


Chapter —3

DOUBLE STAGE SHRINKAGE TESTIMATORS UNDER ASYMMETRIC
LOSS FUNCTION

3.1 Introduction

In this chapter we have extended our studies of chapter 2 in the sense that
now instead of drawing only one sample form the population, the experimenter
may possibly drawn one or two samples. Estimation of the mean from double
sample in the presence of a priori information was first considered by Katti (1962)
and later by many others. Katti’s method consisted in constructing a region R using
the a priori information available in the form of a guess value say 8, of the

parameter € and the observations x,,x,.....,x, from the first sample. If the

estimator constructed or proposed belonged to R; there was no need to draw a
second sample of size n,. However, if it did not lie in R; a second sample of size
n, was drawn and the proposed estimator used observations from both samples.
Shah (1964) used this method in estimating variance of a Normal distribution when
a guess of the population variance is given. He also proposed a pre-test estimator
of the variance. The procedure adopted by Shah has something in common with
the two stage procedure due to Stein (1945).. Arnold and Al-Bayyati (1970)
modified the estimator proposed by Katti using the shrinkage technique and
studied the properties of the estimator. Waiker and Katti (1971) have also studied
two stage estimation of the mean. Pandey (1979) considered estimation of variance

of a normal population using a priori information.
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Waiker et al (1984) have suggested and studied a two stage shrinkage
testimator of the mean of a normal population when the variance of the population
may be known or unknown. Their approach is different from that of Katti and
others in the sense that (i) no region R is constructed in the sample space (ii) the
shrinkage factor k is no longer arbitrary but is a function of the test statistic used in
testing the hypothesis regarding the given a priori information. In both techniques
k being arbitrary or not, no assumption is made regarding the distribution of the
parameter 6 on (the parameter space). At the most one may take it a singular

distribution with entire mass concentrated at a single point 8 = 6.

Similar studies for estimating the scale parameter 6 in one parameter

Exponential distribution with p.d.f.

exp(—x/0), x=0,6 >0

1
fx;0) = {'50 3L

, otherwise

have been made. Using the priori information available in the form of an initial
estimate say 6, of the parameter 6. Shah (1975) considered estimation of 6 in
censored sampling. Ojha and Srivastava (1980) have studied a pre-test double
stage shrunken estimators of 8 using complete samples. The object of the present
chapter is to propose and study shrinkage testimators for scale parameters of
(3.1.1).

Recently Srivastava and Tanna (2007) have studied the risk properties of a
Double stage shrinkage testimator under General Entropy Loss Function. Further
Srivastava and Tanna (2012) have studied the risk properties of such estimators

under Asymmetric Loss Function.
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DOUBLE STAGE ESTIMATION:

The first stage sample is used to test Hy and if Hy is not rejected, it is
suggested to use the prior knowledge being supported by a test, in estimating 6.
However, if Hy is rejected, we do not use the prior knowledge and obtain a second
sample size n, = (n —n,) to make up for the loss of the prior knowledge and

estimate € using both the samples.

In section 3.2 we have proposed the three different shrinkage testimators for
scale parameter of an Exponential Distribution and we have studied the risk
properties of these three shrinkage testimators under Asymmetric Loss Function.
Section 3.3 deals with the derivation of the risk(s) of these three estimators.
Section 3.4 deals with the relative risk(s) of these three estimators. Section 3.5
concludes with the comparison of UMVUE and the proposed shrinkage testimators
in terms of their relative risks. Further in the same section a suggestion for the

shrinkage factor is made.

In section 3.6 we have proposed the two different shrinkage testimators for
the variance of a Normal Distribution and we have studied the risk properties of
these two shrinkage testimators under Asymmetric Loss Function. Section 3.7
deals with the derivation of the risk(s) of these two estimators. Section 3.8 deals
with the relative risk(s) of these two estimators. Section 3.9 concludes with the
comparison of UMVUE and the proposed shrinkage testimators regarding their
choice in terms of their relative efficiency. Further in the same section a

suggestion for the choice of shrinkage factor is made.
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3.2  Shrinkage Testimator(s) for Scale Parameter of an FExponential

Distribution.

Let X411, X12, , Xin1 be the first stage sample of size n; from and exponential

population is given by (3.1.1). Let 8 be the guess estimate of the mean 8.

Compute the sample mean ¥; = % Z?il x1; and test the preliminary hypothesis Hy

. . . 2n, %
:0 =0y vs. H; : 0 # 0y, using the test statistic T = L

which follows x5, .Itis
0

27’11.7?1

to be noted that Hy is accepted if x? < <x? and H, is rejected, otherwise.

Then take n, = n — n,; additional observations X;1,Xz2, ,Xan2 and use the
. — . - 14N &
pooled estimator %, as the estimator of the mean where X, = W
1 2
x? and x5 being given by
P[x%nl 2 xz] + P[xan < x1] = a 3.2.1)

where a is the pre-assigned level of significance.

