" CHAPTER IV :

ADMISSIBILITY OF MURTHY'S AND

‘MIDZUNO ESTIMATORS IN THE CLASS

OF LINEAR UNBIASED ESTIMATORS

4.0 SUNMMARY

Murthy [10], [11] proposed two estimators for the
total of a finite population. Joshi [8] indicated a method
for proving the admissibility of these estimators. However,

-we show here that Joshi's method is not applicable. The
admissibility of Murthy's estimators is established by a
modification of the method of chapter III. The same modifi-
cation also leads to a proof of the admissibility of some

estimators for the Midzuno sampling scheme [ 9].

4.1 GENERAL RESULT

As remarked in Chapter III, the admissible linear
invariant and unbiased estimator of theorem %.4.1- is
difficult to obtain in practice., Hence we modify fhe methond
slightly as follows 3



Let k1~,k2, .o .‘,kN be non=zero constants such that

YN
Z k. = 1., Let A9y covy 4, be positive numbers. Then

N | .
we try to minimise y_ q; V, subject to conditions (3.1.1)
i=1

of unbiasedness and zero variance at the point (k1.,...,kN).
The estimator t(s,Y) of (1.2.6) will have zero variance
at the point (k,, ...,’kN) if

126: b(s,1) k; =1, 5 €S ees(detat)
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and t(s,Y) is unbiased if (3.1.1) hold. Therefore to minimise

N .
> q;V; subjectto (3.1.1) and (4.1.1), we consider
1=1

K N ’
ﬁ = Z q‘i vi -2 z \)\i Z b(S,i)p(S)
i=1 i=1 s 31 o

-2 T g T b(e,i)

39
s€eS i¢s 1

"where “)\i and /u;g denote Lagrange's multipliers. Equating

the §artial derivatives of @ Weloto b(s,1i) to zero, we get
‘ qib(s,i) p(s) = 7.\19(8) + pagls e vee(4.142)
Write \gsi = )i/qi, a, = /us/p(s) and 'Y\.i-—- ki/qi'.

Then (4.1.2) reduces to
. b(S,i) = zi + 'as :Y\-i . Oli‘(‘4‘1 s3)
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Conditions (4.1.1), together with (4.1.3), give
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: w;iere S(s) = 2 "\j kj' Condition (3.1.1) now gives
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where i = 1,2, «¢», N and 7; denotes the inclusion probability
for the unit i. After routine algebraic simplification (4.1.5)
can be written as

A =4 car(421.6)

where the matrix A and the column vector d are given by

aii =~-ﬁ-i__ “’ikj_ s§1 Ep(s)/ 5(9)] ’!

i

“Nyk, o bwvaw] 143,
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and

4y =1 ="y )3 Y_p(s)/ S(s)l
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Given a solution & of (4.1.6) we cari use (4.1.4) and (4.1.3)
~

to write b(s,i) as

b(s,1) =%, + M (1= j?szﬁjkj )/ S()} « eee(aa1.7)

To claim the admissibility of the resulting estimator we



tisve to show that ‘the quantities b(s,i) of (4.1.7) are
1ndependent of the choice of the particular solutlon E' of
(4415 6)

Theorem 4.1.1 : Suppose the matrix A has rank (N-1). Then

the system (4.1;6) is consistent and thetb(s,i) computed

from (4.1.7) is the same for all solution ¥ of (4.1.6). The

resulting estima tor is admissible within the class of all

unbiased linear estimators of the population total.

, Proof : Let S; denote the set of those samples s which

th

contain the unit i. Let E = (k1, veey kN)ﬁ The 1™ component

of ¥'A is
.

Tk, Nk Be)/ 8(s)1 - Z Nk, z:{i .3{9(5)/5(8)}
1d

T 4 99t s>

\1 - ‘E 1= [p(s)/ §(s)]

kiw
=1 esl1, 33 i

S Tk Nk Te(e) 5(e)]

seS jes

it

fl

i

Ty ~Z k;p(s) =

831

L]



Since ?a@k of A is N-1 and k'A = Q, the system (4.1.6) is

consistedt as soon as k'd = O.

Now R
Kd = Y k.d, = Z‘ K, [1-m Z (s)
=1~Z—{—-)-P(B).‘Z*Lk
s¢S s ies i
-1 -2 ps) = 0.
ged

Thus (4.1.6) is consistent.
' ]
The vector "M = (M, ..., nN)ﬁ is such that

= Q. Therefore a general solution of (4.1.6) is
E:= §7+ €Y, where y* is a particular solution and C is
arbitrary. Now it is easy to check that b(s,i) computed
from (4.1.7) does not depend on C+ Thus the estimator given
by (4.1.7) is the unigue estimator which minimizes ﬁ% Vs
amongst all unbiésed linear estimators which attaini;;ro
variance at k. Therefore the estimator given by (4.1.7) is
" admissible in the linear unbiased class. This completes the

proof of the theorem.

