
Chapter 7

Higher Order Traces and their 

Applications

7.1 Introduction
Embedded ensembles operating in many-particle spaces generate forms for distribu

tions of various physical quantities with respect to energy and other quantum num

bers; several examples for these are already discussed in Chapters 2-6. The separation 

of the energy evolution of various observables into a smoothed and a fluctuating part 

provides a basis for statistical spectroscopy. In statistical spectroscopy, methods are 

developed to determine various moments defining the distributions (predicted by 

EGEs) for the smoothed parts (valid in the chaotic region) without recourse to many- 

particle Hamiltonian construction. Parameters defining many of the important spec

tral distributions, generated by EGEs, involve traces of product of four (or even more) 

two-body (or one-body or a mixture of one and two-body) operators [Da-80, Ko-10]. 

For example, they are required for calculating nuclear structure matrix elements for 

ft and Ov-fiP decay and also for establishing Gaussian density of states generated by 

various extended two-body ensembles.

Propagation formulas for the moments Mr = (Hr)m, r = 3,4 and also for traces 

over multi-orbit configurations for a given one plus two-body Hamiltonian H = 

h( 1) + V{2) follow from the results, derived using diagrammatic methods, given in 

[Wo-86, No-72, Ay-74, Po-75, Ch-78, Ka-95] many years back. These results extend to 

traces of product of four operators each of maximum body-rank 2. From now on,
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we refer to these traces as fourth order traces or averages. The propagation formu

las derived using diagrammatic methods contain very large number of complicated 

terms (in particular for fourth order averages) and carrying out analytically ensemble 

averaging of all these terms is proved to be impractical (we are not aware if anyone 

was successful in the past). Some idea of the difficulty in carrying out simplifications 

can be seen from the attempt in [Pl-97]. Ensemble averages from trace propagation 

formulas is feasible for the second order moments and we have already presented 

examples for these in Chapters 2, 5 and 6. An alternative is to program the exact 

formulas and evaluate the moments numerically for each member of EGE's by con

sidering say 500 members in two-particle spaces. However, as pointed out by Teran 

and Johnson [Te-06] in their most recent attempt in this direction, these calculations 

for the fourth order averages are time consuming if not impractical. All the problems 

with the exact formulas have been emphasized in [Ko-10]. Because of these (in future 

with much faster computers it may be possible to use the exact formulas), we have 

adopted the binary correlation approximation, first used by Mon and French [Mo- 

73, Mo-75] and later by French et al [Fr-88, To-86] for deriving formulas for ensemble 

averaged traces and they are good in the dilute limit. All the “basic” binary correlation 

results for averages over one orbit and two orbit configurations are available in liter

ature and for easy reference, we discuss these in Appendix H. Extending the binary 

correlation approximation method for two different operators and for traces over two 

orbit configurations, we have addressed two applications: (i) derived formulas for the 

skewness ji and excess y2 parameters for EGOE(l+2)-jr ensemble in the dilute limit; 

and (ii) we have derived formula for the fourth order trace defining correlation co

efficient and sixth order traces defining the fourth order cumulants of the bivariate 

transition strength density generated by the transition operator relevant for Qv-fifi 

decay (also /3 decay). The results for (i) and (ii) are presented in Secs. 7.2 and 7.3. 

In addition, we have derived formulas for cumulants (they also involve fourth order 

traces) over m-particle spaces that enter into the expansions for the energy centroids 

and spectral variances, up to order [/(/ +1)]2, for EGOE(2)-/ i.e., embedded Gaus

sian orthogonal ensemble generated by random two-body interactions with angular 

momentum / symmetry for fermions in a single- j shell. The expansions for fixed-/ 

centroids and variances involve traces of powers of operators H and J2. As H pre-
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serves / symmetry, we use exact methods to evaluate these traces. More specifically, 

we have derived trace propagation formulas for the bivariate moments {Hp(J2)Q)m, 

P + Q < 4 and the results are presented in Sec. 7.4. All the results in Secs. 7.2 and 7.4 

are published in [Ma-lla] and [Ko-08], respectively.

7.2 Application to EGOE(l+2)-7r: Formulas for Skew

ness and Excess Parameters
For the EGOE(l+2)-7F Hamiltonian, we have H = h{ 1) + V(2) = h( 1) + X(2) + D{2) with 

X(2) = A© B © C is the direct sum of the spreading matrices A, B and C and D{2) = D+ 

D is the off-diagonal mixing matrix as defined in Chapter 5. Here, D is the transpose 

of the matrix D. The operator form for D is

D(2) = E vTDSr\ (2 )S2 (2), (7.2.1)
y,8

with {v7q]2 - vjy Note that the operator form of X{2) is given by Eq. (H33) and then 

v2x{i, j) = t2 with i + j = 2 and similarly, v2D = a2; see Chapter 5 for further discussion 

on the (a,r) parameters. Using this and the property that h{ 1) conserves (m1; m2) 

symmetry and X preserves (mi, m2) symmetry, we apply the results in Appendix H 

and derive formulas for Mr(mi, m2) with r < 4. These results are good in the dilute 

limit: mi,lVi,m2,lV2 — oo, m/Ni -* 0 and m/A/^ ->■ 0 with m = mi or m2. With the 

sp energies defining the mean field h( 1) as in Chapter 5, the first moment Mi of the 

partial densities pmi'm?-{E) is trivially,

Mi (mi, m2) = <(h + F))mi-m2 = m2, (7.2.2)

as (hr)mi,m2 = (m2)r and (V)mi,mz = 0. Applying the results in Appendix H in dif

ferent ways, we derive formulas for the second, third and fourth order traces giving 

Mr (mi, m2), r = 2 - 4. However, the presence of the mixing matrix D makes the ap

plication involved. The second moment M2 is,

M2(mx,m2) = {(h + V)2)mi>mz

= {h2)mi’mz + (v2)mi,m2 = (m2)2 + (v2)mi’mz;
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(7.2.3}<v2>2\mi,m2

(x2)mi,mz

= (X2)mi'm2 + (DD)mi,m2 + (DD)mi,mz 

t2 £ T{mi,Ni, i) T(m2,N2,j),
i+j—2

(DD)mi,m2 2
= or

mi'
1 ~ \m2CM , (DD) mi,m2 a

my
2 ,

m2\
2

The second line in Eq. (7.2.3} follows by using the fact that X(2) and D(2) are in

dependent and D(2) can correlate only with D{2). In Eq. (7.2.3}, the expression for

(x^)mi’m follows directly from Eq. (H34). The last two equations in Eq. (7.2.3} can 

be derived using Eq. (7.2.1) giving the definition of the operator D(2) and using Eqs. 

(H2) and (H3) appropriately to contract the operators y* with y and S with 5t. For 

the T(- • -)’s in Eq. (7.2.3), we use Eq. (H8). Note that, Eq. (7.2.3) gives the binary

correlation formula for er2(mi, m2). Similarly, the third moment M3 is

M3(m1,m2) = ({h + V)3)mi’m2

= (h3)mi’m2 + 2 mmum (v2)mi,m2 + (XhX)mi’ni2 

+ (DhD)mi'm2 + (DhD)mi,m2 (7.2.4)

= (m2)3 + 2 m2 {V2)mi'm2 + m2 (x2)mi’m2

+ (m2 + 2) (DD)mi,m2 + (m2 - 2) <DD)mi,m2.

In Eq. (7.2.4), the last three terms on the RIIS are evaluated by using the following 

properties of the operators X, D and D,

X(2) \mi,m2) — |mx,m2), D(2)|mi,m2> — |mi+2,m2-2>,

(7.2.5)

Z)(2)|mi,m2> —• |mi -2,m2 + 2) .
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Also, the fixed-(mi, m2) averages involving X2, V2, DD and DD in Eq. 

from Eq. (7.2.3). Now, the formula for the fourth moment M4 is,

M4(m1,m2) = ({h+V)4)mi'm2

_ (h4)m',mz + 3(h2)mi,m2 (v2)mi,m2 + (h2)mi’m2 {X2)mi,m2

+ {Dh2D)'num2 + (Dh2D)mum2 +2 (hXhX)mi’m2

+ 2 (hDhD)mi,m2 +2 (hDhD)mi,m2 + {y4)mi,m2

(7.2.6)

= (m2)4 + 3 (m2)2 (V2)mi-m2 + (m2)2 (X2)mi’m2

+ (m2 + 2)z (DD)mum2 + (m2 - 2)2 {DD)m'mz 

+ 2 (m2)2(l2>mi'm2 +2 m2(m2 + 2) (OD)'"1'"’2 

+ 2 m2(m2 - 2) (DD)mi’mz + (v4)mi'mz.