When 6 = 6,, the probability of avoiding the second sample is (1- o) and the

expected sample size is given by
n* = E[n]| 6 = 0]

2 2 2
= an[xlz < n1x1< x2]+(n1 +n2)P[ n1x1< x? U n10x1>x§]
or, n* = ng (1 +ua) where u = nz/nl_

When 6 # 6, the probability of avoiding the second sample is

1
2n1 Fn1

p=

(2"1) -1 o) iz d sample size i
(%) o /dx; and the expected sample size is
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n* = n; +n, [1 - P{Ax% <uh o Ax3 }}

)

Now we propose a shrinkage testimator 8pgr; of 6 defined as:

2ny X
. kifi+ (1—k)8y ; if x2< =L < 2
Opsr1 = 8o
Xy ; otherwise
(3.2.2)
= __ niX1tngi; = 3; ni Lo
Where ¥, = B and X; = " Yiei Xy 5 =12
a . T T 2nq%q
and k; being dependent on test statistic is given by kq = )
0

where x2 = (x5 — x%)

Now, taking the ‘square’ of k; (i.e. k, = k%), another testimator is defined as

2n1x1) X+ [1 - (mel) ] Oy ;if Hy is accepted

Opsrz = { \ 6ox? Box? _(323)
Xp ; otherwise

Finally, taking ks, the third testimator can be proposed as

~ kz3xy+ (1—k3)8y ; if Hy is accepted

Opsrs = { X, ; otherwise (324

2n,% x?
Where ks = ;;1;2—1-—— = and x*=(x - xf)
In this case ‘k,’ exactly lies between ‘0’ and “1°.
3 y

3.3 Risk of Testimators

In this section we derive the risk Qf all the three testimators which are defined in

the previous section.
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3.3.1 Risk of 51,511

The risk of éDST,‘ under L(A) is given by
R(éDS?f) =E[ éDST; l L(A)]

- 2n, X, 2n X
:E[ki x1+(1““k1)90/Z12< 01 ! <Z§]'p[,’{12 < <Z22}

o] 90
X g.’flg..l_ 2 lxl 2|, 2”1561 s 21’215&7‘] 2
+E{xp G Y 6, ZZ:‘ P[ % <zY 28 >Zz]
) (3.3.1.1)
2m%
226, a{ A (X, —6p 6,
2n g
=" Je S ),
20
2n
20, | 21X, /_
o 91 L(x, —6,)+6,
—a J ° —1 f(fl) dx,
3 o
X%
2m
Z36, X6
2m _ . 2n oo a(x/)
~ [ rEam v | [N rEdrE) O o,
2.’1290 o 0
2m
2% 6,
2n o = 2m o
—a [ [B-yGrrGoamds, - | | £&E &) ax,
0 o0 0 0
© oo x/
+ e J‘ Ie( ]f(xl)f(xz)d—d——
Z%eo Y

_—
of

2 ) fEN(ED AR @5 — | [ fE)S(E)d%, dx,

2m 2m

(3.3.1.2)

62



—mX)

Where (%)= _I%:z“(%) 1(551)"‘"1@ o

1

3 1 n, ny — \md —-n;fz
X, )= S X e
and S(x;) I“nz[@] (2)

Straight forward integration of (3.3.1.2) gives

A , 2 2 1
(0 2] (487

2an, an, _3_6_22_29_ — _’ffﬁj. —
it (3
() o {3 )

(3.3.1.3)

2 “at
* e HAP—a mgx*  x* 1 —r ol 0
Where L~ =€ J‘e T < 4 dt;Q):_aQ and
1

I(x; p) = (Tp) I e™ x" dx refers to the standard incomplete gamma function
[

3.3.2 Risk of Opsrsy

Again, we obtain the risk of éDSTz under L(A) with respect to X, given by
R(Bpsz;)= El by, | L(A)]
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=E[ (225 ) & -a)r o,/ 27 <225 <z5] Pl 2 <205 < 1 |
o A o ()
+E[3€'p 2 X, 12 U 2 X, - 22:} p[Zn‘ Lo IZUZI;lx, - ;]
(v} 0 0o (4]

(3.3.2.1)

Zjeo JZ]
e | e (=) dx,
;;;1200
2n
L ._
2’22:10 [an;:éj (551""‘90)'*'90
—d J‘ 0 o —-11 f(x) dx,
;(1290
2n,
,g_%_%_ i %560 _ i
2 _ . 2n a(x%J _ _
- [ rEY & +e fe FGED)S(E,)dx, dx,
“;%;9:2 0 o
2.’1290 ;{1200
2m oo 2n; o
—a | [G-1)rGyr@amam - | | FGFE)dE
0o 0 g 0
v o [ 1) rayrana o,
Z%eo 0
2
—a [ [B-)rGrrcodma, — [ | G5 G o,
X369 O 236, 0
2n

(332.2)
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—_ 1 /n N — - e
Where f(xx)z“““‘“r 1 (x1) ‘e 9
m\ &)
L () g
X)) = —= X e
and J(x) Tn,\ 6 ( 2)

A straight forward integration of (3.3.2.2) gives:

