Chapter 7

Higher Order Traces and their

Applications |

7.1 Introduction

Embedded ensembles operating in many-particle spaces generate forms for distribu-
tions of various physical quantities with respect to energy and other quantum num-
bers; several examples for these are already discussed in Chapters 2-6. The separation
of the energy evolution of various observables into a smoothed and a fluctuating part
provides a basis for statistical spectroscopy. In statistical spectroscopy, methods are
developed to determine various moments defining the distributions (predicted by
EGEs) for the smoothed parts (valid in the chaotic region) without recourse to many-
particle Hamiltonian construction. Parameters defining many of the important spec-
tral distributions, generated by EGEs, involve traces of product of four (or even more)
two-body (or one-body or a mixture of one and two-body) operators [Da-80, Ko-10].
For example, they are required for calculating nuclear structure matrix elements for
B and 0v — B decay and also for establishing Gaussian density of states generated by
various extended two-body ensembles.

Propagation formulas for the moments M, = (H")™, r = 3,4 and also for traces
over multi-orbit configurations for a given one plus two-body Hamiltonian H =
h(1) + V(2) follow from the results, derived using diagrammatic methods, given in
[Wo-86, No-72, Ay-74, Po-75, Ch-78, Ka-95] many years back. These results extend to

traces of product of four operators each of maximum body-rank 2. From now on,
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we refer to these traces as fourth order traces or averages. The propagation formu-
las derived using diagrammatic methods contain very large number of complicated
terms (in particular for fourth order averages) and carrying out analytically ensemble
averaging of all these terms is proved to be impractical (we are not aware if anyone
was successful in the past). Some idea of the difficulty in carrying out simplifications
can be seen from the attempt in [P1-97]. Ensemble averages from trace propagation
formulas is feasible for the second order moments and we have already presented
examples for these in Chapters 2, 5 and 6. An alternative is to program the exact
formulas and evaluate the moments numerically for each member of EGE’s by con-
sidering say 500 members in two-particle spaces. However, as pointed out by Terdn
and Johnson [Te-06] in their most recent attempt in this direction, these calculations
for the fourth order averages are time consuming if not impractical. All the problems
with the exact formulas have been emphasized in [Ko-10]. Because of these (in future
with much faster computers it may be possible to use the exact formulas), we have
adopted the binary correlation approximation, first used by Mon and French [Mo-
73,Mo-75] and later by French et al [Fr-88, To-86] for deriving formulas for ensemble
averaged traces and they are good in the dilute limit. All the “basic” binary correlation
results for averages over one orbit and two orbit configurations are available in liter-
ature and for easy reference, we discuss these in Appendix H. Extending the binary
correlation approximation method for two different operators and for traces over two
orbit configurations, we have addressed two applications: (i) derived formulas for the
skewness y; and excess v, parameters for EGOE(1+2)-m ensemble in the dilute limit;
and (ii) we have derived formula for the fourth order trace defining correlation co-
efficient and sixth order traces defining the fourth order cumulants of the bivariate
transition strength density generated by the transition operator relevant for 0v-f
decay (also f decay). The results for (i) and (ii) are presented in Secs. 7.2 and 7.3.
In addition, we have derived formulas for cumulants (they also involve fourth order
traces) over m-particle spaces that enter into the expansions for the energy centroids
and spectral variances, up to order [J(J + 1)]%, for EGOE(2)-J i.e., embedded Gaus-
sian orthogonal ensemble generated by random two-body interactions with angular
momentum J symmetry for fermions in a single-j shell. The expansions for fixed-J

centroids and variances involve traces of powers of operators H and J2. As H pre-
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serves / symmetry, we use exact methods to evaluate these traces. More specifically,
we have derived trace propagation formulas for the bivariate moments (HP ( ]2)Q)m,
P+ Q =4 and the results are presented in Sec. 7.4. All the results in Secs. 7.2 and 7.4
are published in [Ma-11a] and [Ko-08], respectively.

7.2 Application to EGOE(1+2)-n: Formulas for Skew-

ness and Excess Parameters

For the EGOE(1+2)-n Hamiltonian, we have H = (1) + V(2) = h(1) + X(2) + D(2) with
X(2) = Ae BeCis the direct sum of the spreading matrices 4, B and C and D(2) = D+
D is the off-diagonal mixing matrix as defined in Chapter 5. Here, D is the transpose

of the matrix D. The operator form for D is

D@ =Y vLri@6:2), (7.2.1)
7.6

with {vg?]z = vf). Note that the operator form of X(2) is given by Eq. (H33) and then
v%(i, j) = 7% with i + j = 2 and similarly, v3 = a?; see Chapter 5 for further discussion
on the (@, 1) parameters. Using this and the property that k(1) conserves (m;y, m;)
symmetry and X preserves (1, my) symmetry, we apply the results in Appendix H
and derive formulas for M, (m;, my) with r < 4. These results are good in the dilute
limit: my, Ny, me, No — oo, m/ Ny — 0 and m/N, — 0 with m = m; or my. With the
sp energies defining the mean field k(1) as in Chapter 5, the first moment M; of the