The first term in Eq. (7.2.6) is trivial. The next two terms follow from Eq. (7.2.3). The 

terms 4 - 8 in Eq. (7.2.6) are also simple and follow from Eq. (7.2.5). The expression 

for <y4)mi,m2, which is non-trivial, is,

_ (x4)mi,mz + 3 (X2)m‘,m2 |(DD)mi,m2 + (DD)mi,m2 j- 

+ {DX2D)mum2 + {DX2D)mumz (7.2.7)

+ 2 (XDXb)mumz + 2 (XbXD)mi’mz + {(D + b)4)miMz.
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The formula for the first term in Eq. (7.2.7) follows from Eq. (H39),

2j(X2)mi,m2}2 + T’1;

T\ = t4 £ F(mi,Nl,i,t)F(m2,N2,j,u).
i+j=2, t+u~2

Combining Eqs. (7.2.7) and (7.2.8), we have,

(F4) m\,ni2

(7.2.8)

= 2{(X2)mi,m2J-2 + T\ +3 (x2)mum2 {<DD)mi,m2 + {DD)'"1’'"2}

+ \{DX2b)mi'mz + <DX2D)mi,OT2}

(7.2.9)
+2 t[(XDXD)mi,mz + (XDXD)mum2} + <(D + D)4)'"1*'"2 

= 2 |<X2)mi,m2}2 4- 3 (x2)mum {{Db)mx,m + {DD)m,'m2 j-

+ Ti + T2 + 2T2 + T4.

To simplify the notations, we have introduced T\, T2, 'F\ and T4 inEq. (7.2.9). The first 

and second terms in the RHS of the last step in Eq. (7.2.9) are completely determined 

by Eq. (7.2.3). Also, expression for 1\ is given in Eq. (7.2.8). Now, we will evaluate the 

terms T2, T2 and 74. Firstly, using Eq. (7.2.5), we have

T2 = (DX2D)mi’m2 + {DX2D)mi'm2

= {(DD)mum2\ |(X2)mi_2'm2+2| (7.2.10)

+ {(DD)m‘m2\ |(X2)«i+24n2^2| _

Formulas for the averages involving X2, DD and DD in Eq. (7.2.10) are given by Eq. 

(7.2.3). Using Eqs. (H4) and (H5) appropriately to contract the operators D with D
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in Eq. (7.2.3), we haveacross operator X along with the expression for (x2)mi,mz

T3 = {XDXb)m’mi + {XDXD)mi’m2

2 2
cr I

i+j=2

m2-j + m i Am2-j
2

X T(mltNi,i) T{m2,N2,j).

Similarly, the expression for T\ is as follows,

T4 = {{D + D)4}mi,m2

= (D2b2)mi,mz + (D2D2)mi,m2 + (DDDD)mi’m2

+ (DDDD)mi'm + (DD2D)mum2 + <bD2D)m’m2 .

As, in leading order, D can correlate only with D, we have

(D2D2)mi,m2 = {DDDb)mi,m2 + (DDbb)mi,m2

= a4 £ ( r I (2) «52 (2) (2) /72 (2) 5 J (2) y x (2) 77+ (2) jc ! (2)) m 1 ’m2

y,SrK,i]

+a4 £ ( r 1C2) (2) 7C+ (2)772 (2)?7+ (2) x (2) <5+ (2) r i (2))
Y,S,K,Tj

= a4 £ (r4(2)Kj(2)n(2)K1(2))mi (s2(2)ri2(2)6l(2)r]l(Z))m2

y,S,K,rj

+a4 £ <riC2)7c+(2)7Ci(2)ri(2))mi (<S2(2)772(2)77+ (2)5+ (2)) 

y,S,K,r]

= 2 a4 £ (r{(2)jc{(2)K1(2)yI(2))mi £ (<52(2)772(2)77+ (2)(2))"*2 

r.x ' s,n ' '

-2(Db)m,m2 (£)£)) mi_^’m2+^

(7.2.11)

(7.2.12)

(7.2.13)
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In order to obtain the last step in Eq. (7.2.13), the operators k1k and y+y are con

tracted using Eq. (H2) that gives (mi2“2) and f”1) respectively. Similarly, contracting 

operators t?77+ and SSf using Eq. (H3) gives (OT22~2) and (”2) respectively. Combin

ing these gives the last step in Eq. (7.2.13). Note that the correlated pairs of opera

tors are represented using same color in Eq. (7.2.13). Also, the third binary pattern 
(DDDD)mi,m2 is not considered as it will be 1/JVi or l/A/2 order smaller compared to 

the other two binary patterns shown in Eq. (7.2.13). Similarly, we obtain

(b2D2)mx'mz = (DDDD)mi’m + (DDDD)mi,mz

= 2 (flD)“1,"'(DD)*l*1’r!,

(DDDD)m,mz = (DDDb)mx,m2+ (DDDD)mi,m2

= {(DD)m’m2\~ +{DD)mi'm (DD)mi~2’m2+2

(DDDD)mi,m2 = (DbDD)mi’m2 + (DDDD)mi,m2

= 2 (DD)mi’m2 (DD)m’m2,

(DDDD)mum2 = {DDDD)mi’m2+ (DDDD)mi,m

= 2{DD)mum2 (DD)mum,

(DDDD)mum2 = (DDDD)mi'm2 + (DDDD)mi'm2

= |(DD)mi'W2p + {DD)mi,mz (DD)m'+2,m2 2_
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Combining Eqs. (7.2.12)-(7.2.14), we have 

7i =

+ (DD)mM [ 2 (iDD)mi~Z'mz+Z + (iDD)mi 2'mz+Z 

+ {DD)m,,mi 12 {DD)m,*Z,mz~Z + (DD)m'*Z,mz~Z
(7.2.15)

Therefore, combining Eqs. (7.2.6), (7.2.8), (7.2.9), (7.2.10), (7.2.11) and (7.2.15), the 

expression for the fourth moment is,

M4(mi,m2) = (m2)4 + 3 (m2)2(V2)mi,OT2+ 3 (m2)2 (X2)mi’m2 

+(m2 + 2)2 {DD)m’m + (m2 - 2)2 {DD)m,m2

+2 m2im2 + 2) (DD)mi’m2 + 2 m2(m2 -2) (DD)mi’m2 + 2j<*2)^J2 

+3 (.X2)mi’m2 {(DD)mi’mz + (DD)mi’m2}

+r4 £ F(mi,N\,i, t) F{m2,N2,j, u)
*>j=2, f-f-u=2

+

{(DD)m’m2} |<X2)^-2,m2+2j

{(DD)mum2} |(X2)mi+2,m2-2 (7.2.16)

+2 T2 a2 £ 
i+j-2

W2-J
+

V

m2-;
2

xT(mi,Ni,i) T{m2,N2,j)
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+ \[DD)mi'm}2 + {{DD)mi,mz j2 

+(DD)mi,m2 l2(DD)mi~2'm2+Z + (DD)mi~2’mz+2

+{DD)mi’m2 [ 2 (DD)mi+Z'mz-Z + {DD)mi+2'm2~2 

+4 |<DD)mi'm2J- {(DD)mi,m2 j- .

Equations (7.2.2), (7.2.3), (7.2.4), and (7.2.16), respectively give the first four non

central moments [Mi(mi,m2), M3(mi,m2) and M4(mi,m2)). In Eq.

(7.2.16), we use Eq. (H8) for r(-*-)’s and for F(---)'s, we use Eq. (H14) and also Eq. 

(H23) in applications. The first four cumulants [fci(mi,m2), Ar2(mi,m2), £3(mi, m2), 

fc4(mi,m2)] can be calculated from these non-central moments using the formu

las [St-87],

fci(mi,m2) = Mi(mi,m2), fc2(mi,m2) =M2(mi,m2)-Mf(mi,m2), 

fc3(mi,m2) = M3(mi,m2)-3M2(mi,m2)Mi(mi,m2)+2Mf(mi,m2), 

k$(mi,mz) = M4(mi,m2)-4M3(mi,m2)Mi(mi,m2)-3M|(mi,m2) 

+ 12M2(mi,m2) -6Mf(mi,m2).