R(Gps;) =1, - 221D 42) {I{m’"‘ +3]"1(ﬁ’”‘ +3J}+
; # () 2 2

4an,(n,+1) 17522¢n+2 -—Iﬁn+2 - Iﬁn —Iﬁ”
# (1)’ 2 " 2 7 27 L2 7

ase B ) (),

n +n,
r Y
2 2 X —-a -a
I M,l’ll ’"'I xl ¢,n1 ﬁl"’ anl — ¢ P >+ ¢ o ""1
2 2 i n1+n2 . a y+ 1 a 1y
i n, +n, ) n, +n,
(3.3.2.3)
2
—’%ﬁ [ 4ar®*  4ar® ] '
1, = e®¥D J’ REYICS Tt I SRS
Where s I'n,
T2

3.3.3 Risk of Opgr3

Finally, we obtain the risk of & psz, under L(A) with respect to Xy, given by

R(épszg )=E[ éuszg i L(A)]
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_ 2n X, 2n X
= E{ksx1+(l_k3)90/lxz< 6: ] <Z§}P}:Zf <_é£_1<122}

0 0

2m X 2nx 2nx 2n X,
+E X 1M o 2 SO S 2 | ph 2L o 2| 2T 2
[xp 6, xn U 8, Zz:| p[ ) xn U ) szl
(3.3.3.1)
(iﬂ%_g)(f' —6,)+6,
230 al>—
2m o
e’ | e f(%) dF,
2’1290
2n
20| (2m% _ x|
) (25w -a)ve,
~a [ |2 5 ~1| f(%)dx5,
{6
2y
%360 20

2m

[ reyas + e | Te“( %) i s,

lego 6 0
2n

2’:290 Z}zgo
2m w0

ca [ [EB-)rcrrdmd - | [ G @5,
0 0 0

= 11U ey e,
Z22900
—a | [ - | [ rE @@ s,
I%'go 0 gjfp_o

(3.3.3.2)
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B 1 7 n Nt —mX
Where f(xl)za(é) (xl) e

—Hy%y

and f(x,) 2%';11“(%J (552 )nz—le 0

2

A straight forward integration of (3.3.3.2) gives:

2 2 2
R(HDS:’S)zl;.- 2a(nlj_l) {I(ngs’nl"f‘zJ“I{Zlq}’n}+2}}+{2a?1 +Z12a+ e }
¢ x 2 2 P R

2 2 X 2 2
- {](ﬁ,m]_[(ﬁ,nl)} (ap-a-1)+ {I(Zzz ¢,nl]—-l(z‘2¢,n,)}
2 2 2 2

(3.3.3.3)

2

mpx®  x2 x’nm xz} 1 e——t tn,—-l dt
I'n,

” ,
x4
2 [ 2af  2at xfta+xlza¢
e

* __ ,a¢-a
Where

e N

LI
2

3.4 Relative Risks of sy

A natural way of comparing the risk of the proposed testimators, is to study its
performance with respect to the best available estimator ¥; in this case. For this

purpose, we obtain the risk of X; under 1.(A) as:

67



RE(fx)z E[ 551‘ L(A)]

I £ ) pceyan e
aT [ G-1) rGor @) s a5, - j j FEF () s o,
(3.4.1)
A straightforward integration of (3.4.1) gives

—-a

Ry(x1) ——-;7—1 (3.4.2)

Now, we define the Relative Risk of éDSﬂ with respect to ¥ under L(A) as
follows —

- Rex)

RO (3.4.3)

Using (3.4.2) and (3.3.1.3) the expression for RR; given in (3.4.3) can be obtained;

Similarly, we define the Relative Risk of 9’\,95]3 with respect to % under L(A) as
follows

Ry(5)
R(Bpsy,) (3.4.4)

2

The expression for RR; given in (3.4.4) which can be obtained by using (3.4.2) and
(3.3.2.3).

Finally, we define the Relative Risk of 8,g, with respect to % under L(A) as
follows
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__R(x)

- R(épsn ) —(43)

3

Using (3.4.2) and (3.3.3.3) the expression for RR; given in (3.4.5) can be obtained.

Now, it is observed that RR;, RR; and RRj; are functions of ‘¢, ‘n;’, ‘ny’,
‘o’ and ‘a’. In order to study the behaviour of Relative Risk(s), we have taken a set
of values of (n;, np) = (4,4), (4,6), (4,8), (4,10)and (4,12), a®* = 1%, 5% and 10%
® =006 (0.2) 1.8 and a = + 1 to +3. The recommendations regarding the

2

applications of proposed testimators are provided as follows:

The values of n* and n** are defined in section 3.2. For some values of (n;, n,)

these values are obtained as follows:

Table -1 shows the values of n* for ¢ = 1.0 and n; = 4, n, = § and table - 2

shows the values of n** for ¢ =0.8 and n;=4,m, =10

Table -1 ¢ =1.0

(ng, np) a=1% a=5%
4, 8) 4.08 4.40

Table -2 $ =0.8

(ny, ny) a=1% a=5%
4, 8) 4.17 4.62
(4,10) 421 4,78

Similarly the other values of n* and n** can be computed for other values of

(m, nz) considered here.
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QD>

3.5 Recommendations for Upgr

~ ~

In this section we wish to compare the performance of styl’ , 9135;5 and

9[)315 with respect to the best available (unbiased) estimator of X; .