partial densities p”""™2(E) is trivially,
M (my, mp) = {(h+ V)™ = my, (7.2.2)

as (™)™ = (my)" and (V)™ ™2 =0, Applying the results in Appendix H in dif-
ferent ways, we derive formulas for the second, third and fourth order traces giving
M, (m,, mz), r = 2 - 4. However, the presence of the mixing matrix D makes the ap-

plication involved. The second moment M, is,

((h+W)2)™me

<h2>m1,m2+<vg>m1,m2 - (m2)2+'<"“/72‘5m;

il

M(my, my)

[}
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Vel e DR <V2>m1»m2 - (XZ)mme + <D}3>ml’m2 + <§D>ml'm2 , (72.3}

(x2)™™ = 2 ¥ T(my,Ni,i) T(my, Ny, ),
i+j=2

) T

The second line in Eq. (7.2.3) follows by using the fact that X(2) and D(2) are in-

(DDY"™™

dependent and D(2) can correlate only with D(2). In Eq. (7.2.3), the expression for
W follows directly from Eq. (H34). The last two equations in Eq. (7.2.3) can
be derived using Eq. (7.2.1) giving the definition of the operator D(2) and using Egs.
(H2) and (H3) appropriately to contract the operators y' with ¥ and & with 7. For
the T(---)s in Eq. (7.2.3), we use Eq. (H8). Note that, Eq. (7.2.3) gives the binary

correlation formula for 0%(m;, my). Similarly, the third moment Mj is

Mz(my,mp) = <(h+v)3>mhm2

= (B3)Y™ 4 2(pymeme (Y2)TTR L (X X)L

+ (DmDY™"™ +(DhDY"™"™ (7.2.4)

(12)3 +2 1y (VY% 4 g, (X2

Il

my,mz

+ (mp+2)(DD)

my,my

+(my~2){DD)

In Eq. (7.2.4), the last three terms on the RHS are evaluated by using the following

properties of the operators X, D and D,

X@)Imy, ma) — \my, ma) , D2)|lmy, my) — |my +2,mp-2),
(7.2.5)

D@)lmy, myy — my—2,mp+2) .
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Also, the fixed-(m;, m,) averages involving X?, V2, DD and DD in Eq. P2

from Eq. (7.2.3). Now, the formula for the fourth moment My is,

My(my, my) <(h+ V)4>m1,m2

— <h4>m1,m2 +3<h2>m1,mg <V2>m1,mg + <h2>m1,mg <X2>m1,m2

+ (DIZD) + (BREDY T + 2 X RXE

+ 2(hDhD)™"™ +2 (hDhD)™"™ 4 (v4)™m

(7.2.6)

= (mp)*+3 (mp)? (V)™ 4 (myp)? (x2)™M ™

my,m;

+ (mp+2)?(DD)

my,mp

+(my ~2)?(DD)

my,my

+ 2 (m)? (XY™™ 1 2 my(my +2) (DD)

+ 2my(my—2)(DD)™™ 4 (V)™M

The first term in Eq. (7.2.6) is trivial. The next two terms follow from Eq. (7.2.3). The
terms 4 — 8 in Eq. (7.2.6) are also simple and follow from Eq. (7.2.5). The expression

for {V4)™""™ which is non-trivial, is,

(VYT = (XA 3 (XY ((DB) T + (BD) ™ )

my,mz

(DX2DY™"™ +(DXx2D)"™"™ (7.2.7)

-+

ntymsg my,n my,ny

+ 2(XDXD) +2(XDXD) +{(D+ D)%)

201



The formula for the first term in Eq. (7.2.7) follows from Eq. (H39),

XA = 2 (O

‘ (7.2.8)
T] = T4 Z F(mlleri)t)F(mZ»NZ’j;u)-
i+j=2, t+u=2
Combining Egs. (7.2.7) and (7.2.8), we have,
<V4>m[,mz
— o |7 yom,my 2 9\ Y, =\ My, M o\ Iy, me
=2{(x2)"™7)" 4 1y 43 (x2)™ ™ {( D)™™ + (DD)™ ™}
+{<sz15>’"*'"’2 +(Dx2p)™"™}
(7.2.9)

my,n

+2 {(xDXDY"™"™ + (XDXDY™ "™} + ((D+ D))

ey D peo p = i
= 2 {<X2>m1,m2} + 3 <X2>m1,m2 {<DD>m1,mg + <DD>m;,mg}

+T1+To+2T5+Ty.

