators

<7q , if H0 is accepted 

if H0 is rejected

In this section we derive the risk of two proposed testimators which are defined in 

the previous section.

3.7.1 Risk of o2DST1
The risk of a2usri under L(A) is defined by

Rfcr2 DSTX ) = A[ &2DSTt | Z,(a)]

k, .v, +(l k.jcrl! X\ < ' <zl
■P

~ 2
o S-t 2Xx < 2 <Z2

1--
--

1__ L J

+ E UiSl <^,2 y U1 S\
O'"

>xl ■p
O, .S', 2 11~~h < Zi U u, s,

(Tn ■>Z2

(3.7.1.1)
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<^0 ,ar
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;ri q~o

^r|qj

12 2 
ZiOq

^0 X______________
^2
<J /W) C?^!2

2 2 
Zl<*Q iM / 2

M 00 « [

| fW)dsi2 + <Ta | Je } f(s2)f(s2)ds2ds,2 2 
/]O~0 0 0

+ £
2 2 

*2*0

2 ^
oo oo n

f J« f(s2)f(s2)ds2ds2

2 2 XlO-Q

a J !M.^)f(si2)f(s22)ds12ds22
0 0

a
00 ® / 2 \

J J b“ “1 )/W ) f(s2 )dsl1ds22
Xjot

„2„2 # g0

J0 0J J /Oi 2)f(s2)ds2ds2- J | f(s2)f(s2)ds2ds2Xjcrj 0

.(3.7.1.2)
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2Where f(si ) =
2/2 r 7

/1 
2 a2

ds,

/(^22) =
u2.2 /2 r ^

wf
/ 1 U2i-22

"2 a2
ds^

Straight forward integration of (3.7.1.2) gives

R(&DSTl) —
Vif v2/ 2\ V2 /^2\ '2

^(OD5ri)
Vl/2 ^/2

{/(xlA,^+2)-/(Xl2A.|+2)}

- (aX - a + 1) [l(xU> j) - 7)}

{/(jfA,S.+ l)-/(^7+l)}gVt
Vj+Vjj

+ aViv1+y2{/(*iA- t)- t)}

{/(xi2A, Y)~ !(x&, f) + l}+ >2

(3.7.1.3)

A

Where 7(x;/?) = (l/Ip) j e~x xp~l dx refers to the standard incomplete

gamma function, X = and
(T

* ga(A-l) fX2A^
fl — y\! _/v,\ Jy2- e

2^/2 r(^)
at^2* atj
lV\ x2 e 2ta (tr) 2" 1 dta

VI
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(VI ,v2 
2V2

■)(1—2-J)
V2 vi+V2)

C-h-T)
['(#• t)~ '{ti*- ir) + 1

3.7.2 Risk of o%ST1

Again, we obtain the risk of <t2dst2 under L(A) with respect to sp2, given by 

R(o~2dst2 )=E[ &2dst2 I Z,(A)]

2 V ( /2 V

+ 1-

+ E *>is\

v\s\
2 2

X

u, s,<z,2 U^->^

EiIl
1 ^ crn

o, s.

<Zi ■P 2 O. s< ,Xi <-Lj-<zl
cyn

IX s.

(3.7.2.1)

2 2 

^2^0
- J

„,2„2 
Xi CTo

\2
2 2 

&0 X )
(s,2- o-Q )+erf

/Oi2) ^i2

a

2 2

J
,3„2
X\ ao

f 2 *-^1 
2 2 

^0 *
^2)crn l+crn

cr
/(^2)

2 2 
ZfOo

U,

2 2 

Il^O
00 aJ f(s2)ds2-¥ea J je

r 1 / \srx /cT Jf{s2)f{s2)ds2ds2

2 2 ■^i gp

u,
0 0
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00 00 n

+ f Ie■7 2 A22^0 0

-.2—2

2'" z'j-2’2 11/(■*! )fCh )dsi dS2 ~a

0 0

2 2 
2i °o

a

00 GO / \ 00

J J ^--ij/^l2)/^)*!2^2- J J/(■Sl2)/('S22)‘*12<*2232Oo 0
0

oo oo

0 0

- | J /CSl2)/^)^!2^222o~o 0 

4

Where /0,2) = —~7., fc2 F

2 72 rl ul

f i tW)-1 1-2 J
ds,

(3.72.2)

f(sa2) = -
u2y

2 72 r ^

1 U2S2
2 <x2

dsn

Straight forward integration of (3.7.2.2) gives

vy2 v2/a

(^IsT2 ) = (fr) (Q

/i’“I5w(:^+1)(^L + 2) 