3.5.1 Recommendations for @Dsyl

1. For various set of values of (n;, np), keeping o = 1% and allowing the variations
in all the values of ‘a’, it is observed that the proposed testimator Opgrq
performs better than ¥; for 0.6 < @ < 1.4 considered here, except for few
higher values i.e. ® = 1.8. The magnitude of RR is higher for all the values of
‘a’ however maximum gain is achieved at a=3 and a= -3. Similar pattern is
observed for other values of a® i.e. 5% and 10% but the magnitude of Relative
Risk is higher at o’ = 1%. It is also observed that for a = -3 and (n;, ny) = (4,8),

Opsr1 performs better.

2. In the next comparison stage we have fixed a=3, and have allowed the variation
for values of a® such as a = 1%, 5% and 10%. Maximum gain in risk is
observed at @ = 1.0 (though it is true for the whole range of @) again at o =
1%, relative risk values are higher than those at 5% and 10% so a lower level of
significance i.e. a = 1% is recommended for better performance of the proposed

testimator.

3. We have kept ‘a’ = 3.0 and have allowed the variation in a for n; =4, n, = 12.
It is seen that the Relative Risk values are much higher than unity, indicating

superiority of the proposed testimator under Asymmetric Loss Function. A
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value of a = 1% shows maximum relative risk value implying that it is the most

preferred value.

4. Again, forn; = 4, o, = 10, @ = 1.2 for different values of a° , the table of

Bpsr1 » indicates that, it dominates the usual estimator for the whole range of @,

with best performance at .= 1% and a = 3.

5. 1t has also been observed that the relative risk increases as @ increases from 0.6
to 1.0 reaches its maximum at @ = 1.0 and then it decreases. The relative risk

increases as n, increases for fixed value of n;, and is maximum at (4, 8).

6. Thus, our recommendation for the use of Oprq isto taken; =4 and n, = 8 i.e.

n, = 2 m; and small values of a°.
3.5.2 Recommendations for é‘DSTz and 5031'3

We have considered two other choices of the weight functions viz. square of ‘k’

and making the values of ‘k’ to lie exactly between ‘0’ and ‘1’ and with these

choices of shrinkage factors we have proposed 8Opsr, and 8473, so it is natural to
suggest which ‘k’ should be taken. This can be achieved by making a comparative

study of the relative risks of values for all the three choices.

However a comparison of the values of relative risks for 8pgr1, Opsro and Gpgrs

reveals that

(1) énsrz is better than the usual estimator for 0.6 < @ <1.8 however if n; is
small similar pattern is observed for Op5r3 . However the magnitude of

relative risk is smaller in case of Opgr; and Opgr3 in comparison to Hpgry.
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So, we conclude that Opp, is preferred in comparison to Opgrq and / or
Opsr3.
(ii) Our focus is also on recommending the degree(s) of asymmetry. A careful

study of the table of Relative Risks, reveals following choices:

For Bpgrq , it is recommended that a = 3 and a = -3 for almost all the

choices of n; and np

For Bpgrs , it is recommended to take a = -3 and a = 3 for several choices of

m and Ny

For Opers , it is recommended to choose a=-3 and a=3 and a = 1% . The

performance of | Bpsr3 is better than #; in almost the whole range of @ (0.6
<p<14)

CONCLUSION

To conclude it is recommended to use ‘square’ of the weight function (Shrinkage
factor) with high positive / negative values of degrees of asymmetry along with
lower level(s) of significance viz 1% and 5%. However 1% is preferable as the
magnitude of relative risk is higher in this case showing better control over risk of

the proposed estimator.
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Tables showing relative risk(s) of proposed testimator(s) with respect

to the best available estimator.

Table : 3.5.1.1 Relative Risk of gpsy; a=1%nm=4,n=4
9 a=-] a=-2 a=-3 a=1 a=2 a=3
0.60 1.028 1.286 1.435 1.063 2.592 3.138
0.80 | 2.103 2.656 3.197 2.061 3.394 4.895
1.00 3.852 4,902 6.384 3.835 4388 6.405
1.20 3.508 4.076 5.113 2.64 3.159 5.44
1.40 1.893 2.129 2.629 1.535 2.009 4,921
1.60 1.036 1.195 1.508 0.855 1.162 3.1
1.80 0.639 0.765 0.995 0.5 0.664 1.849
Table : 3.5.1.2 Relative Risk of QDST‘ a=1%,m=4,n,=8
0] a=-1 a=-2 a=-3 a=1 a=2 a=3
0.60 1.255 1.467 1.583 1.885 2.328 2.959
0.80 2.392 2.892 3.419 3.06 3.122 4.804
1.00 4.015 5.052 6.564 3.769 4.379 6.689
1.20 3.432 4.039 5.095 2.691 3.188 5.48
1.40 1.839 2.101 2.611 1.571 2.031 3.952
1.60 1.011 1.181 1.499 0.872 1.173 2.119
1.80 0.625 0.758 0.989 0.508 0.669 1.858
Table : 3.5.1.3 Relative Risk of Opsz  a=1%,n=4,1,=10
@ a=-1| a=-2 a=-3 a=1 a=2 a=3
0.60 1.339 1.528 1.631 1.109 3.77 3.586
0.80 2.49 2.967 3.488 4.83 6.044 6.737
1.00 4.064 5.096 6.617 3,75 4.375 9.438
1.20 3.411 4.029 5.09 2.706 3.195 7.49
1.40 | 1.825 2.094 2.605 1.581 2.037 4.96
1.60 1.004 1.177 1.496 0.877 1.176 3.123
1.80 0.622 0.755 0.987 0.511 0.671 1.861