Then, the skewness and excess parameters are,

Ti(«^i, m2)
fc3(mi,m2) 

[fc2(mi,m2)]3/2 ’ y2(wi,m2) [k2(wii,m2)]2 ' (7.2.18)

After carrying out the simplifications using Eqs. (7.2.2), (7.2.3), (7.2.4), (7.2.16) and 

(7.2.17), it is easily seen that,

yi(mi,m2) =
(DD)mi,m2 mi, m2(DD)"11’

{<DD)mum2 + (DD)m’m2 + (X2)■2\mi,m2
3/2 '

(7.2.19)

Thus, yi will be non-zero only when a / 0 and the r dependence appears only in 

the denominator. Also, it is seen that for N+ = AL, 71 (mi, m2) = -71 (m2, mi). The 
expression for y2 is more cumbersome. Denoting @ = (DD)mi’m2, @ = (DD)m'm2
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and X = (x2)mi'm2 for brevity, we have

rz(mi>m2) + l =
T1 + T2 + 2T5 + T4 + [@ + @)(4~X)-2 (@ + @f

{§+@+x}2
(7.2.20)

The formulas for T’s, Q, and X given before together with Eq. (7.2.20) show that, 

for N+ = N-, j2{mi, m2) = y2{m2, m\). With, T\ ~ X2 + C\, T2 = T3 ~ X(S> + @) and

T4 ~3(@+®)2+C2 which are good in the dilute limit (ICl/Tii and \C2i T41 will be close 

to zero), we have

y2{mi,m2)
Ci + C2 + 4 (@ + &)

{§+@+xf (7.2.21)

Note that Ci and X depend only on r. Similarly, C2 and (@, @) depend only on a. The

+ S') term in the numerator will contribute to 72(mi, m2) when r = 0 and a is very 

small. The approximation T2 - I3 ~ X{^+0>) is crucial in obtaining the numerator in 

Eq. (7.2.21) with no cross-terms involving the a and r parameters. With this, we have 

k4 to be the sum of k4’s coming from X(2) and D(2) matrices [note that, as mentioned 

before, X(2) = A © B © C and D{2) = D + D).

To test the accuracy of the formulas for Mr given by Eqs. (7.2.2), (7.2.3), (7.2.4) 

and (7.2.16), the binary correlation results for 7i(m,+) and 72(m,+) are compared 

with exact results obtained using the eigenvalues from EGOE(l+2)-7r ensembles with 

100 members for several values of (JV+, 1V_, m) and (t, a) parameters in Table 7.1. Ex

tension of Eq. (5.3.7) along with the results derived for Mr (mi, m2) will give the binary 

correlation results for 71 (m, ±) and y2{m, +). It is clearly seen from the results in the 

Table that in all the examples considered, the binary correlation results are quite close 

to the exact results. Similar agreements are also seen in many other examples which 

are not shown in the table.
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7.3 Application to pf) Decay: Formulas for the Bivari
ate Correlation Coefficient and Fourth Order Cumu-

lants for the Transition Strength Density

7.3.1 Transition matrix elements and bivariate strength densities

Given a transition operator 0, the transition matrix elements are given by I {/101 i) |2, 

with i and / being the initial and final states. These are also generally called transi

tion strengths. Operation of EGEs in many-particle spaces will lead to a theory for the 

smoothed part of transition strengths and the fluctuations in the locally renormalized 

strengths follow Porter-Thomas form for systems in the chaotic region. The transi

tion matrix elements are needed in many applications. Examples are one-particle 

transfer [Po-91], E2 and Ml transition strengths in nuclei [Ha-82], dipole strengths 

in atoms [Fl-98], beta-decay [Ma-07], giant dipole resonances [Ma-98] and problems 

involving time-reversal non-invariance and parity [Fr-88,To-00]. Here, our focus is 

on Ov - decay. Half-life for Ov double-beta decay (NDBD), for the Ot gs of a ini

tial even-even nucleus decay to the 0^ gs of the final even-even nucleus, with a few 

approximations, is given by [El-02]

where {mv) is effective neutrino mass and the G0v is an accurately calculable phase 

space integral [Bo-92, Do-93]. Similarly gA and gv are the weak axial-vector and vec

tor coupling constants igAfgv = 1 to 1.254). The nuclear matrix elements Mqt and 

Mp are matrix elements of Gamow-Teller and Fermi like two-body operators respec

tively. Forms for them will follow from the closure approximation which is well jus

tified for NDBD [El-02]. As seen from Eq. (7.3.1), the NDBD half-lives are generated 

by the two-body transition operator 0(2: Ov). An experimental value of (bound on) 

T?Y2 will give a value for (bound on) neutrino mass via Eq. (7.3.1) provided we know

1

(7.3.1)
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the value of |M°V|2 generated by the NDBD two-body transition operator ©{2 : Ov), 

connecting the ground states of the initial and final even-even nuclei involved.

Transition strengths multiplied by the eigenvalue densities at the two energies 

involved define the transition strength densities. With EGOE(l+2) operating in the 

Gaussian domain, it was established in the past that transition strength densities 

follow close to bivariate Gaussian form for spinless fermion systems and for opera

tors that preserve particle number with the additional assumption that the transition 

operator and the Hamiltonian operator can be represented by independent EGOEs. 

With extensions of these results (without a EGOE basis), the bivariate Gaussian form 

is used in practical applications. Our purpose is to establish that for the Ov-/3f5 decay 

(also for (5 decay), transition strength densities are close to bivariate Gaussian form 

and also to derive a formula for the bivariate correlation coefficient. We will address 

these two important questions so that the EGOE results can be applied to formulate 

a theory for calculating Ov-/3/3 transition matrix elements [Ko-08a]. With space #1 

denoting protons and similarly space #2 neutrons, the general form of the transition 

operator © is,

= £ vfike) rl(k&)S2(k&); k& = 2 for NDBD. (7.3.2)
y,8

Therefore, in order to derive the form for the transition strength densities generated 

by 0, it is necessary to deal with two-orbit configurations denoted by (mi, m2), where 

mi is the number of particles in the first orbit (protons) and m2 in the second orbit 

(neutrons). Now, the transition strength density 1^ (£),£/) is

(7.3.3)
= I{mi-m2\Ef) {[m{, m{)Ef \ © | (m|,ml2)Ei^ (£)),

and the corresponding bivariate moments are

m|) = (©Hk&)HQ{kH)©(k0)Hp(kH})mi’m2 . (7.3.4)

Note that M are in general non-central and non-normalized moments. The general
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form of the operator H{kn) is given by Eq. (H33) and it preserves {m\, ml2)’s. How

ever, © and its hermitian conjugate ©^ do not preserve (mi, m2) i.e., ©{kg) | mi, m2) = 

I mi + kg, m2 - kg) and ©^ {kg) \m\, m2) = |mi - kg, m2 + kg). Thus, given a {m[, m^) 
for an initial state, the (mf, m|) for the final state generated by the action of © is 

uniquely defined and therefore, in the bivariate moments defined in Eq. (7.3.4), only 

the initial (mj, mi,) is specified. For completeness, let us mention that given the 

marginal centroids {ei,Ef), widths {ai,Of) and the bivariate correlation coefficient 

(hiv, the normalized bivariate Gaussian is defined by,

Pbiv-,S;0^i’ Ef") — PbhMWT Ef> euef,aha/, fw„)

2na iff f \/n"-C|~) (7.3.5)

exp-
Bi-Ei'2

<Ti af

7.3.2 Formulas for the bivariate moments

Using binary correlation approximation, we derive formulas for the first four mo
ments MpQ{m\,m^), P + Q< 4 of t™1 'mz)’{-mi’m?)(£., for any ^ by representing

H{kn) and ©{kg) operators by independent EGOEs and assuming H{kn) is a kn- 

body operator preserving (mi,m2)’s. Note that the ensemble averaged fc^-particle 

matrix elements of H{kn) are v2H{i,j) with i + j = kn [seeEq. (H33)] and similarly the 

ensemble average of (z^f)2 is v0. From now on, we use {m\, ml2) = (mi, m2). Using 