[l{xU, \+3)-i(xU, Y+3)}

+ 4°
A(x2)2

{;(x?A,f+2)-/(^,f+2)}

- (aX - a + 1) {/ ( xU fY)~1{x^X> ^2)}

+ ^{,(*?* ' f) “ 1 ’ £)}-{/(*?* , f)- /(llA , ^) + l}+ /2*

_(3.7.2.3)
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Where I(x',p) = (lftp) J e x xpA dx refers to the standard incomplete gammao
function and

h = ^ i|A e
at^a ati‘

;A2V1(z2)2 A(x2)2 V1 1e 2£l (tj) 2 1 dt

V2 vi+V2/

/(*£*, 7)- ^) + i

3.8 Relative Risk of <r|srf

A natural way of comparing the risk of the proposed testimators, is to study its 

performance with respect to the best available estimator sp2 in this case. For

this purpose, we obtain the risk of sp2 under Le(g2,g2) as:

Re(s2p)=E[s2p\L(&2,ct2)]

00 go a

= ^ U /(5l2)/(S22)^l2^2
0 0

■a

00 co

II
0 0 cr

00 00
f(h)f(S22)dsi2ds22 - | J fiS\)f{h) ds\dS2

0 0

_(3.8.1)

Where f(s\ )— o,’’z -l v, /\
2 /2 r ^

■1 21 (->,5,
2

2 J
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/(s22)

2^ r( ^
(s'P1 2

1 Uj s2

" ; ds,

A straightforward integration of (3.8.1) gives

r>2 r 0.i\v-

KV2 j ,(.y,*y,)( i
K, / , V, / 

/2 + %

2 v, + v2 y

(3.8.2)

Now, we define the Relative Risk of & usr,- , / -1,2 with respect to s2 under 

Z,((j2,cr2) as follows:

RR
**(Q

1 R{&2 DSTl) (3.8.3)

Using (3.8.2) and (3.7.1.3) the expression for RRi given in (3.8.3) can be obtained; 

it is observed that RRi is a function of‘v^, ‘v2’, ‘A.’, ‘a’ and ‘a’.

a2Finally, we define the Relative Risk of st2 by

RR2 = R(&2 DSTl)
,(3.8.4)

The expression for RR2 is given by (3.8.4) can be obtained by using (3.8.2) and 

(3.7.2.3). Again we observed that RR2 is a function of ‘v1\ ‘v2\ ‘X‘a’ and ‘a’.

3.9 Recommendations for 9j)Sn

A 2 A 2In this section we wish to compare the performance of cr dstx and <J dst2 with 

respect to the best available (unbiased) estimator of a2 i. e. a2.
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3.9.1 Recommendations for Gbsti

It is observed that the above expressions (3.8.3) and (3.8.4) are functions of 

a, X, v1,v2 and the degrees of asymmetry " a For the comparison purpose we 

have considered several values for these viz. (v1,v2) - (6,6), (6,9), (6,12), (6,15), 

(6,18); (8,8), (8,12), (8,16), (8,20), (8,24) and (10,10), (10,15), (10,20), (10,25), 

(10,30) ; a = 1%, 5% and 10%, and a = -3, -2, -1, 1, 1.25, 1.50 and X = 

0.2 (0.2) 2.0 .

In all there will be several tables for these data sets of Relative Risk (RRi). We 

have presented some of the tables at the end of the chapter. However, our 

recommendations based on all these findings are as follows:

a 2

(i) The proposed testimator <J dst{ performs better than the pooled estimator 

sp2 for almost all the values considered as above. However some of the best 

performances are outlined specifically.

a 2

(ii) <T 'dsTi dominates the usual estimator when (vlt v2) = (6,6) ; a = 1% ; a = -1 

for 0.2 < X < 2.0 and fora = +l the range of A is 0.2 < X < 2.0 .

(iii) As ‘v2’ increases the RRi values are still greater than unity, but decrease in 

magnitude also the range of ‘X’ changes slightly now it becomes 0.6 < X < 
1.8 for negative values of ‘a’. A similar pattern is observed when ‘a’ is positive 

for almost 0.6 < X < 1.8 .
a 2

(iv) The performance of ® dst, is the best when a = +1 or a = -1 in terms of the 

range of X, the magnitude of RRi values for the first data set i.e. (6,6). The 

same remains true when v2 increases i.e. (6,9) etc. Here we have considered 

these values for a = 1%.
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(v) As the other quantity of interest i.e. the level of significance in addition to the 

degrees of asymmetry. We change ‘a’ to 5% and 10% it is observed that still 

the proposed testimator performs better for the ‘ranges’ mentioned as above, i.e. 

when ‘a’ is negative 0.2 < A < 2.0 and when ‘a’ is positive it becomes 

0.2 < A <1.6 indicating that range shrinks for overestimation case. Still the 

values of RRi are more than unity but their magnitude decreases slightly.