In Chapter II1 we defined the term 'connected sampling

design'. This is used in the following theorem.
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Pheorem 4.1.2 3 If the sampllng de31gn is connected then

rank of A is N-1
Where A is the coefficient matrix in the equations
(40106)0
Proof : Since ky # 0 and qi)>0, we have

- .2
n, = ki/qi f 0, and Wk, = ki/qi > 0. Thus §&(s)> O.

i,x

Let [ = diag (kyy «ovy k)i o= diag (Mg, ooey My

and ¢ = | A,

The entries of ¢ are given by

G,y = Tyl Ny - x5 g >, [pey/ 8] ena
Oyy = =k Vg kM SZZU, () 8(s)] , i#i.

Since T\..iki'“? 0 and §(s)> 0, it follows that

Cij <0 forni#j. Turther it can be easily checked that

Ej C;4 = O for all i. Finally C is symmetric. Thus C
satlsfles the three propertles used in the proof of
theorem 3.2.1. We can therefore conclude tha t rank of

= (N~-1) whenever .the sampling design is connected. But 4
and C have the~same\rank as [ and - are non-singular.

The proof of the theorem is thus complete.



( Sampling designs used in.survey -sampling are usually

| connected: Therefore the applicability of the theory of this
chapter depends upon the easy solvability of (4.1.6). In the
next two sections we show that the theory leads to the proofs

of the admissibility of gomevknown estimators.

4.2 ADMISSIBILITY OF MURTHY'S ESTIMATORS

Suppose we take & sample of 2 units without replace-~

ment from U with probabilities proportional to p1,..;,pN at
N
each stage. Here P, >0 for all i and S p;=1. Suppose

i=1
the sample obteined is s = {i,j}. Then Murtny 1107 ,[11]
proposed the following two estimators for the population total.

ﬂ : (1-p,). Y, (1-p.) Y. ]

_ 1 i i
T1(S) = z_pi~pj [ %1 + ___55*__1 eee(d4+241)
and (1 n) ' R ) -

o1 ) ¥y P30 1 »‘ ,
TZ(S) = 2-pi~pj | [Wi = pi + .n.j - p;} . 000(40212)

Joshi (81, after proving the admissibility of the Sen-Yates-
=-Grundy variance estimator for designs of fixed sample

size 2, claimed that the same proof can be made applicahie

to the estimators T1 and TZ' This claim is, however, incorfect.

The reason is that Joshi's[8] equation (28) depends on the



- fact that ¥(s, xlii),,z v(s, x*V), which is true for the SYG
estimator but false for the estimators T, and Tg; As the
following example shows the criterion in section 4 of Joshi's

paper is incorrect.

Example : Suppose that each bf the semples 8, = {i,i+1}

has probability 1/1&?. Here we interprete (i+1) as 1 when
i=N. Define the estimator T by T, (si)=ﬁ[°(Yi+(1-°<)Y1+1] R
Then '.IZO,~ is unbiesed for the population total. Further,

if ¥, = k for all i, then T, (s;) Nk for all i. However,

T is inadmissible whenever X# 4, whereas each T, should

be admissible according to Joshi's criterion.

We now proceed to prove the admissibility of T1 and TZ‘
In the general theory of section 4.1, take q; = ki/ﬁ—pi).
Tilen .

and \iki = (1-p; ). Therefore, if & = {1,j} then

il

S(s) 2~pi-p.. On the other hand

d

T and W= Py o+ Dy ;;z;éi [pj/(%-p;.})]



p(s) . . BP
s(s) ~ (T"Pi)(“"Pj

ifherefore

W

and a;; =W M.k 5 [p(S)/S(S)]
sy i
= pi.

Further, for i#j
p;p.k.

- - p(s) _
o5 % TViky §ET T "("3'15“7

p
Finally d; =1 - E—i& > [pj/(1-pj)] ‘

The system (4.1.6) can thus be written as

-(-E}—J—T E 1-— , eie(442.
S A E 3741"“ (4:2:3)

where i=1,2, ..., N. Fortunately, (4.2.3) cen be solved

explicitly. A solution s
1-p,)
1. ( i :
— + " i=1,2 s N.
Ei = 'l:‘l pi ’ 949 ]

00-(4'2i4)

‘To verify this observe that with Ei as in (4:2.4), the

left side of (4.2.3) becomes

p. ‘ 'pi p.+(1=p, )k,
E‘i‘ +(1-Pi) - 'E'; E}_ —1-(————%—-11“‘@3 n

5 Py - -
= K + (1-p;) - E, ;%i[?j/(Q'pj)]

> x. .
i

Note thait E: k. = 1‘ki’ Therefore the last expression

P2



‘equals

P. P P
-1 ‘ 1 E; : i

D,
=1 == v./(1-p,)] .
E, 2, [By/0-2)]
This is the right side of (4.2.3). Given the solution (4.2.4),

the quantity b(s,i) can be computed from (4.1.7). Routine

algebra yields :
1-p. kipi - k

D
i 3Pi
ki(a-pi-pj)

kip(s) . 'w.(4-265)

b(s,1i) =

Since the design is connected, (4.2.5) gives a large class
of admissible linear estimators for the particular sampling

scheme. Special cases yield Murthy's estimators.