Eq. (7.3.2) and applying the basic rules given by Eqs. (H2) and (H3), we have

M0o(mi,m2) = {©i{kg)©{kg)) mi,m2

= Z {v&6}2 {5\{k©)riOcg)j\{k0)82{kg)yil,mz 
y,S

m2
kg) kgt
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Trivially, Mio(mi, m2) and Mw {mi, m2) will be zero as H{kn) is represented by 

EGOE{kH). Thus, MpQ(mi, m2) are central moments. Moreover, by definition, all the 

odd-order moments, i.e., Mpqimi, m2) with mod (P + Q,2) / 0, will be zero. Now, 

the Mn is given by,

Mu(mi,m2) = <0t gc0) H{kaW{k0) H[kH) )mi,mz

= 4 E«i.0i,a2.feri.fe i+i=kH
(7.3.7)

x (rj ik0)ax (i)0[(i)j 1 (k0)Pi (i)aj(i)^m

x (82(k0) a2 {j)f)\ {j)8\{k0)p 2 (j) «2 ^)W2

Then, contracting over the y+y and 88^ operators, respectively in the first and second 

traces in Eq. (7.3.7) using Eqs. (H4) and (H5) appropriately, we have

Mii(mhm2) = 4 E 4KU3i+j=kH

\mi-i m2-jA

(7.3.8)

x T{mi,Ni,i) T{m2,N2,j).

Note that the formulas for the functions T(- • - )'s appearing in Eq. (7.3.8) are given by 

Eqs. (H8), (H9) and (H10). Similarly, the functions F(---)’s appearing ahead are given 

by Eqs. (H14) and (H23). For the marginal variances, we have

M2o(mi,m2) = (0Hk0)0{k0)H2{kH))mi’rn2

= Mqo(mi,m2) <H2(fe))mi’OT2,

(7.3.9)

MQ2(mi,m2) = <1©nk0)mkHW(k0))mhmz

= Moo(mi,m2) (H2{kH))mi+k0’mz

211



In Eq. (7,3,9), the ensemble averages of H2(Jch) are given by Eq. (H34). Now, the 

correlation coefficient (t>iv is

tbiv(tnum2) =
Mn(mi,m2)

\jM20{mi, m2) M02(mi,m2)
(7.3.10)

Clearly, (biV will be independent of v@.

Proceeding further, we derive formulas for the fourth order moments Mpq, P + 

Q = 4. The results are as follows. Firstly, for (PQ) = (40) and (04), we have

M40(mhm2) = (&Hkff)0(kff)HHkH))mi’m2

- M0o(m1,m2)<H4(fcH)>mi’W2,

(7.3.11)

Mo4(mi,m2) = (0Hk0)HHkH)0(kff))mi’m2

= Mo0(mltm2) (H4(fcH))mi+%'m2_fce.

In Eq. (7.3.11), the ensemble averages of HA{kn) are given by Eq. (H39). For (PQ) = 

(31), we have

M3l(mhm2) = <0Hk&)H(kH)0(kff)HHkH))mi'm2

= (ffHke)H{kH)0{ke)mkH)mkH)H(kH))mi,m2

(7.3.12)

+ (0Hkff)H(kH)0(kff)H{kH)H(kH)H(kH))mhmz

+ (eHke)mkHmkff)mkH)mkH)H(kH))mi,mz.

Note that in Eq. (7.3.12), we use the same color for the binary correlated pairs of
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operators. First and last terms on RHS of Eq. (7.3.12) are simple and this gives,

M3i(mi,m2) = 2{H2(kH))mumz Mn{mhm2)

+(©Hk0)H{kHW{k0)H{kH)H{kH)H{kH))mi-m2

= 2(H2{kH))mi’m2 Mn{mi,m2) + vl £ vzH{i, j) v2H{t,u)
i+j-kf{tt+u=kH

x
m2 - f

k& t

l ~ ■

m\ -1
, ke ,

F{ml,Nhi,t)F{m2,N2>j, u).

Similarly, we have

Mi3(mi,m2) = {0Hk0)H*{kH)0{kG)H{kH))mi'm2

= <01 {k0)H{kH) WkH)H(kH}0(kff)H(k„))mi’m2

+(0Hkff)Fl{kH)H(jcH)H(kH)0{ko)H{k,i})mumz

+{0Hkff)H(kH)H(kH)H(kH)0(ke)H(kH))mi,m2

= 2(mk„))mi+ke'm2~ke Mn(mhm2)

+ v| Y, v2H{i,j)vzH{t,u)G{t,u)
i+i=kn,t+u-ku

m\-k0 - t + i\
' m i + k0- t\

' m2 -u + kG + j (m2-kff-u

‘ 1 ‘ 1 j l J

G(t, u) mi -1
i j

m2 - u T(m\,N\,t) T(m2,N2, u).

(7.3.13)

(7.3.14)

213



Finally, M22{m\, m2) is given by,

M22(m1,m2) = (@Hkff)HHkHW(k0)H2(kH))mi’m2

= (e'ikfi) mkH) H(k„)0{ko) mkH) m kH))mi 'mz

+{0Hkfj) H(k„) HiknW(kff) H(kH) HI kH) )mi’m

+(0Hk0)H{kH}H(kHW(k0)H(kH)H(kH))mumz

__________________ (7.3.15)
= M0oimum2) {tfi{kH))m+kG'm2^ {HHkH))m’m2

+ Vff Y vzH{i,j) v2H(t,u) 
i+j=kn,t+u=kn

fh\ -i-t 
kg

'm2 -u-f 

k ke >

X \F{mi,Ni,i,t) F{m2,N2,j, u)

+ T(m1,Nui) T{mltNi,t) T(m2,N2,j) T(m2,N2,u)] .

Given the MpQ(ni\, m2), the normalized central moments Mpq are Mpq = MPqIMqq.

7.3.3 Numerical results for bivariate correlation coefficient and fourth 

order cumulants

Firstly, the scaled moments Mpq are

MPq
MPQ(mi,m2)

[M20(mi, m2)]p/2 [M02(mi, m2)]Qn P + Q> 2, (7.3.16)

Now the fourth order cumulants are [St-87],

k40{mi,m2) = M40(mi, m2) - 3, k04(mh m2) = M04(mi, m2) -3, 

fc3i(mi,m2) = M3i(mi,m2)-3M11(mi,m2), 

fci3(mi,m2) = M13(mi,m2)-3Mi1(mi,m2), 

k22{m\,m2) = M22(mi,m2) -2Mfl(m\,m2) - 1.

(7.3.17)
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Table 7.2: Correlation coefficients (biv(mi>m2) for some nuclei with k@ = 2 as appropriate 
for Ov - ftft decay operator. Note that space #1 is for protons and space #2 for neutrons. The 
configuration spaces corresponding to N\ or N2 - 20, 22, 30, 32, 44 and 58 are r3/, r3g, r4g, 
r4h, r5i, and r6;', respectively with / = lf7!2, g - lg9i2, h =1 him, i =1 hsn, j -1 jisn, r2 = 1fm 
2Pm 2Pm, r4 = lgit2 2d5n 2dm 3sm, r5 = ^9/2 2fm zfs/2 3Pm 3Pm and r6 = lhm 2gm 
2gu2 3dm 3dm 4si/2- See text for details.

Nuclei Ni mi n2 m2 Cbivimi,m2)

lGe44 22 4 22 16 0.64

||Se48 22 6 22 20 0.6

$°Mo58 30 2 32 8 0.57

|8Te76 32 2 32 26 0.62

i°Te78 32 2 32 28 0.58

gQ°Ndgo 32 10 44 8 0.72

i4 Sm92 32 12 44 10 0.76

M°Wio6 32 24 44 24 0.77

!8Ul46 44 10 58 20 0.83

Assuming v2H[i, j) defining H(2) are independent of (i, j) so that (biv is indepen

dent of v2h, we have calculated the value of (biv with k@ = 2 for several Ov - ftp decay 

candidate nuclei using Eq. (7.3.10) along with Eqs. (7.3.6), (7.3.8), (7.3.9) and (H34). 