To simplify the notations, we have introduced T, T», T3 and Ty in Eq. (7.2.9). The first
and second terms in the RHS of the last step in Eq. (7.2.9) are completely determined
by Eq. (7.2.3). Also, expression for T is given in Eq. (7.2.8). Now, we will evaluate the

terms T, T3 and Ty. Firstly, using Eq. (7.2.5), we have

my,n

1;

il

(DX2DY™"™ +(DX2D)

I

{(pDy™™} {(X2>m‘“2'm2+2} (7.2.10)

-+

By} (e

Formulas for the averages involving X%, DD and DD in Eq. (7.2.10) are given by Eq.
(7.2.3). Using Eqgs. (H4) and (H5) appropriately to contract the operators D with D
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across operator X along with the expression for ( X2)™""* in Eq. (7.2.3), we have

my,my

il

T3 (XDXD)™"™ +(XDXD)

S N RN Y

X T(ml’lei) T(mzyNZyj)-

i

Similarly, the expression for T} is as follows,

il

Ty ((D+ Dy%y™™

i

(D2D2)™"™ 4 (D2 D)™™ 4+ (DDDD)™™ (7.2.12)

(DDDDY™"™ +(DD2DY"™""™ + (DD2D)™"™ |

+

As, in leading order, D can correlate only with D, we have

my,my iy, my

(D2D2)™"™ = (pDDDDY™"™ +(DDDD)

=a* ¥ (@6 @neden@nen)
7,0,

vt Y (rl@nedenenexosiene)” "
v,0,K.1

=o' ¥ (riexiene«a@)” (en@semn@)” (7.213)
100

+at ¥ (riexi@xaen@)"” (semen@s@)”
V6K

-2a* ¥ (riexi@neme)” ¥ (gemnan@e)”
) A7

my—2,my+2

=2(DB)™"™ (DD)
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In order to obtain the last step in Eq. (7.2.13), the operators x'x and y'y are con-

tracted using Eq. (H2) that gives ("™, %) and (") respectively. Similarly, contracting

operators 7" and 68" using Eq. (H3) gives ("%7%) and (") respectively. Combin-
ing these gives the last step in Eq. (7.2.13). Note that the correlated pairs of opera-
tors are represented using same color in Eq. (7.2.13). Also, the third binary pattern
(Dﬁﬁﬁ)mhmg is not considered as it will be 1/N; or 1/ N, order smaller compared to

the other two binary patterns shown in Eq. (7.2.13). Similarly, we obtain

(D?p2y ™ - <5j‘jg}[))m"mz+(ﬁ§ﬁ[)>mbmz

_ ZZ‘E—D‘}‘,‘,‘{;‘,‘,,‘“E(ED)mﬁZ,mg»Z
(DDDD)™™ = (DDDDY™™ +(DDDD)™ "™

— 2 = 2 ™ -

_ {<DD>m1,mg} +<DD>ml,m“ <DD>in1 2,mz+2J

(DBDDY™"™ = (DDDDY™ ™ +(DDDDY™™
(7.2.14)

= 2(DD)"™"™ (DD)""™
(DDDDY™™ = (DDDDY™"™ + (DDDD)Y

= 2(DD)™"™ (DD)™"™,
(BDDD)™™ = (BDDD)™™ +(DDDDY™™

It

ps 2 = o T
{<DD>m1.mg} +<DD>m],m2 <DD>m1+2,m2 2.
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Combining Egs. (7.2.12)-(7.2.14), we have

. = {(@oy" ) +{(BDy™™ )

+

W { 2 <D5>m1—2,m2+2 + <5D>m1~2,m2+2 }

(7.2.15)

+

W [ 2(D D>m1+2,m2—2 ! Dﬁ>m1+2,m2~2 ]

+ a{(pby™™ L {(BD)™™ |

Therefore, combining Eqs. (7.2.6), (7.2.8), (7.2.9), (7.2.10), (7.2.11) and (7.2.15), the

expression for the fourth moment is,
My(my,mp) = (m2)4 +3 (mz)z (Vz>m1,m2 +3 (m2)2 <X2>m1,mg

my,my

+(mg +2)2(DD)™"™ + (my - 2)? (DD)

3 = 2
+2 mz(mz +2) (DD>m1JH2 +2 mZ(mZ _2) (DD>m1.mz +2 {<X2>m1,mg}

+3(x2y™™ {(DBY™"™ +(DDY™"™}

+T4 Z F(mlleri) t) F(mZ:NZ;j) U}

P+ j=2, t+u=2

+ {(DBy™ T} { Gy

+{(Bp)y™"™} {(XZ)'””Z’””‘Z} (7.2.16)

e g )

X T(ml’Nb i) T(mZ) NZJj)
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+{(DBy™™} + {(BDy™™}

+‘(—W [ 2( D5>m1—2,m2+2 { 5D>m1~2,m2+2 J

+W [ 2 <5D>m;+2,m2—2 + (Dﬁ>m1+2,m2—2 ]