(vi) Now, we have considered the other values of (v1, v2) as mentioned above 

and it is observed that RRj values are still higher than unity for these different 

data sets, with almost the same ranges of ‘A’ as above for positive as well as 

negative values of ‘a’. Again as v2 increases the magnitude of RRi values 

decreases but not falling below 1.

(vii) Overall recommendations are: vt should be small i.e. v1 > 10 and v2 < 

3vl5 a = 1% i.e. a smaller level of significance and for various degrees of 

asymmetry i.e. ‘a’ could be extreme negative as a = -3 or it could be 

considerably positive i.e. a = 1.5. The best suggested values are a = -1 or a = +1.

(viii) When these RRi values are compared with the Mean Square values of

dsTj proposed by Pandey and Srivastava (1987) it is observed that the 

magnitude of RRj values are HIGHER, the range of ‘A’ increases considerably 

as it was (0.5 - 1.5) and now it becomes almost (0.2 - 2.0) earlier it was 

recommended that v2 < 2v1 now it becomes v2 < 3va a considerable increase 

in the choice of v2. Implying that the use of ASL not only allows to take 

account for various degrees of asymmetry (i.e. choose ‘a’ accordingly when 

over / under estimation is more serious) but also increases the range of ‘A’, v2 

etc.
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3.9.2 Recommendations for a\ST2

a 2

We have also proposed cr dst2 which is obtained by squaring the shrinkage factor.

The performance of it, is compared with respect to sp2 for the same data as
a 2

considered for cr dst, . Again, similar tables of RR2 will be generated for these

data sets. Our recommendations based on all these computations are as follows:

(i) It is observed that the magnitude of RR2 values is higher than RRi values. 

The proposed testimator performs better than the best available estimator for 

almost all the values considered here. The best performing data sets are 

mentioned briefly.

(ii) S'2dst2 dominates sp2 when (vlt v2) = (6,6), a = 1% for a = -1, 0.2 < A < 

2.0 and for a = +1, 0.2 < A < 2.0 as obtained earlier.

(iii) As ‘v2’ increases the RR2 values decrease in their magnitude (but still above 

unity). Here the range of ‘A’ change shortens slightly as it is now 0.6 < A < 

1.8 for negative values of ‘a’ however when ‘a’ is positive it remains 

unchanged i.e. 0.2 < A < 2.0 .

A 2(iv) The performance of & dst2 is at its best when a = ± 1. As ‘ v2 ’ increases i.e. 

for the other data set (6,9), (6,12), (6,15) or (6,18) the magnitude of RR2 

decreases slightly but not below unity. Again, if we increase V\ i.e. (8,8), 

(8,12) etc. Similar behaviour of RR2 values is observed but their magnitude 

change.

(v) Now taking a = 5% and a = 10% when the values of RR2 are obtained 

again these values are ‘good’ in the sense of being more than unity. But 

there is a decrease in the magnitude of RR2 values as ‘a’ increase.



(vi) We therefore recommend as, v1 should be small i.e. > 10 and v2 < 3vls 

and choose a = 1% . However the degree of asymmetry could chosen for a 

fairly large range i.e. from a = -3 to a = 1.5. The best performing values are 

observed for a = ±l.

(vii) Comparing these RR2 values with those obtained by Pandey and Srivastava 

(1987) under the MSE criterion (or the use of ‘SELF’) indicate that these 

values are ‘better’ than those values showing that the application of 

Asymmetric Loss Function yields better result also providing a choice to 

tailor the risk by choosing ‘a’ appropriately. Further the range of ‘A’ 

increases.

CONCLUSIONS:

A 2 A 2Two shrinkage testimators viz. 0* asr, and O’ dst2 have been proposed for 

the variance of a Normal distribution. It is concluded that (i) use asymmetric 

loss function to study the risk properties, (ii) vt should be small preferably 

should not exceed 10 for both the cases, (iii) v2 < 3vt (iv) take a = 1% and 

take 0.2 < A < 2.0 for negative values of‘a’ and take 0.2 < A < 1.8 for 

positive values of‘a’, (v) take ‘SQUARE’ of the shrinkage factor.

Tables showing relative risk(s) of proposed testimator(s) with respect 

to the best available estimator.