For the function T(- • •), we use Eq. (H8). Note that v\{{i, j) correspond to the variance 

of two-particle matrix elements from the p-p (i = 2, j = 0), n-n {i = 0 ,j - 2) and p-n 

{i = 1 ,j = i) interactions. Results are given in Table 7.2. It is seen that (biv ~ 0.6-0.8. It 

is important to mention that Cfc/y = 0 for GOE. Therefore, the transition strength den

sity will be narrow in {Ei, Ef) plane. In order to establish the bivariate Gaussian form 

for the Ov - ft ft decay transition strength density, we have examined kPQ, P + Q = 4. 

For a good bivariate Gaussian, |fcpQ| £0.3. Using Eqs. (7.3.6), (7.3.8), (7.3.9), (7.3.11), 

(7.3.13)-(7.3.17) along with Eqs. (H34) and (H39), we have calculated the cumulants 

kpqimi, m2), P + Q = 4. These involve T(---) and functions. For set #1 calcula

tions in Table 7.3, we use Eq. (H8) for T{- ■ •) and Eq. (H23) for ¥{■■■). For the set #2

215



9IZ

CM

cm
CMd

©CM
©1

CO
d

© 
r—id

-0
.1

7(
-0

.1
5) COod

-s_>
inpH
©

(iro-)ero-

LOCM
©

CDCM
©

1

P
pH
o

COCM
o

1

LO
pH
o

00
rHd

1

CO
©
d
Ow*LO
pH
o

pHrH
o

1
wLO
rH
o

1

CO

M

COCM
©1

CM
o

1

/•—"N00
pHd

1
.—^CMCM
o

1

-N
inpH
0

01 
pH
o

l

CO
©
d

pH
o

1

rH
pH
o

LO
pH
o

1

oM

CO
COd

CM
o

1

COCM
o
c?
CM
d

1

00
pH
o

LOCMd

coo
o

©
CM
d

[

<*“"■SCO
rH
o

00
rH
d

[

oJ?

S?

COd

in

d
[

CMCM
o

CM
d

1

CO
pH
o

CMd
1

eo
o
d
Jl_

05
pH
d

CO
pH
o

CO
rH
o

1

i* CO oo
o
pH CM oCM

£ CMCO CO
in

s CM o
pH

CM
pH CM

o
rH

o
CO CMCO CMCO CMCO

N
uc

le
i CO

LO
o
s

oO CM 
•H T*

o05
•a
£

So
1-i o

s

sCO
tncM«—c CD

COorH
£

oCO ^rH fs.

toH
rH
0

CO
CO CM 
CM 05

Ta
bl

e 7
.3

: C
um

ul
an

ts
 kp

g,
 P

 +
 Q

 =
 4

 fo
r s

om
e 

nu
cl

ei
 li

ste
d 

in
 T

ab
le

 7
.2

. T
he

 n
um

be
rs

 in
 th

e b
ra

ck
et

s a
re

 fo
r t

he
 st

ric
t d

ilu
te

 li
m

it 
as

 e
xp

la
in

ed
 in

 th
e 

te
xt

. 
Ju

st
 as

 in
 th

e 
co

ns
tru

ct
io

n 
of

 T
ab

le
 7

.2
, w

e 
us

e v
^t

, j)
 in

de
pe

nd
en

t o
f (

z,
 j)

. S
ee

 T
ab

le
 7

.2
 a

nd
 te

xt
 fo

r d
et

ai
ls

.



calculations, shown in ‘brackets' in Table 7.3, we use Eq. (H9) for T(- ■ •), Eq. (H14) 
for F(--0 and replace everywhere (m‘s+r) -» [Ns‘) for any (r,s) with i = 1,2. Then we 

have the strict dilute limit. We show in Table 7.3, bivariate cumulants for five heavy 

nuclei for both sets of calculations and they clearly establish that bivariate Gaussian 

is a good approximation. We have also examined this analytically in the dilute limit 

with Ni,N2 -* oo and assuming v2H{i,j) independent of (i, j). With these, we have 

expanded kpq in powers of 1 / mi and li m2 using Mathematica. It is seen that all the 

kpQ, P + Q = 4 behave as,

Therefore, for mi » 1 and m2 « mf2, the strength density approaches bivari

ate Gaussian form in general. It is important to recall that the strong dependence 

on m\ in Eq. (7.3.18) is due to the nature of the operator 0 i.e., 0(k@) \m\, m2) =

I mi + kg, m2 - kg). Thus, we conclude that bivariate Gaussian form is a good approx

imation for Qv-f3(3 decay transition strength densities. With this, one can apply the 

formulation given in [Ko-08a] with the bivariate correlation coefficient (t,iv given by 

Eqs. (7.3.10), (7.3.9) and (7.3.8). The values given by the two-orbit binary correlation 

theory for (biv can be used as starting values in practical calculations.

For completeness, we have also calculated the correlation coefficient and fourth 

order moments for the transition operator relevant for j6 decay and the results pre

sented in Table 7.4 confirm that bivariate Gaussian form is a good approximation 

for f3 decay transition strength densities. These results justify the assumptions made 

in [Ko-95].

7.4 EGOE(2)-/ Ensemble: Structure of Centroids and 

Variances for Fermions in a Single-j Shell

7.4.1 Definition and construction of EGOE(2)-/

Shell-model corresponds to m fermions occupying sp /-orbits and interact

ing via a two body interaction H = V(2) that preserves total m-particle angular mo

menta /. For simplicity we restrict to identical nucleons and degenerate sp ener-

(7.3.18)
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gies. Firstly, the V{2) matrix (F(2)] in two-particle spaces is a direct sum of matrices, 

[V(2)] = [VJl2(2)] ® [Wi2(2)] ® [V]"i{2)\ ffi... where /i2 are two-particle angular mo

menta. Now the [W1Z(2)] matrices are represented by GOE, i.e., V{2) in two-particle 

spaces is a direct sum of GOE’s. Let us consider the example of j = (7/2,5/2,3/2,1/2), 

i.e., the nuclear 2plf shell. Here /12 = 0 - 6 and the corresponding matrix dimen

sions are 4, 3, 8, 5, 6, 2, and 2, respectively. This gives 94 independent matrix el

ements for the {V(2)\ ensemble and they are chosen to be Gaussian variables with 

zero center and variance unity (variance of the diagonal elements being 2); see Eq. 

(1.2.4). The EGOE(2)-/ ensemble in m-particle spaces is then generated by propa

gating this {V(2)} ensemble to a given (m,/) space by using the shell-model geome

try, i.e., by the algebra U(N) => SO/(3) with a suitable sub-algebra in between, where 

N = Y.i (2 ji +1). Then, the m-particle H matrix elements are linear combinations of 

two-particle matrix elements with the expansion coefficients being essentially frac

tional parentage coefficients. For the {2plf)m=8 system, the dimensions D{m,J) are 

347,880,1390,1627,1755,1617,1426,1095,808,514,311,151,73,22,6 for / = 0 to 14, 

respectively. As the shell-model geometry is complex, EGOE(2)-/ is mathematically a 

difficult ensemble. In the case of a single-j shell, /12 = 0,2,4,..., (2 j -1) and {VJlz (2)) 

are one dimensional. In general, nuclear shell-model codes can be used to construct 

EGOE(2)-/ [Br-81, Ze-04,Zh-04, Pa-07].