+4 {(pDy™"™} {(bp)™"™} .
Equations (7.2.2), (7.2.3), (7.2.4), and (7.2.16), respectively give the first four non-
central moments [M;(m;, my), Ma(my, my), Mz(m;, mp) and My(m;, my)]. In Eq.
(7.2.16), we use Eq. (H8) for T'(---)’s and for F(---)’s, we use Eq. (H14) and also Eq.
(H23) in applications. The first four cumulants [k; (my, mg), ky(my, my), ks(my, my),

k4(m;, my)] can be calculated from these non-central moments using the formu-

las [St-87],

My(my,mp), kp(my, ma) = Ma(my, mg) — M2 (my, my) ,

ky(m;, my)

k3 (my, my) Ms(my, mp) —3 My(my, mp) My(my, mp) +2 M5 (m1, mg) ,

1l

(7.2.17)

ka(my, my) My(my, mg) — 4 Ms(my, mz) My(my, mp) — 3 M5 (my, my)

+ 12 My(my, my) M2 (my, mp) —6 M} (my, mg) .
Then, the skewness and excess parameters are,

k3(my, my) ka(my, ma)

ot m 27 T2 T Gy g (7.2.18)

Y1(my, my) =

After carrying out the simplifications using Eqgs. (7.2.2), (7.2.3), (7.2.4), (7.2.16) and
(7.2.17), it is easily seen that,

2 [<D5>m1;m2 _ <5D>m1.mzj
Yl(ml,mz)={ — — }3/2. (7.2.19)
(DBY™™ 4 (BDY™™ 4 X2y

Thus, y; will be non-zeroc only when « # 0 and the 7 dependence appears only in
the denominator. Also, it is seen that for N, = N_, y1(my, mg) = —y1(mg, m1). The

expression for y, is more cumbersome. Denoting @ = (DDY™"™, & = (DD)™™
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and & = (X2)™™ for brevity, we have

T+ T+2 T3+ T4+ (D +9)4- %) -2 (§+9)°

Yolmy, mp)+1= =
{@+92+x}

(7.2.20)
The formulas for T’s, 2, & and & given before together with Eq. (7.2.20) show that,
for N, = N_, y2(my, mz) = ya(ma, my). With, Ty ~ Z2+Cy, Tr = Tz ~ %@ + @) and
Ty ~ 3(2+2)?+C, which are good in the dilute limit (|C1/ Ty} and |C,/ T, will be close

to zero), we have _
Ci+C+4 (D +D)

D+2+x}

Y2(my, my) = (7.2.21)

Note that C; and & depend only on 7. Similarly, C, and (%,2) depend only on @. The
(@ +9) term in the numerator will contribute to y,(m;, mz) when 7 = 0 and a is very
small. The approximation T, = T3 ~ & (@+9) is crucial in obtaining the numerator in
Eq. (7.2.21) with no cross-terms involving the a and 7 parameters. With this, we have
k4 to be the sum of k4’s coming from X(2) and D(2) matrices [note that, as mentioned
before, X(2) = Ao Be C and D(2) = D+ D).

To test the accuracy of the formulas for M, given by Ecis. (7.2.2), (7.2.3), (7.2.4)
and (7.2.16), the binary correlation results for y;(m, +) and y,(m, £) are compared
with exact results obtained using the eigenvalues from EGOE(1+2)-7 ensembles with
100 members for several values of (N, N_, m) and (z, @) parameters in Table 7.1. Ex-
tension of Eq. (5.3.7) along with the results derived for M, (m;, my) will give the binary
correlation results for y;(m, +) and y2(m, £). It is clearly seen from the results in the
Table that in all the examples considered, the binary correlation results are quite close
to the exact results. Similar agreements are also seen in many other examples which

are not shown in the table.
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7.3 Application to f§ Decay: Formulas for the Bivari-
ate Correlation Coefficient and Fourth Order Cumu-

lants for the Transition Strength Density

7.3.1 Transition matrix elements and bivariate strength densities

Given a transition operator @, the transition matrix elements are given by [ {f | 6 | i} |2,
with 7 and f being the initial and final states. These are also generally called transi-
tion strengths. Operation of EGEs in many-particle spaces will lead to a theory for the
smoothed part of transition strengths and the fluctuations in the locally renormalized
strengths follow Porter-Thomas form for systems in the chaotic region. The transi-
tion matrix elements are needed in many applications. Examples are one-particle
transfer [Po-91], E2 and M1 transition strengths in nuclei [Ha-82], dipole strengths
in atoms [F1-98], beta-decay [Ma-07], giant dipole resonances [Ma-98] and problems
involving time-reversal non-invariance and parity [Fr-88, To-00]. Here, our focus is
on Ov - BB decay. Half-life for Ov double-beta decay (NDBD), for the 0 gs of a ini-
+

tial even-even nucleus decay to the 0 788 of the final even-even nucleus, with a few

approximations, is given by [El-02]