Table : 3.5.1.4 Relative Risk of 995;; a=5%,nm=4,n=8
0} a=-1 a=-2 a=-3 a=1 a=2 a=3
0.60 | 1.073 1.348 1.498 1.741 1.821 2.276
0.80 | 2.022 2.668 3.206 4.55 5.587 4.22
1.00 3.75 478 6.103 5.637 6.942 7.115
120 | 3.899 4.253 5.206 2.619 3.632 5.939
140 | 2.301 2.4 2.89 1.451 2.068 4.08
1.60 | 1.302 1.405 1.73 0.859 1.218 3.564
1.80 0.82 0.929 1.179 0.541 0.74 2.132
Table : 3.5.1.5 Relative Risk of Ops; @ =10%, =4, 1,=8
@ a=-1| a=-2 =-3 =1 a=2 a=3
0.60 | 1.005 1.283 1.439 2.066 2.578 2.588
0.80 | 1.833 2.523 3.065 3.567 3.055 3.929
1.00 | 3.771 4873 6.119 6.985 7.386 7.903
120 | 4.793 4.72 5.529 2.753 4258 5.462
140 | 2972 2.739 3.167 1.417 2.208 4.227
1.60 | 1.668 1.635 1.947 0.858 1.291 3.059
1.80 | 1.053 1.106 1.365 0.567 0.81 2.431
Table : 3.5.2.1 Relative Risk of Opgr a2 =1%,m=4,m,=8
)] =-1| a=-2 =.3 a=1 a=2 a=3
0.60 | 1.224 1.41 1.508 1.531 1.661 2.664
0.80 | 3.037 3.746 4.437 3.93 3.367 3.359
1.00 | 6.154 7.193 8.043 6.574 7.717 8.331
120 | 4.046 4.508 5.469 3.635 4,902 5.35
1.40 1.61 1.817 2.243 1.512 2.192 3.766
1.60 0.82 0.969 1.241 0.724 1.02 2.237
1.80 [ 0.501 0.62 0.822 0.399 0.522 1.578
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3.6

Shrinl_(gge Testimator _for the Variance of a Normal Distribution

Let X be normally distributed with mean u and variance o2, both unknown.
It is assumed that the prior knowledge about ¢ is available in the form of an
initial estimate of. We are interested in constructing an estimator of o2
using the sample observations and possibly the guess value of. We define a

double stage shrinkage testimator of &? as follows:

1. Take a random sample x;; (i =1,2,__, ny) of size n; from N(y, o?)

- 1 1 -
and compute ¥; = ZZ Xy, St = — 2. (1 — %2

2. Test the hypothesis Hy : 0% = o¢ against the alternative H; : % # o¢

2
at level a using the test statistic Y;—;’— , which is distributed as y? with v,
0

= (ny — 1) degrees of freedom.
2
3. If Hy is accepted at o level of significance i.e. x¥ < %?— < x% ,where

x? and x% refer to lower and upper critical points of the unbiased
portioning of the test statistic at a given level of significance a, take
ki s? + (1 —kq)o¢ as the shrinkage estimator of o with shrinkage
factor k4 dependent on the test statistic.

4. If Hy is rejected, take a second sample x,; (j = 1,2,_, ny) of size n,=

1
le"’l

1 _
(n — ny) compute % = —Nxy , 53 = Y(x2; — ¥2)* and take
2

(vis? + v,5%)/(vy + v,) where v, = (n, — 1) as the estimator of o?.

To summarize, we define the double- stage shrinkage Testimator 85¢r; of o2

as follows:
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kis?+ (1 —ko¢ , if H, isaccepted
Ghst1 = 2= (visf + vo53)
P (vy + 1)

, if Hy is rejected

2
V1§
Where k; = —=

a2 x?
Estimators of this type with Kk arbitrary and lying between 0 and 1 have
been proposed by Katti (1962), Shah(1964), Arnold and Al-Bayyati (1970),
Waiker and Katti (1971), Pandey (1979) and k being dependent on the test
statistics by Waiker Schuurman and Raghunandan (1984).
We define another double stage shrinkage Testimator &3sr, of &% by

2 \2
taking square of the shrinkage factor as k, = k% = (ﬁfl-) which tends to

00? x*

zero more rapidly than k; as follows

2 2
V}S'% 2 V1S§ 2 . .
a2 55 s+l 1= ) o§ ,if Hy isaccepted
pst2 = Y\00" X 0o X

sp , if Hy is rejected

3.7 Risk of Testimators

In this section we derive the risk of two proposed testimators which are defined in

the previous section.
3.7.1 Risk of 3¢y

The risk of 6%pgrq under L(A) is defined by
R(6?pst)=E[ 67 psz| L(A)]