For a {j)m system with H’s preserving angular momentum J symmetry, the oper

ator form for a two-body H is,

H= £ VhA{j2;hM2) [A{j2-J2M2)}\ (7.4.1)
/2=even,M2

where Vh = {{j2)J2M2 I H \ { j2)J2M2) are independent of M2 and J2 = 0,2,4,..., (2;- 

1). The operator A{j2; /2M2) creates a two-particle state. The EGOE(2)-/ensemble for 

the (j')m system is generated by assuming Vj2’s to be independent Gaussian random 

variables with zero center and variance unity,

P^iza’^Jzb”"^a!• ■ • PVj2afgi%<ii PV/2^-cgi.^b)• • • dXffdXfj... (7.4.2) 

One simple way to construct the EGOE(2)-/ ensemble in m-particle spaces with a
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fixed-/ value is as follows. Consider the N = (2j +1) sp states \jm), m = -j, -j + 

1,Now distributing m fermions in the \jm) orbits in all possible ways will give 

the configurations [rav] = InVvnVz,...,nVm) where {y\,v2,...,vm) are the filled orbits 

so that nVj - 1. We can select configurations such that M = Yli-\ nVimVi = 0 for 

even m and M = 1/2 for odd m. The number of [mv]’s for M = 0, with m even, is 

D(m,M = 0) = 'Lj™x d{m,J) and similarlyfor odd m, D{m,M= 1/2) = d(m,J).
Converting Vj2 into the \jm)\jm!) basis will give,

Vmi ,OT2,m3,m4 = (j m3j mi\V\j rriij m2)

= 2 Y O'mijm2\hM2)(jm3jm4\}2M2)Vh ,/2=even,M2

(7.4.3)

where M2-mi + m2 = m3 + m$. The V matrix in the [mv] basis follows easily from the 

formalism used for EGOE(2) for spinless fermion systems when we use Vmi!mZim>mi 
matrix elements; see Chapter 1 for details. Starting with the J2 operator and writing its 

one and two-body matrix elements in the | jm)\jm’) basis, it is possible to construct 

the J2 matrix in the [mv] basis. Diagonalizing this matrix will give (with Mo = 0 for 

even m and 1/2 for odd m) the C-coefficients in

\(j)maJM0)=Y Ciii <Plmv} (7.4.4)
[mv]

and we can identify the /-value of the eigenfunctions by using the eigenvalues /(/+1). 

With this, the H matrix in the | (j)maJMq) basis is

(ij)mpjMo|H\(/)maJMo) = Y Cimvh Ciiu <^W/ I VI ^]t) • (7.4.5)

The above procedure can be implemented on a computer easily. In our study we 

analyze EGOE(2)-/ without explicitly constructing the H matrices in the m-particle 

spaces. In particular, we analyze the structure of fixed-/ energy centroids Ec{m,J) 
and spectral variances a2{m,J) for (j)m systems.

Exact formulas for Ec(m,J) and a2{m,J) can be obtained from the results in [Ja- 

79, Ja-79a,Wo-86,Ve-81,Ve-82,Ve-84, No-72]. However, they are too complicated and
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computationally extensive. An alternative is to use the bivariate Edgeworth form for 

p(E, M) and seek expansions for the centroids and variances. The expansion coeffi

cients then will involve fourth order traces over fixed- m spaces. We will derive the 

expansions in Sec. 7.4.2. Trace propagation formulas for the expansion coefficients 

are given in Sec. 7.4.3. Finally, in Sec. 7.4.4, we will discuss the structure of Ec(m,J) 

and cr2{m,J) for (j)m systems.

7.4.2 Expansions for centroids Ec{m, J) and variances a2 (m, J)

Firstly, fixed-/ averages of a / invariant operator 0 follow from fixed-M averages us

ing,

{0)mJ =
((0))m'M~J _ ((0))m,M=J+1 

@(m,M=7)-S>(ra,M = J+l)

(7.4.6)

d3)(m,M) -1 d{(0))M
dM M=/+l/2. dM M=/+l/2.

Here, ®(m, M) is fixed-M dimension. We use an expansion for the bivariate distribu

tion pH,m{E,M) and obtain the expansion for various quantities in Eq. (7.4.6). Ap

plying this to H and H2 operators, we have derived expansions to order [/(/ +1)]2 for 

Ec{m,J) and az{m,J). Now we present these results.

The operators II and Jz whose eigenvalues are E and M, respectively, commute 

and therefore the bivariate moments of pH,m(E,M) are just Mrs{m) = (Hr Jsz)rn; note 

that nuclear effective Hamiltonians are all / invariant. Now some important results 

are: (i) Mrs{m) = 0 for s odd and therefore all the cumulants krs{m) = 0 for s odd; 

(ii) the marginal densities p[E) and p(M) are close to Gaussian, the first one is a re

sult of the fact that nuclear H’s can be represented by two-body random matrix en

sembles giving kioim) —Aim and the second as Jz is a one-body operator giving 

k04(m) —1/m; (ill) the correlation coefficient = fcn(m) = 0 and hence the

bivariate Gaussian in (E,M) is just p<g{E)p<g(M); (iv) random matrix representation 

of H shows that kzzim) -—213m in the dilute limit and this follows from the results 

in Eqs. (7.4.15), (7.4.16) and (7.4.22); (v) as krs{m) ~ 1/m for r + s = 4, one can as

sume further that krs(m) ~ l/[m(r+s“2)/2]. With (i)-(v), it is possible to use bivariate
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ED expansion for p{E, M) and the system parameter that decides the convergence of 

the expansion is the particle number m; see [Ko-01, Ko-84, St-87]. The expansion for 

tj(E,M] up to order 1/m2 follow from Eq. (12) and Table 2 of [Ko-84]. Using these and 
noting that E = He\(E) and E2 -1 = He2iE), the traces ((iH)p)}m,M, p = 0, 1, 2 are 

given by

hzim) ^ kuim) ^
—-—Hez{M) + ———He4(M)

, ko4(m)ki2(m) , „( 1
+ ----------------------"---------------------Heem + Ol--^

48 mJ,iy

m,M . ..J*5Z2irn) ~~ [kn{m)f
<2t<g{m,M)< —-—He2{M) +----- ------ He4{M)

kuim) rr ku{m)ki2(m)
+ ———He4[M) +----------------- He&{M)

24 24

(7.4.7)

. k22im)km{m) rr ^ _ km(m)[k12im)]2 TT 
+ ------------—-----------HeeiM) +------------- —------------- IIe${M)

+ O

48

JJ
m3,

96

mm,M) = ®<g{m,M)\ He0{M) + km^ He4(M)

*06(m) Tr e1~~ Ocoiim) 2 rmfs . i
+ —---- He§(M) +------------ ffe8(M) + 0 —720 b 1152 lm3

Here we have used the results that /Her{E)HesiE)r}<g[E)dE = r! Srs and M =

Mlcrjz{m) with cr^im) = (/2)m.

Using Eqs. (7l4.6) and (7.4.7) and carrying out some tedious algebra (and also 

verified using Mathematica) will give the following expansions to order [/(/ +1)]2,

D{m,J)
N 

: m

(2/ +1) (J+l/2)2
exp------ 5------2aZj (m)

Jz
\f&n<73, ini) 

Jz
(7.4.8)

1 + k04(m) j /(/+1)
24 [ a2r (m)

l Jz J

■10^ + 15 
<r2(m) |
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(H)mj Ec{m,J)-Ec{m) 
a( m)

knirri) -3 + AazJ{m)i
' + f5 _ 5 + 1

+ 8 { §az{m) 48cr^(m);

+
km(m) kyiim)

-5 + -
4aj (m) 24<j, (m)

Jz Jz

7(7+1) [fci2(m) | ku{m)
a2r (m) 1 2 12

Jz V

-5 +
4 azT (m),

Jz *

+ “
ko4{m)ki2im)

3

+-
(7(7+1)]2 fk14(m) k04(m)ki2(m) |

6 1cri (m) l 24
Jz

3k12(m) + fci2(m) 7(7+1) (ku{m) km(m)ku(m) | (7(7+1)]
2 cr? (m)

Jz
24 crl (m)

Jz

o im,J) 
a2 {m)

, 3fc22[m) , 3Ifci2(m)]2 5fc24(m) 5fci4(m)fci2{m)
1----------------- j. ^-------------------------------------------

2 2 8 2

5fc22(m)fco4(m) ^ 15fc04(m)[fci2(m)I 7(7+1)

a, (m) 4 a"; (m)
7z iz

5fc22(m)fco4(ra) 1
4*------------------------v 4-4 f

7(7+1)+ 1
af (m) 4(7“; (m)

Jz Jz

f fc24(m) kuUn)ki2{m) 
(24 3

k22{m)ko4(m) 5fco4(m)[fci2(m)]2
----!_,—■—6 6

(7.4.9)

(7.4.10)
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3k22(m) k22{m) /(/+1) | f k24{m) k22{m)kQ4(m)] ' RJ+1)

2 2 cr2 (m) ( 24 6 j
Jz

1CMb

The last step in Eq. (7.4.9) follows from the assumption that a2^ (m) » 1. Similarly, in 

the last step in Eq. (7.4.10), assuming that » 1, we have neglected llAaj^m)

terms and so also the terms with squares and products of cumulants that are expected 

to be small. Note that the expansions to order /(/ +1) were given before [Ko-02a] 

and the terms with [/(/ + l)]2 are new. From now on, we use the last forms in Eqs. 