(mv>2

mg

-1
Tf,‘*’z(o;-»o;)] = G¥|M»|

(7.3.1)
g2
MY = MY éMg” =(0s1i6@: M 110} ),

where (m,) is effective neutrino mass and the G% is an accurately calculable phase
space integral [Bo-92,Do0-93]. Similarly g4 and gy are the weak axial-vector and vec-
tor coupling constants (g4/gyv = 1 to 1.254). The nuclear matrix elements Mgt and
MF are matrix elements of Gamow-Teller and Fermi like two-body operators respec-
tively. Forms for them will follow from the closure approximation which is well jus-
tified for NDBD [El-02]. As seen from Eq. (7.3.1), the NDBD half-lives are generated
by the two-body transition operator (2 : 0v). An experimental value of (bound on)

TOV

17 Will give a value for (bound on) neutrino mass via Eq. (7.3.1) provided we know
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the value of |M%|? generated by the NDBD two-body transition operator @(2 : 0v),
connecting the ground states of the initial and final even-even nuclei involved.
Transition strengths multiplied by the eigenvalue densities at the two energies
involved define the transition strength densities. With EGOE(1+2) operating in the
Gaussian domain, it was established in the past that transition strength densities
follow close to bivariate Gaussian form for spinless fermion systems and for opera-
tors that preserve particle number with the additional assumption that the transition
operator and the Hamiltonian operator can be represented by independent EGOEs.
With extensions of these results (without a EGOE basis), the bivariate Gaussian form
is used in practical applications. Our purpose is to establish that for the 0v— 8 decay
(also for B decay), transition strength densities are close to bivariate Gaussian form
and also to derive a formula for the bivariate correlation coefficient. We will address
these two important questions so that the EGOE results can be applied to formulate
a theory for calculating 0v-Bf transition matrix elements [Ko-08a]. With space #1
denoting protons and similarly space #2 neutrons, the general form of the transition

operator G is,

Oke) =Y. v} (ko) v!(ke)b2(ke); ko =2forNDBD. (7.3.2)

124
Therefore, in order to derive the form for the transition strength densities generated
by @, itis necessary to deal with two-orbit configurations denoted by (m,, m;), where
m; is the number of particles in the first orbit (protons) and m; in the second orbit

(neutrons). Now, the transition strength density Ig (E;, Ey) is

(m] ,md),(mi,mi)

I@ (B, E f )
(7.3.3)
S 2
= 1o m) (g K(m{ m)E 16| (ml, myE;)|| 1) (B,
and the corresponding bivariate moments are
Mpq(mt, mi) = (0" (k) HOkig)O (ko) HP (k)™ (7.3.4)

Note that M are in general non-central and non-normalized moments. The general
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form of the operator H(ky) is given by Eq. (H33) and it preserves (m{, mé)’s. How-
ever, @ and its hermitian conjugate @' do not preserve (m;, my) i.e., @ (kg) |m1, my) =
|my + ke, mz — ke) and G (kg) | my, my) = |my — kg, mz + kg). Thus, given a (m!, mi)
for an initial state, the (m{c s m{ ) for the final state generated by the action of @ is
uniquely defined and therefore, in the bivariate moments defined in Eq. (7.3.4), only
the initial (m!,ml) is specified. For completeness, let us mention that given the
marginal centroids (¢;,€¢), widths (0;,0f) and the bivariate correlation coefficient

{piv, the normalized bivariate Gaussian is defined by,

Phiv_g.6 Eir Ef) = Phiv_g.6Ei Efi€1,€£,04,0 £,{biv)

B 1

) 2moi0p\/(1-02, ) (7.3.5)

_e:\2 . —e\(Ef— Er—er)?
X eXp — 12 (El e’) —Zi;biv(El e’)( f 6f)+( f ef) :
2(1-Cbiv) o o of of

7.3.2 Formulas for the bivariate moments

Using binary correlation approximation, we derive formulas for the first four mo-
ments MPQ(m{, mé), P+Q<4of Iém{’mg)’(mi’mé) (E;, Ey) for any ke by representing
H(kp) and O(kp) operators by independent EGOEs and assuming H(ky) is a k-
body operator preserving (m;, my)’s. Note that the ensemble averaged ky-particle
matrix elements of H(ky) are vil(i, JYwith i+ j = ky [see Eq. (H33)] and similarly the
ensemble average of (vgfs)2 is v2. From now on, we use (m!, ml) = (my, mp). Using

Eq. (7.3.2) and applying the basic rules given by Egs. (H2) and (H3), we have

Muyo(my, my) (61 (kp)O (kg) )™ ™

5 2 my, g
= Za {vg} (6;(70@)71(16@37’1(76@)52("@» (7.3.6)

-3
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Trivially, Mio(my, mp) and My (my, my) will be zero as H(ky) is represented by
EGOE(kg). Thus, M, pq(my, mp) are central moments. Moreover, by definition, all the
odd-order moments, i.e., Mpq(ml, my) with mod (P + Q,2) # 0, will be zero. Now,

the My, is given by,

My (my,my) = (O (ko) Hkg)O (ko) Hikp) Y™™

il

v2 v (i, )

ay,B1.02,02,71,02 i+ j=ky

i

(7.3.7)

{1l k) OB it} D)

x

ARG HOHCETAOTHO)

xX

Then, contracting over the Y’y and 65" operators, respectively in the first and second
traces in Eq. (7.3.7) using Egs. (H4) and (H5) appropriately, we have

~ . | =il me—j

Mi(my,my) = v 2 (l,])( )( )
e ;‘+;—..;k3 H k@’ k@

(7.3.8)

X T(ml,Nl,i) T(mZ»NZ»j) .