Case 1. Let ki == pi. Obsei've that the second term on the

right side of (4.2.5) then reduces to zero. Therefore

b(s,1) = (1-p5)/ [ p;(2-p;=p,)] -
The resulting estimator is identical with Murthy's estimator

T1 in (40201).

Case 2. Let ki = ‘ﬁ‘i - Py Then .

N N N
Z' ('ﬁ'i-p'i) =3 W - b p; = 2-1 =1, as required.
i=1 i=1 i=1



We may use the general formula (4.2.5). However, observe
, o - .
i
r——— + Therefore d; = O for all i,
N i

in the present case. In other words we are dealing with the.

that d; =1 -

homogeneous system. Therefore, we m2y use the solution
§= O. We then get, from (4.1.7),

b(S,i) = s(s) = (Z‘I)ifpj)(wi":pi)

The resulting estimator is identical with Nurthy's
estimator T, in (4.2.2).

rCase 3. To construct-a linear invariant‘esti&xator, we
‘take k; = 1/N. We then get

N(1-p, ) (p;-p;)
b(s,i) = (z_p;gpj) + f%rg%— from (4.2.5).

! eeel4.2,6)
Case 4, Let k, = pi/ ["4(1~pi)] where o is so chosen

N
that 2 k;=1. In this case
= ,

(1"»131) Y.O((1“Pj) + (Pi"pjl]

b(sil) = pi(z_piapj)

L] oo-(4-o‘2¢7)

The estimators defined by (4.2.6) and (4.2.7) seem to

be new.
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4.3 APPLICATION TO MIDZUNO'S SCHEME

. Midzuno [9] proposed a sampling scheme under which
the first unit is drawn with probabilities proportional to |
Pys wves Py and the remaining (n-1) sample units are drawn
from remaining (N-1) population units with equal probabillty
and without replacement. Here also, each p; >0 and Z p;=1.
Here S is clearly the class of all subsets of’ ‘lk'ofls;ze n.

Purther

p(s) = 2 p/( -1y ses.

n-
ies 1

. In the theory of section {.1,- take q; = k?‘/pi.

Then "\, = p,/k; and 3(s) = 2 py. Therefore .
ies

-g{f% =11/¢ 3}:} )y,
-—%—g% and
831

L Tete)/s(sid = 1 M2 /¢ n_1,& o O

s> { 1,3} n-2
Moreover,

= p; +[(1—pi) (n=-1 )/(N-T)]

Therefore,

ai.l = wi"'pi = (1 “pi)(n"‘ )/(N“1 )9



&1

and, for i#j
’ gy = pikj(né1)/{(N—1)ki] .

The system (4.1.6) thus reduces to

' P ' D, , ‘
1 r . X1 - 1 ‘
(1 Pi)zi ki jz;éj_ kj j m) (1 kj_ ). ;..(4.3-1)
Lﬁckily, (4-3.1)~also can be solved explicitly.

A solution is given by

6143 (¥-1)/(n-1) for all’i,

With this solution, (4+1.7) gives

k -k, T pi-p; 2 k
_ Y §-1 _Lges 9 ties
b(s’i) ,._.' ki j_.ié:a pj + =7 i ki j_ez_s pj . uoq(49302)

Since the design is connected, (4.3.2) gives a class of
admissible linear unbiased estimators for the Midzuno scheme.-

We will mention some speeiai casesd.

Case 1. DLet k; = p;, Then the second term in (4.3.2) drops

i
out. Thereﬁore

1 - . .
> + The resulting estimator can

ies

b(s,1)

]

be written as ‘
| = o T T P

\ igs 1[5?;:8 i]’

which is the usual unbiased ratio estimator for this scheme.
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gase 2. et k, = (1-py)/(N-1).

‘,% Routine algebra yields

i

e s -1 —_
b(s,1) = E=TI0T5,] [1- 3 ;3 7. e (4.3.3)
€8

If n=2 and s = {i,j)} , then the estimator in (4.3.3) cen be

written as

_ DY, L
T = P(N+1g)3 [T% S (1_53_7] voo8.304)

The estimator (4.3.4) has been given by Murthy [11].

Gase 3. To construct & linear invariant estimator let

k;, = % . After some simplification we get

. s ” p.
b(s,1) = § + 3¢ ( Z- zl 5o )
- Jes

=ET T RT YT +eel4.3.5)
Jes J

Remark : In Chapter III we had k; = 5! ana a;=1 for all i.

Thus relationship between k; and q; did npt‘depend on the

sampling design. Hence we got an intractable system of
5
equations. In this chapter we have q ki in section

4:2 and q, = _%_ in section 4+3%. Thus the sampling design
: 1
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influences.the relationship between q; and k.. This seems to
be the main reason for our being able to solve (4.2.3) and
(4.341). In particular we have been able to cbtain explicit

admissible linedr invariant estimators : (4.2.6)5 (4.3.5).