(7.4.9) and (7.4.10) and apply them to (/)m systems in the present section. To proceed 

further, we need to define and evaluate the bivariate cumulants krs(m).
Bivariate cumulants krs[m) are defined in terms of the bivariate moments (Hr Jsz)m 

with H = IT- <H)m,

kodm)
{jt

a\ (m)
Jz

k\2{m) = a{m)a2T (m) ’
Jz

hdm)
{HIT 6 (Hjl)m ' 

a{m)cr\ (m) a(m)a2r (m) ’
Jz Jz

(7.4.11)

k22{m)
(H2Jl)m

a2, {m)a2{m)
Jz

fadm) = {H2JT (JT c (H2J2z)m
a4Jz (m) er2 (m) cr^ (m) a2^ (m) cr2 (m)

(HJ2Z)2\m

a4T (m) cr2(m)
Jz

+ 6.

Note that, a2[m) - (H2)2\m

7.4.3 Propagation equations for bivariate cumulants krs(m) for (j)m 

systems
To begin with, let us mention that the tensorial decomposition of the H and J2 oper

ators with respect to the U(N), N = 2 j +1, algebra will be useful for deriving propaga

tion equations for krs{m). For the single- j shell situation, the H operator is defined 

by the two-body matrix elements Vj2 = {{j)zh I HI (j)2/2) with J2 being even taking
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values 0,2,..., 2 j -1. Using the results in Appendix A, unitary decomposition for the 

operators H and J2 are,

H=Hv=q + Hv=2;

0 h(n — 1) — —
-------- 1 V V-

(N^

V2/

-1
Z(2h + l)Vh,
h

(7.4.12)

tr=2<=>Vjv=2 = vh-v.

J2

cr)'2-vV=0 n(N - n) 
N(N-1)

j (j + 1) (2 J + 1), (7.4.13)

(/2)v=2 <=* (/2)J2=2 = /2(/2 + D-(2i-l)(j + l).

To proceed further, we write the cumulants defined in Eq. (7.4.11) in terms of Hv=2 

and (/2)v=2. For this purpose, we use the equalities {HpJ2)m = (HpJ2)m /3 and 

(HPjj)m = (HP{J2)2)m 15 - (HP{Jz))m 115. Then the formulas are,

*12 (m)
(fl^2(/2f=2)w
3 a(m)<r2r (m)

Jz

*14 (m) Vrr 11 (u2r=2u2)v-2Hv-z)m
cr(m) a4, (m) 15

Jr

-ai (m) + — 
5 /z 15

<(/2)v=2Jfv=2)2\m (7.4.14)

24

4t^Ih<u2)''-2(/2)v-2hv-2>"‘

ay (m) (5

<(/V=2fr-2>"j,
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fazim)
((ffv~2)2(72)v"2)m 

3at (m)az(m)
JZ

k24im) =
9
5

1
5 at (m)

JZ

(.JiT t {((/2)V=2)2(ir=2)2)m

erf (mj 5 at (m) a2(ra)
/z iz

2 [((/2)v=2jr=2^|2 (y2)V=2(flv=2)2)«

3 at (ra) a2(m) 15 at (m) a2(m)
JZ JZ

4 ({J2)v=2(Hv~2)2)m 

5 at (m) a2(m)
JZ

Simple trace propagation formulas that follows from the results in Appendix A are as 

follows,

2 , , /T2\m 1 /,T2\v=o\m m{N-m)l(TzJz(m) = (Jl) = -<(/) °) =———-j(j + 1)(2j + 1)

<4>"=+l«/2>'~2a2rT;
(7.4.15)

/xv=2yv=2\m _ Jn(m-1)(JV-m)(AT-m-1) 
' ' " N{N -1}{N - 2) (IV - 3)

E(2/2+i)xf2 vV=2
V2 •

Note that for a2(m) = {Hv~zHv~2)m is given by X = Y = H in last equality in Eq. 

(7.4.15). Similarly, (Hv=2(J2)v=2)m and ((/2)v=2(/2)v=2)m are given by X = H, Y = 

J2 and X -Y = /2, respectively. From now on, we use the symbols mx = (AT - m) 

and [X|r = X(X -1)... (X - r +1), X = m, N, m*. Then, the propagation equation for
<(/2)v=2(/2)v=2i7v=2)m is [Ko-01],

(f/2)v=2( J2)v=2fT'=2)W = [m]3[mX]3A i 
X ' [iV]6

[m]2[mx]4 + [/»]4[mx]2 
[Nle

B, (7.4.16)

where

A = ^(-1)a(2A+1)_1/2[/3a((/2)v=2)]2)6a(Hv=2),
A

JB
«(/2)V=2(/2)V=2hv=2»2 = £(2/2 + !) [(/2)J=2

h
Vh

(7.4.17)
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Note that A symbol in Eq. (7.4.17) should not be confused with ‘A’ used in Chapters 

2-6. In Eq. (7.4.17), the term A is more complicated involving particle-hole matrix 

elements /3A of the (/2)v=2 and Hv=2 operators. The /)A for a v = 2 operator V, in the 

example of a single j shell is

P*{V) = -2 £ (-DV2A + 1 (2/z +1)
Jz= even

i i h 

j 7 A
Vh- (7.4.18)

For j »1, (/2)v-2 can be approximated as

(/2)J2=2 - -2/ (j +1) {2j +1)

Substituting this in Eqs. (7.4.18) will give,

J 7 h 

7 j 1
(7.4.19)

P A[(/2)v=23 = 2 j(j +1)(2 j + 1)%/2A +1 (-1)A 

Now A in Eq. (7.4.16) takes a simple form,

A = -8[j(j + 1)(2; +1)]2£(2/2 +1) Vj~2 Xh ;
Ji

-5a,i + (-1)A+M
O

j j A 

. 7 7 1
(7.4.20)

2

Xh = £(2A + 1) < j j Jz
►

^A,l + (-l)A+1^ j i A
►

A Jj A o .77 1

j J Jz 7 7 1
► + 2< ► <

.77 1 .771.

j J Jz 

j j 1

J

+ 1 J
1

j Jz 

1 7

j j

(7.4.21)

Vz))f {j2))f Ij (j +1) -1] (J2)};2 IV2) + 2]
~~6Y~+ Yf + 4F2

J J J

where Yj = j (j +1)(2 j +1). Above simplifications are obtained using the results given 

in [Ed-74, Br-94] for angular-momentum recoupling coefficients. Going further, Eq.
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(7.4.16) will give the expression for {(/2)v“2(Hv"2)2)m with A and B defined by

A = £ [^A(vv=z)]z y9A(C/2)v”2),
A (2A+ 1)5

(7.4.22)

b = Y.Vh + mv]=2)2{j2));2.
k

Using the expression for /3A for a v = 2 operator from Eq. (7.4.18) and the simple 

formula for /3A((/2)V=2) given by Eq. (7.4.20), the term A in Eq. (7.4.22) simplifies to,

A = 8j(j + l)(2j + l) J^(2J2 + m2f2 + l)Vj=2Vjr2
h,r2 2

j j h li j j A A J J
2-

X 1
. j J l [1 . i j i . J hi

►

2
j (j +1) (2j + 1) Z&h+iw^u2)};2

2

(7.4.23)

(7.4.24)

- 2£(2/2 + l)(l^-2)2/2(/2 + l). 
h

Most complicated is the fc24(m) cumulant that involves {(/2)v=2 (/2)v=2 {Hv=z} (Hv=2) )m 

Equations (69) and (70) in [Wo-86] give a formula for this trace in a complex form. Af

ter carrying out the simplification of these equations and correcting errors at many 

places, it is seen that there will be 9 terms in the propagation equation. Table 7.5 gives 

the final result. We have verified that the results in Table 7.5 are correct by replacing 

(j2)v=2 j^v=2 an(j then comparing with the formulas given in [No-72]. Results

that are simple as in Table 7.5 for fc24(m) for multi- j shell situation are not yet avail

able and because of this, we have restricted our discussion to single-j shell in this 

section. For multi- j shell with realistic sp energies, the EGOE(l+2)-/ is also called 

realistic TBRE (RTBRE) [Fl-00].