Note that the formulas for the functions T(--+)’s appearing in Eq. (7.3.8) are given by
Egs. (H8), (H9) and (H10). Similarly, the functions F(---)’s appearing ahead are given
by Egs. (H14) and (H23). For the marginal variances, we have

It

Ma(my,mg) = (01(ke)O(ke) H2 (k)™ ™

Moo(my, mg) ( H2(kg) Y™™,
(7.3.9)

1

Moz(ml, mg) <@T(k@)HZ(kH)@'(k@)>m1’m2

Moo (my, mg) (HP(kgp))™ oo m2 ko
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In Eq. (7.3.9), the ensemble averages of H?(ky) are given by Eq. (H34). Now, the

correlation coefficient {p;,, is

M (my, myp)

Chivimy, myp) = (7.3.10)

\/MZO(ml: mg) Moa (my, my)

Clearly, {3;, will be independent of ué.
Proceeding further, we derive formulas for the fourth order moments Mpg, P +

Q = 4. The results are as follows. Firstly, for (PQ) = (40) and (04), we have

i1

Mao(my,mp) = (0" (ke)O (k) H* (ki)™

il

Moo (my, mg) (A (ki) ™™,
(7.3.11)

(01 (ke) H (k1)@ (kg)) ™™

il

Mo (my, my)

Mgo(ml, my) <H4(kH)>m1+k@,m2~k@ .

1

In Eq. (7.3.11), the ensemble averages of H*(ky) are given by Eq. (H39). For (PQ) =

(31), we have

My (my,mz) = (0" (k) Hlkn)O (ko) H3 (k) ™™

Il

(O (kg) H (k)0 (kg) H (k) Hks) Hik)) ™™
(7.3.12)

+

(O (kg) H (k)0 (k) Hik ) H k) H (k) ) ™™

+ (Ot (kg) Hlkp)O(kg) H (k) H{ky) Hiky)) ™™ .

Note that in Eq. (7.3.12), we use the same color for the binary correlated pairs of
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operators. First and last terms on RHS of Eq. (7.3.12) are simple and this gives,

Mz (my, mp) = 2 (H2 (k)™ My (my, my)

+{0" (ko) H{k )0 (k) H{ky) Hikp) Hikr) )™ ™

=2 (H(kg))™"™ My (my, mp) + V5, ) Vi, ) vt u)

i+j=ky t+u=ky

M2—j ﬁ'l]"‘i . .
X F(mlle»l:t) F(mZ)NZy];u)~
ke ke

Similarly, we have

Mis(my, my) = (07 ke) H3 (k)0 (k) H(kg)) ™™

= (0" (kg) H{ky) H(kpy) H k)0 (kg) H k) ) ™™

+(0" (k) H{k ) H k) H(k )0 (ko) H (k) ™™

+{0" (k) H{kp) H{k) Hk )0 (k) H k)™ ™

=2 (H?‘(kﬁnmwk@mzmk@ My (my, myp)

+U% > vi, (i, ) v5 (6w G(t, w)
i+j=ky, t+u=ky

x(ﬁzl—-k@~t+i) (m1+k@—t) (r?zg—u+kg+j) (m2-k@>-—u ‘
J

l J

N
Gt,u) = (m‘ )(m‘;‘c@ ”)T(ml,Nl, 1) T(ma, No, u) .
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Finally, My, (m,, my) is given by,

Moz (my, my) = (6 (ko) H (k)0 (ko) H2 () )™ ™

= (O (ko) H (k) Hk )0 (kg) H (k) H ey ) ™™

+{O (ko) H (k) Hk )0 (ko) H (k) H (k) )™

+(O" (ko) H (k) H (k)0 (ko) H k) H k) ) ™™

(7.3.15)

= MQO(mlv my) <H2(kH)>m1+kﬁ,mZ-kg W

my—i—~ty\|me—u—j
trg 2 v%,(i,j)vi,u,u)( lk@ )( . ’)

i+j=k1{,t+u=k;1 7

x [F(my, Ny, i, 1) F(my, Na, j, 0)

+T(my, Ny, i) T(my, Ny, £) T(mgp, No, j) T(mg, N2, w)]

Given the M, po(my, my), the normalized central moments Mpg are Mpg = M, po/ 1\700.

