LIST OF FIGURES

.

S.NO.	CONTENTS	
CHAPT		
2.1	Wavelength scan of 5FU-copper complex	49
2.2	Calibration curve of 5FU-copper complex	52
2.3	Wavelength scan of 5FU-cobalt complex	57
2.4	Calibration curve of 5FU-cobalt complex	60
2.5	Wavelength scan of 5FU-diazotised nitroanilines	68
2.6	Wavelength scan of 5FU-diazotised amines	69
2.7	Calibration curve of 5FU-diazotised o-nitroaniline	74
2.8	Calibration curve of 5FU-diazotised p-nitroaniline	75
2.9	Calibration curve of 5FU-diazotised sulfanilic acid	76
2.10	Calibration curve of 5FU-diazotised sulfanilamide	77
2.11	Calibration curve of 5FU-diazotised PABA	78
2.12	Calibration curve of 5FU-diazotised anthranilic acid	79
2.13	Wavelength scan of 5FU-mercuric complex with dithizone	88
2.14	Wavelength scan of 5FU-mercuric complex with diphenyl carbazone	89
2.15	Calibration curve of 5FU-mercuric complex with dithizone	92
2.16	Calibration curve of 5FU-mercuric complex with diphenylcarbazone	93
2.17	Wavelength scan of MTX-F.C. reagent	103
2.18	Calibration curve of MTX-F.C. reagent	106

.

S.NO.	CONTENTS	P.NO
2.19	Wavelength scan of MTX-Nessler's reagent	113
2.20	Calibration curve of MTX-Nessler's reagent	116
2.21	Wavelength scan of MTX-nitric acid solution	123
2.22	Calibration curve of MTX-nitric acid solution	127
2.23	Wavelength scan of MTX-hydroxylamine ferric chloric complex	134
2.24	Calibration curve of MTX-hydroxylamine ferric chloride complex	138
2.25	Wavelength scan of cyclophosphamide- ferrothiocyanate complex	146
2.26	Wavelength scan of cyclophosphamide-cobalt thiocyanate complex	147
2.27	Calibration curve of cyclophosphamide-ferro thiocyanate complex	151 .
2.28	Calibration curve of cyclophosphamide cobalt thiocyanate complex	152
2.29	Wavelength scan of cyclophosphamide picric acid solution	158
2.30	Calibration curve of cyclophosphamide picric acid solution	161
2.31	Wavelength scan of 5FU by fluorimetric method at pH 9.0	166
2.32	Calibration curve of 5FU by fluorimetric method	168
2.33	Calibration curve of 5FU by HPLC method	177
2.34	Stability chromatograms of 5FU by HPLC method (pH 10.0)	179
2.35	Log percentage drug remaining vs time plot of 5FU at pH 10.0 by HPLC method	181

.

S.NO.	CONTENTS	P.NO
<u>CHAPT</u>		
3.1	Log % drug (5FU) remaining as a function of time at pH 7.0	203
3.2	Log % drug (5FU) remaining as a function of time at pH 8.0	205
3.3	Log % drug (5FU) remaining as a function of time at pH 9.0	207
3.4	Log % drug (5FU) remaining as a function of time at pH 10.0	209
3.5	Arrhenius plots for 5FU at different pH values	211
3.6	Log % drug (MTX) remaining as a function of time at pH 1.2	217
3.7	Log % drug (MTX) remaining as a function of time at pH 3.9	219
3.8	Log % drug (MTX) remaining as a function of time at pH 5.0	221
3.9	Log % drug (MTX) remaining as a function of time at pH 6.0	223
3.10	Log % drug (MTX) remaining as à function of time at pH 7.0	225
3.11	Log % drug (MTX) remaining as a function of time at pH 8.0	227
3.12	Log % drug (MTX) remaining as a function of time at pH 10.0	229
3.13	Arrhenius plots for MTX at different pH values	231
3.14	Log % drug (cyclophosphamide) remaining as a function of time at pH 1.2	243
3.15	Log % drug (cyclophosphamide) remaining as a function of time at pH 2.0	245

,

S.NO.	CONTENTS	P.NO
3.16	Log % drug (cyclophosphamide) remaining as a function of time at pH 3.9	247
3.17	Log % drug (cyclophosphamide) remaining as a function of time at pH 7.0	249
3.18	Log % drug (cyclophosphamide) remaining as a function of time at pH 8.0	251
3.19	Log % drug (cyclophosphamide) remaining as a function of time at pH 10.0	253
3.20	Arrhenius plots for cyclophosphamide at different pH values	256
CHAPT:	<u>ER 4</u>	
4.1	Calibration curve of egg lecithin by ferrothiocyanate method	263
4.2	Calibration curve of cholesterol	265
4.3	Calibration curve of 5FU in PBS	267
4.4	Calibration curve of MTX in PBS	268
4.5	Effect of ionic strength of calcium- chloride on percentage entrapment of 5FU and MTX	278
4.6	Effect of millimolar ratio of lecithin and cholesterol on percentage entrapment of 5FU and MTX	280
4.7	<u>In vitro</u> permeation apparatus	284
4.8	(a) Mean cummulative percentage permeation of 5FU across rat skin	287
4.8	(b) Mean cummulative percentage permeation of 5FU across rat skin	288
4.9	(a) Mean cummulative percentage permeation of MTX across rat skin	290

S.NO.	CONTENTS	P.NO
4.9	(b) Mean cummulative percentage permeation of MTX across rat skin	291
4.10	Effect of millimolar ratio of lecithin: cholesterol on percentage entrapment	297
4.11	Permeation coefficient values for formulations of 5FU	302
4.12	Permeation coefficient values for formulations of MTX	304
4.13	Percentage reduction in permeability coefficient values for liposomal formulation of 5FU	306
4.14	Percentage reduction in permeability coefficient values for liposomal formulation of MTX	307
4.15	Scheme for application of formulations on DNCB induced erythema in guinea pigs	315
4.16	Percentage reduction in erythema obtained for formulations of 5FU	323
4.17	Percentage reduction in erythema obtained for formulationss of MTX	325

-

.