86



Table : 3.9.1.1 Relative Risk of &2dst> a = 1%, (vl5 v2) = (6, 6)

X a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50
0.20 1.059 1.531 1.229 1.835 1.884 1.890
0.40 1.257 1.649 2.081 2.06 1.984 1.975
0.60 1.658 2.618 3.714 3.514 3.762 3.509
0.80 3.484 4.013 5.103 5.913 4.623 3.974
1.00 4.433 5.486 6.834 7.02 5.153 4.851
1.20 4.086 5.332 6.08 6.884 4.774 3.368
1.40 3.753 4.414 5.827 4.499 3.213 2.336
1.60 2.357 3.417 4.518 2.909 2.087 1.541
1.80 1.637 2.339 3.117 1.911 1.354 0.999
2.00 1.239 1.735 2.236 1.295 0.899 0.654

Table : 3.9.1.2 Relative Risk of <J2z>sr, a = 5%, (vls v2) = (6, 6)

X a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50
0.20 1.379 1.831 1.813 1.49 1.692 1.057
0.40 1.972 1.912 2.436 2.592 2.54 1.536
0.60 1.339 2.021 3.939 2.855 2.711 2.676
0.80 2.271 3.074 4.42 3.909 3.568 3.334
1.00 3.593 4.462 5.081 5.001 4.111 4.67
1.20 4.153 4.172 5.051 3.563 2.842 2.267
1.40 3.549 3.736. 4.476 2.299 1.837 1.472
1.60 2.754 2.888 3.762 1.634 1.294 1.034
1.80 2.182 2.166 3.133 1.212 0.945 0.748
2.00 1.815 1.658 2.649 0.926 0.707 0.551

Table: 3.9.1.1 Relative Risk of ^dst, a = 1%, (vlt v2) = (8, 8)

X ' a = -3 a = -2 » II ■ i-k a = 1 a = 1.25 a = 1.50
0.20 1.486 1.74 1.481 1.775 1.792 1.851
0.40 1.989 1.839 1.861 2.693 2.606 2.56
0.60 1.617 2.722 2.195 3.211 3.123 3.249
0.80 3.301 3.041 3.476 4.793 4.437 4.311
1.00 4.105 5.296 6.005 6.403 5.446 5.405
1.20 4.077 4.315 5.212 5.968 4.572 3.507
1.40 3.886 3681 4.75 3.679 2.869 2.256
1.60 2.5 2.75 3.089 2.326 1.797 1.413
1.80 1.782 2.675 2.395 1.534 1.159 0.897
2.00 1.392 2.069 2.338 1.059 0.779 0.589
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Table : 3.9.2.1 Relative Risk of <J2dst2 a = 1% , (vls v2) = (6, 6)

k a = -3 a = -2 a = -l a = 1 a = 1.25 a = 1.50
0.20 0.647 1.117 1.897 1.214 1.164 1.156
0.40 0.652 1.997 2.725 1.452 1.347 1.299
0.60 1.381 2.054 3.202 2.629 2.496 3.603
0.80 3.826 4.273 4.73 4.669 3.67 4.078
1.00 5.225 5.732 5.933 5.684 5.396 6.077
1.20 4.882 4.758 4.747 4.077 4.857 4.248
1.40 3.444 3.075 3.385 3.59 3.369 2.531
1.60 2.035 2.952 3.022 2.702 1.951 1.464
1.80 1.397 1.976 2.755 1.68 1.181 0.871
2.00 1.06 1.463 2.735 1.103 0.752 0.541

Table : 3.9.2.2 Relative Risk of (X2Dsr2 a = 1% , (v1? v2) = (8, 8)

k » II i a = -2 a = -l a = 1 a = 1.25 a = 1.50
0.20 0.74 1.306 1.328 1.143 1.074 1.036
0.40 0.61 1.962 2.865 1.177 1.173 1.909
0.60 1.285 2.009 4.475 3.825 3.595 3.514
0.80 3.539 4.15 5.735 4.962 4.863 3.643
1.00 6.627 7.176 7.917 6.658 5.38 4.939
1.20 4.728 5.556 5.968 4.261 4.945 3.906
1.40 3.439 3.151 4.721 3.488 2.737 2.179
1.60 2.076 2.192 3.519 2.069 1.577 1.233
1.80 1.466 1.692 3.76 1.313 0.968 0.736
2.00 1.151 1.406 2.141 0.885 0.631 0.465

Table : 3.9.2.3 Relative Risk of O'2dst2 a = 5% , (v1? v2) = (6, 6)

k a = -3 II i bJ a = -l a = 1 a = 1.25 a = 1.50
0.20 0.848 1.521 1.017 1.577 1.549 1.582
0.40 0.957 1.87 2.343 1.947 1.967 1.927
0.60 1.987 1.302 2.97 2.942 2.777 2.698
0.80 3.798 2.522 4.836 4.478 3.225 3.658
1.00 4.434 4.561 5.914 5.711 4.446 5.626
1.20 3.403 3.652 4.607 3.579 2.887 2.326
1.40 2.456 3.585 3.919 2.183 1.751 1.413
1.60 1.887 2.773 2.884 1.487 1.171 0.936
1.80 1.555 2.272 2.015 1.065 0.818 0.641
2.00 1.357 1.964 1.388 0.79 0.589 0.45