7.3.3 Numerical results for bivariate correlation coefficient and fourth
order cumulants

Firstly, the scaled moments ﬁpQ are

— Mpq(my, my)

Mpg = - ;
@7 Mo (my, m) 1P [Moa (my, m2) 1972

P+Q=2. (7.3.16)

Now the fourth order cumulants are [St-87],

kao(my, ma) = Myo(my, mp) =3, ko (my, my) = Moy (my, mg) -3,
k31 (my, my) = ?31("11,’712) -3 J\ZU(mz,mz) , (7317
kiz(my, my) = Myz(my, my) —3 My (my, my) ,

kZZ(ml: m2) = M22(ml» mZ) -2 M%I('nb ml) ~1.
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Table 7.2: Correlation coefficients {y;,(my, mz) for some nuclei with kg = 2 as appropriate
for 0v — BB decay operator. Note that space #1 is for protons and space #2 for neutrons. The
configuration spaces corresponding to N; or Ny = 20, 22, 30, 32, 44 and 58 are r3f, r3g, 148,
rsh, r5i, and re j, respectively with f = f7/2, § =" gos2, h="hy1s2, i =iras2, j=" isizs 13 =" firz
2par2 2p1s2, 1a = L ga12 2dsi2 2dar2 3512, 5 = Thosa 2 iz 2 fsrz 2 par2 *puse and s = Yinz 2gor2
2g212 3ds2 3dasn 4 51/2. See text for details.

Nuclei Ny my No mp (pip(my,mp)

®Gew 22 4 22 16 0.64
82Sess 22 6 22 20 0.6
0Mosg 30 2 32 8 0.57
8Tes 32 2 32 26 0.62
B0Te; 32 2 32 28 0.58
0Ndgo 32 10 44 8 0.72
SiSmgy 32 12 44 10 0.76
80w, 32 24 44 24 0.77
By 44 10 58 20 0.83

Assuming vi,(i, J) defining H(2) are independent of (i, j) so that {;, is indepen-
dent of v%p we have calculated the value of {3;, with ks = 2 for several 0v — 8 decay
candidate nuclei using Eq. (7.3.10) along with Egs. (7.3.6), (7.3.8), (7.3.9) az}d (H34).
For the function T'(---), we use Eq. (H8). Note that vi,(z’ , j) correspond to the variance
of two-particle matrix elements fromthep-p (i =2,j=0),n-n (i =0,j =2) and p-n
(i =1, j =1) interactions. Results are given in Table 7.2. It is seen that {;,, ~ 0.6—0.8. It
is important to mention that {3;, = 0 for GOE. Therefore, the transition strength den-
sity will be narrow in (E;, Ey) plane. In order to establish the bivariate Gaussian form
for the Ov — Bf decay transition strength density, we have examined kpg, P+ Q = 4.
For a good bivariate Gaussian, |kpg| S 0.3. Using Eqgs. (7.3.6), (7.3.8), (7.3.9), (7.3.11),
(7.3.13)-(7.3.17) along with Egs. (H34) and (H39), we have calculated the cumulants
kpg(my, my), P+ Q = 4. These involve T(---) and F(---) functions. For set #1 calcula-
tions in Table 7.3, we use Eq. (H8) for T(---) and Eq. (H23) for F(---). For the set #2
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calculations, shown in ‘brackets’ in Table 7.3, we use Eq. (H9) for T(---), Eq. (H14)

+r

+7) (M) for any (r,s) with i = 1,2. Then we

for F(---) and replace everywhere (
have the strict dilute limit. We show in Table 7.3, bivariate cumulants for five heavy
nuclei for both sets of calculations and they clearly establish that bivariate Gaussian
is a good approximation. We have also examined this analytically in the dilute limit
with N, N, — oo and assuming v%l(i, j) independent of (i, j). With these, we have
expanded kpq in powers of 1/m; and 1/m; using Mathematica. It is seen that all the

kpg, P+ Q = 4 behave as,

4 2
ka:.-——+o(~L)+o(T%)+.... (7.3.18)

m m? m}

Therefore, for m; >> 1 and my << m‘;” 2, the strength density approaches bivari-
ate Gaussian form in general. It is important to recall that the strong dependence
on m; in Eq. (7.3.18) is due to the nature of the operator @ ie., G{kg)im;, my) =
|my + kg, my — kg). Thus, we conclude that bivariate Gaussian form is a good approx-
imation for Ov — B decay transition strength densities. With this, one can apply the
formulation given in [Ko-08a] with the bivariate correlation coefficient {3;, given by
Egs. (7.3.10), (7.3.9) and (7.3.8). The values given by the two-orbit binary correlation
theory for {';, can be used as starting values in practical calculations.

For completeness, we have also calculated the correlation coefficient and fourth
order moments for the transition operator relevant for 8 decay and the results pre-
sented in Table 7.4 confirm that bivariate Gaussian form is a good approximation
for B decay transition strength densities. These results justify the assumptions made

in [Ko-95].