2 2
Ly S, [ £
- ks r-)ad o <O <22 | 2t <0 <

[4] [4]
2
+El:sp

2 2 2 2
v, 8 2 v, s, 2 L 5 211 5 2
2 <t U ) >X P ) <t U b > X
o o Lo F o,

0 0 0

(3711
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Where J ()= : (Sl2 )%“1 e(_i ?) ds,’

(%)

f(szz) = 2% l (Szz)%ml e{—i - )dszz

()

Straight forward integration of (3.7.1.2) gives

52 M/, o2
R(63sr1) = (‘1'7:) (‘{7‘2")

11*—-%—‘(’—2-(%+ 1)
{1(;@/1, %+2)—I(x%/1, %+2)}

LT PPN ¥ %{I(X%A’ %+1)" I(X%’l’ %+1)}

R(83sr1) = (E“) (E‘) —(at—a+1) {I(X%A' yél) - I(X%'l’ % }

7 v
1 2 ”VTZ:?Z{I(X%}“%'}‘I)_I(Xzza,%_i-l)}

)

| -{1(dA ) - 1(xda, D) +1}+ 1

VZ /2

(3.7.1.3)

Where I(x;p) = (/Ip) j e”x""dr refers to the standard incomplete
0

2
» o]
gamma function, A = ;_% and

at12 aty
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fx%a elinx® 1 e 2 ()2 dyy

11 o~ 2v1/2 F(%L)

78



* e ® 2 Yy 2 _Y_’;.) ]
L = vy 172 [I(XI}“ 2)- I(XZ)L’ 2 )1

3.7.2 Risk of G54,

Again, we obtain the risk of 32 s, under L(A) with respect to spz, given by

R(6?ps)= E[ 67 psy; i L(A)]
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Straight forward integration of (3.7.2.2) gives
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Where I(x;p) = (Ip) I e xP” refers to the standard incomplete gamma

<

function and

eaG=1) [ e ‘"‘Zz] 1 vy
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IL" = 2% (1) (%) fx% AT A e (1) 2T dty
* e " 2, "1 2, N
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5 2+~—~( _a_)\z
2 v1+v2

3.8 Relative Risk of G55y,
A natural way of comparing the risk of the proposed testimators, is to study its
performance with respect to the best available estimator sz in this case. For

this purpose, we obtain the risk of sz under L; (6'2,0'2) as:

Ry (s;)=E[s,| L(6*,0™)]

co
-a

= e

e [Sz}f(sx N f(s,") ds’ds;’

c!———-—-‘s

{
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;&4} £62)£s,7) dslds,” = [ [ £ f(s,7) dls s’

(3.8.1)
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Where J(s:)= 2% I"(%)
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A straightforward integration of (3.8.1) gives

RE (Si) z(zi)v% (Ei}"% e--a _ . 1
Vi 2(‘%“%)(1” a ]4* %

2 v+,

(3.8.2)
Now, we define the Relative Risk of O ZDSTi ,1=12  with respect to sﬁ under
L(&2,0'2) as follows:

— ‘RE (sz)
R(&?pst1)

(3.8.3)

1

Using (3.8.2) and (3.7.1.3) the expression for RR; given in (3.8.3) can be obtained;

it is observed that RR; is a function of ‘v;’, ‘vy’, ‘A’, ‘a’ and ‘a’.
. . . ~2
Finally, we define the Relative Risk of 0 s; by

R:(s,")

2 ZM (3.8.4)

The expression for RR; is given by (3.8.4) can be obtained by using (3.8.2) and
(3.7.2.3). Again we observed that RR, is a function of ‘v{’, ‘vy’, ‘A’, ‘a’ and ‘a’.

3.9 Recommendations for G5gr;

. . . 2 ~2 .
In this section we wish to compare the performance of 0 bsr, and O bsr, with

respect to the best available (unbiased) estimator of o2 i.e. G2.
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3.9.1 Recommendations for G5s7q

It is observed that the above expressions (3.8.3) and (3.8.4) are functions of
a,X,vq,v, and the degrees of asymmetry "a". For the comparison purpose we
have considered several values for these viz. (v4,v,) = (6,6), (6,9), (6,12), (6,15),
(6,18); (8,8), (8,12), (8,16), (8,20), (8,24) and (10,10), (10,15), (10,20), (10,25),
(10,30) ; a = 1%, 5% and 10%, and a = -3, -2, -1, 1, 1.25, 1.50 and A =
0.2(0.2) 2.0.

In all there will be several tables for these data sets of Relative Risk (RR;). We
have presented some of the tables at the end of the chapter. However, our

recommendations based on all these findings are as follows:

. . ~2 .
(i) The proposed testimator O bsi performs better than the pooled estimator

sz for almost all the values considered as above. However some of the best

performances are outlined specifically.

(i) o 2DSY,' dominates the usual estimator when (v4,v;) = (6,6) ; 0= 1% ;a=-1

for0.2 < A <20 and fora=+1therangeof Ais 0.2 < 1 <2.0.