228



Table 7.5: Propagation equation for (((J2)v=2 (J2)v=2Iiv=zHv=2))m. Column 2 gives the input 
trace in a symbolic form and the corresponding expressions are given in the footnote. Column 
3 gives the corresponding propagators. Multiplying the terms in column 2 with corresponding 
ones in column 3 and summing gives the propagation formula. Note that N = 2j +1.

term Input Trace Propagator

#1 J1#1#1/1 (NS) , (NS) , .(NS)U-2J + lm-6J+4L-4J

#2 J1 J2 II2 Hl 9 (NS) ,4 j (NS) , riV—8v 1 24 /,JV-8'»
* lm-41 ^ AT \ (ms) ^ lm-5l J N (ms)

#3 JlH2H2Jl (NS) , 4 J fiV-8y , riV-S'i 1 8 (NS)
(m-4) N\ (ms) ^ (ms) j N (ms)

#4

#5“ WaJl -2O-2O

#6“ -2 O-2O

#7 PW)Plj °lm-4l

#8

#9“

#i = (([cr2)v=2]2(Hv=2)2))m~, #2= [«(/2)v=2H1,=2»m“2

#3=(([(/2r2]2))m=2«cH-2)2))m=2

#4 = £(2r+i)
r,A

Jj j a h/2)r-2^((/)v-2)^(^2)^2

#7 = 1
r(2A+i)

[PA(Hv=2)]Z [/3A((/2)v=2)]2

#8 = £ )SA CGT2)v"2) J3A (Hv-2) X (2r2 +1) (2r3 +1)
r2,r3

a r2 r3
j J J

(J2)rfVrf

t2-sV=2“Terms JlP2HP%J1 and Hlf)2f32Hl follow from appropriate permutations of (J2)1 
and W=2 in the J1 expression. Similarly PlHP2P2PlH follows by appropriate
permutations in the p]jf32f)2Hf)lH expression.
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7.4.4 Structure of centroids and variances

Centroids Ec[m,J)

In the dilute limit with m — oo, N — oo and m/ M — 0, the centroids Ec (M, J) given by 

Eq. (7.4.9) take a simple form. Firstly, the constant term in the expansion for Ec (M, J) 

is [after simplifying k\2{m) and fc14(m)],

Ec[m) - 3aim)= -y £ C2/z + D Vh . (7.4.25)
2 N h

Similarly, the /(/ +1) term is

cr(m)
kuim) 

2a2, (m)
JZ

3
2[j(j + l)]2lV2

£(2/2 +1) Vh {J2)};2 (7.4.26)

More remarkable is that the [/(/ +1)]2 term _ <r(m)kM(m)kyAm) d takes a
v 24 0jz(m) Gajjm)

simple form. The results in Sec. 7.4.3 will give the expression for the first term as,

aim)
kuim) 

24 nt (m)
JZ

= £(2/2 + l)^=2S/2; 
h

sh
9

40 m2(N- m)2nP[j{j +1)]4 3 if)v=2
h

2 (N-2m)2 (7.4.27)

-4(/2)J=2 j (j +1) [21V2 - 21Vm + 2m2]} .

Similarly, we can write the expression for and in the dilute limit this

reduces exactly to the second piece in the expression for Sj2 in Eq. (7.4.27). Therefore, 

in the dilute limit, the term multiplying [/(/ +1)]2 in the Ec(m, J) expansion is,

cr(m) [ kujm) kQi{m)ki2{m) 
ai (m) 1 24 6

JZ

\ = ^{2J2 + l)Vj=2 Rh; 

> h

(7.4.28)

Rh
9{N-2mf

40 m2 (IV- m)2N'2[jij +1)]'
■{3[/2(/2 + l)-2j(j + l)]2}.

It is aheady pointed out in [Ko-02a] that the constant term and the /(/+!) term as 

given by Eqs. (7.4.25) and (7.4.26) are same as those derived by Mulhall et al [Mu-
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00, Mu-02] using statistical mechanics approach that is completely different from the 

present moment method approach. For EGOE(2)-/ ensemble, Eqs. (7.4.25)-(7.4.28) 

will give the distribution of the centroids over the ensemble as discussed in [Mu-02]. 

More remarkable is that the [7(7 +1)]2 term given by Eq. (7.4.28) is also very close to 

the formula given by Mulhall [Mu-02]. These results confirm that the approximations 

used in [Mu-00, Mu-02] are equivalent to the proposition that p(E, M) is a Edgeworth 

corrected bivariate Gaussian as assumed in the present approach. The equivalence 

of Mulhall et al approach with the moment method approach in the dilute limit is 

further substantiated by the expansion for fixed-M occupancies; the results are given 

in Appendix I.

G
Figure 7.1: Probability distribution for widths a for EGOE(2)-/ ensemble; see text for details.

Variances a2{m,J)

In the dilute limit, simplifying kzi{m) and az{m) will give

+<".-0 = f^lBA+ixyr2)2
iV h

+
3/(/+l) 

2iV2[j(i + l)]2
]T(272 + l)(V^=2)2(72)v=2.

(7.4.29)

However to add [(7(7+1)]2 correction, we need to simplify k2^{m) and this is quite 

cumbersome. A quantity of interest, as pointed out by Papenbrock and Weidenmuller 
[Pa-04] (PW) is the probability distribution for the spectral widths a = {(H2)mJ}1!2 = 

[a2{m,J] + E2{m,J)]112 over the EGOE(2)-7 ensemble. To compare with PW results, 

we have generated a EGOE(2)-7 ensemble for (^)m=6 system with 2500 members, i.e
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we have used 2500 sets of Vj2’s. Using the formalism described in Secs. 7.4.2 and 7.4.3 

we have calculated the bivariate cumulants krs{m). For our example a jz (m) = 12.124 

and kQi{m) = -0.229. The ensemble averaged cumulants kuim), jfc14(m) ~ 0 as ex

pected. However kzzim) = -0.053 and k-^im) = -0.114. With these, it is clear that the 

expansions to order [/(/ +1)]2 axe needed. Equation (7.4.10) is found to be good for 

/ < 30. We have calculated {H2)mJ for each member of the ensemble and then Pjicr) 

vs a histograms are constructed for various / values. Results for / = 4 are shown in 

Fig. 7.1. The calculated histogram is in good agreement with the exact curve given by 

PW [Pa-04]; in [Pa-04] a completely different formalism is used. Though not shown 

in Fig. 7.1, we have noticed that for 7 = 0, the widths given by the exact results (they 

are reported in [Pa-04]) are somewhat larger than the numbers given by the present 

formalism. This could be because / = 0 is at one extreme end of the Edgeworth ex

pansion and therefore, the truncation to 11 m2 terms may not be adequate.

7.5 Summary
To summarize, by extending the binary correlation approximation method for two 

different operators and for traces over two-orbit configurations, we have derived for

mulas for fi and jz parameters for EGOE(l+2)-7r ensemble. Note that EGOE(1+2)-tt 

is defined by the embedding algebra U(N) 3 U(N+) © U(N-) with the Hamiltonian 

breaking the symmetry in a particular way as discussed in Chapter 5. In addition, we 

have derived formula for the fourth order trace defining correlation coefficient of the 

bivariate transition strength of the transition operator relevant for Ov-/3/3 decay. We 

have also derived the formulas for the fourth order cumulants in order to establish bi

variate Gaussian form of the transition strength densities. Here also the embedding 

algebra is U(N) U(Np) © U(Nn) with the Hamiltonian preserving the symmetry and 

the transition operator breaking the symmetry in a particular way. Going further, we 

have considered an application to EGOE(2)-/ for fermions in a single- j shell. Here 

the embedding algebra is U{2 j +1) SO/(3). Expansions to order [/(/ +1)]2 for en

ergy centroids Ec{m,J) and spectral variances a2(m,J) are obtained. Formulas are 

derived for fixed-m bivariate cumulants and they are used to show the expansion to 

order [/(/+1)]2 explain the structure of fixed-/ centroids and variances. These results 

are important in the subject of regular structures generated by random interactions.
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