(i) As ‘v,’ increases the RR; values are still greater than unity, but decrease in
magnitude also the range of ‘A’ changes slightly now it becomes 0.6 < 1 <
1.8 for negative values of ‘a’. A similar pattern is observed when ‘a’ is positive

foralmost 0.6 < 1 < 1.8.

(iv) The performance of o 2DST, is the best when a = +1 or a = -1 in terms of the

range of A, the magnitude of RR; values for the first data set i.e. (6,6). The
same remains true when v, increases i.e. (6,9) etc. Here we have considered

these values for a = 1%.
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(v) As the other quantity of interest i.e. the level of significance in addition to the
degrees of asymmetry. We change ‘o’ to 5% and 10% it is observed that still
fhe proposed testimator performs better for the ‘ranges’ mentioned as above. i.e.
when ‘a’ is negative 0.2 < 1 <2.0 and when ‘a’ is positive it becomes
0.2 < A1 < 1.6 indicating that range shrinks for overestimation case. Still the

values of RR; are more than unity but their magnitude decreases slightly.

(vi) Now, we have considered the other values of (v4,v,) as mentioned above
and it is observed that RR; values are still higher than unity for these different
data sets, with almost the same ranges of ‘A’ as above for positive as well as
negative values of ‘a’. Again as v, increases the magnitude of RR; values

decreases but not falling below 1.

(vil) Overall recommendations are: v; should be small i.e. v » 10 and v, <

3v, o = 1% 1ie. a smaller level of significance and for various degrees of

|

asymmetry ie. ‘a’ could be extreme negative as a = -3 or it could be

considerably positive i.e. a = 1.5. The best suggested values are a=-1 ora=+1.

(vii)) When these RR; values are compared with the Mean Square values of

5‘2957; proposed by Pandey and Srivastava (1987) it is observed that the
magnitude of RR; values are HIGHER, the range of ‘A’ increases considerably
as it was (0.5 — 1.5) and now it becomes almost (0.2 — 2.0) earlier it was
recommended that v, < 2v4 now it becomes v, < 3v, a considerable increase
in the choice of v,. Implying that the use of ASL not only allows to take
account for various degrees of asymmetry (i.e. choose ‘a’ accordingly whén
over / under estimation is more serious) but also increases the range of ‘A’, v,

etc.
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3.9.2 Recommendations for Gﬁsn

We have also proposed G ZDSTZ which is obtained by squaring the shrinkage factor.

The performance of it, is compared with respect to spz for the same data as

considered for O 2DSTl . Again, similar tables of RR, will be generated for these

data sets. Our recommendations based on all these computations are as follows:

@

(i)

(iii)

(iv)

v)

It is observed that the magnitude of RR, values is higher than RR; values.
The proposed testimator performs better than the best available estimator for
almost all the values considered here. The best performing data sets are

mentioned briefly.

&ZDSTZ dominates sz when (v,v;) = (6,6),a=1%fora=-1,0.2 <1<

2.0 and fora=-+1, 0.2 <A < 2.0 as obtained earlier.

As “vy’ increases the RR; values decrease in their magnitude (but still above
unity). Here the range of ‘A’ change shortens slightly as it is now 0.6 <41 <
1.8 for negative values of ‘a’ however when ‘a’ is positive it remains

unchanged i.e. 0.2 <1< 20.

The performance of 5'2952"2 is at its best when a = 1. As ‘v,’ increases i.e.
for the other data set (6,9), (6,12), (6,15) or (6,18) the magnitude of RR,
decreases slightly but not below unity. Again, if we increase v, i.e. (8,8),
(8,12) etc. Similar behaviour of RR; values is observed but their magnitude

change.

Now taking a = 5% and a = 10% when the values of RR; are obtained
again these values are ‘good’ in the sense of being more than unity. But

there is a decrease in the magnitude of RR; values as ‘a’ increase.
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(vi)

(vii)

We therefore recommend as, v, should be small i.e. v; # 10 and v, < 3v4,
and choose o= 1% . However the degree of asymmetry could chosen for a
fairly large range i.e. from a = -3 to a = 1.5. The best performing values are

observed fora ==+1.

Comparing these RR, values with those obtained by Pandey and Srivastava
(1987) under the MSE criterion (or the use of ‘SELF’) indicate that these
values are ‘better’ than those values showing that the application of
Asymmetric Loss Function yields better result also providing a choice to
tailor the risk by choosing ‘a’ appropriately. Further the range of ‘A’

increases.

CONCLUSIONS:

Two shrinkage testimators viz. o) ZDST, and G 2D8T2 have been proposed for
the variance of a Normal distribution. It is concluded that (i) use asymmetric
loss function to study the risk properties. (ii) v; should be small preferably
should not exceed 10 for both the cases. (iii) v, < 3v4 (iv) take a = 1% and
take 0.2 < 4 < 2.0 for negative values of ‘a’ and take 0.2 <1< 1.8 for

positive values of ‘a’. (v) take ‘SQUARE’ of the shrinkage factor.

Tables showing relative risk(s) of proposed testimator(s) with respect

to the best available estimator.
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Table : 3.9.1.1 Relative Risk of G°pst, a=1%, (v, v,) = (6, 6)

8 a=-3 a=-2 a=-1 a=1 a=125 [ a=1.50
0.20 1.059 1.531 1.229 1.835 1.884 1.890
0.40 1.257 1.649 2.081 2.06 1.984 1.975
0.60 1.658 2.618 3,714 3.514 3,762 3.509
0.80 3.484 4,013 5.103 5.913 4.623 3.974
1.00 4.433 5.486 6.834 7.02 5.153 4,851
1.20 4.086 5.332 6.08 6.884 4,774 3.368
1.40 3.753 4414 5.827 4.499 3.213 2.336
1.60 2.357 3417 4,518 2.909 2.087 1.541
1.80 1.637 2.339 3.117 1.911 1.354 0.999
2.00 1.239 1.735 2.236 1.295 0.899 0.654

Table:3.9.12  Relative Riskof 670st,  a=5%, (v, )= (6, 6)

% a=-3 a==-2 a=-1 a=1 a=125 |a=150
0.20 1.379 1.831 1.813 1.49 1.692 1.057
0.40 1.972 1.912 2.436 2.592 2.54 1.536
0.60 1.339 2.021 3.939 2.855 2.711 2.676
0.80 2.271 3.074 4,42 3.909 3.568 3.334
1.00 3.593 4.462 5.081 5.001 4,111 4.67
1.20 4.153 4172 5.051 3.563 2.842 2.267
1.40 3.549 3.736. 4,476 2.299 1.837 1.472
1.60 2.754 2.888 3.762 1.634 1.294 1.034
1.80 2.182 2.166 3.133 1.212 0.945 0.748
2.00 1.815 1.658 2.649 0.926 0.707 0.551

Table:3.9.1.1  Relative Riskof 0 0st, a=1%, (v1, v,)=(8, 8)

A a=-3 a=-2 a=-1 a=1 a=125 |a=150
0.20 1.486 1.74 1.481 1.775 1.792 1.851
0.40 1.989 1.839 1.861 2.693 2.606 2.56
0.60 1.617 2.722 2.195 3.211 3.123 3.249
0.80 3.301 3.041 3.476 4.793 4.437 4,311
1.00 4.105 5.296 6.005 6.403 5.446 5.405
1.20 4.077 4.315 5.212 5.968 4,572 3.507
1.40 3.886 3681 4,75 3.679 2.869 2.256
1.60 2.5 2.75 3.089 2.326 1.797 1.413
1.80 1.782 2.675 2.395 1.534 1.159 0.897
2.00 1.392 2.069 2.338 1.059 0.779 0.589
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Table : 3.9.2.1 Relative Risk of & 2DST2 a=1%, (v, vo) = (6, 6)

A a=-3 a=-2 a=-1 a=1 a=125 | a=1.50
020 | 0.647 1.117 1.897 1.214 1.164 1.156
0.40 0.652 1.997 2.725 1.452 1.347 1.299
0.60 1.381 2.054 3.202 2.629 2.496 3.603
0.80 3.826 4273 473 4,669 3.67 4.078
1.00 5.225 5.732 5.933 5.684 5.396 6.077
1.20 4.882 4.758 4,747 4,077 4.857 4,248
1.40 3.444 3.075 3.385 3.59 3.369 2.531
1.60 2.035 2.952 3.022 2.702 1.951 1.464
1.80 1.397 1.976 2.755 1.68 1.181 0.871
2.00 1.06 1.463 2.735 1.103 0.752 0.541

Table:3.9.22  Relative Riskof O pst, a=1%, (vy, v5) = (8, 8)

A =.3 a=-2 a=-1 a=1 a=125 | a=1.50
0.20 0.74 1.306 1.328 1.143 1.074 1.036
0.40 0.61 1.962 2.865 1.177 1.173 1.909
0.60 1.285 2.009 4.475 3.825 3.595 3.514
0.80 3.539 4.15 5.735 4,962 4,863 3.643
1.00 6.627 7.176 7.917 6.658 5.38 4.939
120 | 4.728 5.556 5.968 4.261 4,945 3.906
1.40 3.439 3.151 4,721 3.488 2.737 2.179
1.60 2.076 2.192 3.519 2.069 1.577 1.233
1.80 1.466 1.692 3.76 1.313 0.968 0.736
2.00 1.151 1.406 2.141 0.885 0.631 0.465

Table:3.9.23  Relative Risk of G nst, a=5%, (vy, vy) = (6, 6)

i a=-3 a=-2 a=-1 a=1 a=125 | a=1.50
0.20 0.848 1.521 1.017 1.577 1.549 1.582
0.40 0.957 1.87 2.343 1.947 1.967 1.927
0.60 1.987 1.302 2.97 2.942 2777 2.698
0.80 3.798 2.522 4.836 4.478 3.225 3.658
1.00 4.434 4.561 5.914 5.711 4.446 5.626
1.20 3.403 3.652 4.607 3.579 2.887 2.326
1.40 2.456 3.585 3.919 2.183 1.751 1.413
1.60 1.887 2773 2.884 1.487 1.171 0.936
1.80 1.555 2.272 2.015 1.065 0.818 0.641
2.00 1.357 1.964 1.388 0.79 0.589 0.45
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