7.4 EGOE(2)-] Ensemble: Structure of Centroids and

Variances for Fermions in a Single- j Shell

7.4.1 Definition and construction of EGOE(2)-J

Shell-model corresponds to m fermions occupying sp j-orbits jj, j2,... and interact-
ing via a two body interaction H = V(2) that preserves total m-particle angular mo-

menta J. For simplicity we restrict to identical nucleons and degenerate sp ener-
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gies. Firstly, the V(2) matrix [V (2)] in two-particle spaces is a direct sum of matrices,
V) = [V2@)] e [V/12(2)] @ [V/12(2)] @... where Ji2 are two-particle angular mo-
menta. Now the [V/12(2)] matrices are represented by GOE, i.e., V(2) in two-particle
spaces is a direct sum of GOE’s. Let us consider the example of j = (7/2,5/2,3/2,1/2),
i.e., the nuclear 2plf shell. Here J;, = 0 — 6 and the corresponding matrix dimen-
sions are 4, 3, 8, 5, 6, 2, and 2, respectively. This gives 94 independent matrix el-
ements for the {V(2)} ensemble and they are chosen to be Gaussian variables with
zero center and variance unity (variance of the diagonal elements being 2); see Eq.
(1.2.4). The EGOE(2)-] ensemble in m-particle spaces is then generated by propa-
gating this {V(2)} ensemble to a given (m, J) space by using the shell-model geome-
try, i.e., by the algebra U(N) o SOy(3) with a suitable sub-algebra in between, where
N =Y ;(2j;+1). Then, the m-particle H matrix elements are linear combinations of
two-particle matrix elements with the expansion cdefﬁcients being essentially frac-
tional parentage coefficients. For the (2p1f)™=8 system, the dimensions D(m, J) are
347, 880, 1390, 1627, 1755, 1617, 1426, 1095, 808, 514, 311, 151, 73, 22, 6 for J = 0to 14,
respectively. As the shell-model geometry is complex, EGOE(2)-J is mathematicallya
difficult ensemble. In the case of a single- j shell, J12 = 0,2,4,...,(2j — 1) and {V/2(2)}
are one dimensional. In general, nuclear shell-model codes can be used to construct
EGOE(2)-] [Br-81, Ze-04, Zh-04,Pa-07].

For a (j)™ system with H’s preserving angular momentum J symmetry, the oper-

ator form for a two-body H is,

H= Y  V,A(j%RM) [A(%7M2)]T, (7.4.1)
Jo=€Ven,as

where Vj, = ((j2)J2Mz | H| (j?)J2M3) are independent of M, and J, =0,2,4,..., (2j -
1). The operator A(j%; J, M5) creates a two-particle state. The EGOE(2)-] ensemble for
the (j)™ system is generated by assuming VJ,’s to be independent Gaussian random

variables with zero center and variance unity,
OV Vigyre (Xas Xy - ) AXadXp ... = Ovy, o (Xa) vy, (XB) ... AXadXp. .. (7.4.2)
One simple way to construct the EGOE(2)-] ensemble in m-particle spaces with a
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fixed-J value is as follows. Consider the N = (2j + 1) sp states |jm), m = —j,—j +
1,..., j. Now distributing m fermions in the |jm) orbits in all possible ways will give
the configurations [m.] = |ny,, Nv,,..., ny,,) where (v1,v2,...,vy) are the filled orbits
so that n,, = 1. We can select configurations such that M = ZQ’;I ny;my; = 0 for
even m and M = 1/2 for odd m. The number of [m,]’s for M = 0, with m even, is
D(m, M =0) = X% d(m, J) and similarly for odd m, D(m, M =1/2) = Y72, d(m, ).

Converting Vj, into the |jm ) | jm') basis will give,

Vinpmamgme = {JmajmglVijmyjmg)
(7.4.3)

= 2 Y (jmjmallaMo)jmsjmal M2 Vy,,
Ja=even,M,

where M, = m; + my = m3+ my. The V matrix in the [m,] basis follows easily from the
formalism used for EGOE(2) for spinless fermion systems when we use Vi, m,,ms,m,
matrix elements; see Chapter 1 for details. Starting with the J? operator and writing its
one and two-body matrix elementsinthe |jm) | jm’) basis, itis possible to construct
the J? matrix in the [m,] basis. Diagonalizing this matrix will give (with M = 0 for

even m and 1/2 for odd m) the C-coefficients in
(D™ aIMo)= 3 CG s b (7.4.4)
frmy]

and we can identify the J-value of the eigenfunctions by using the eigenvalues J(J+1).
With this, the H matrix in the |(j)™aJMjy) basis is

GIBIMIHI) ™ aIMo) = Y. CE L CE L uma, |V [ Gimg) . (7:45)
 Imlilmyly
The above procedure can be implemented on a computer easily. In our study we
analyze EGOE(2)-] without explicitly constructing the H matrices in the m-particle
spaces. In particular, we analyze the structure of fixed-J energy centroids E.(m, J)
and spectral variances 2 (m, J) for (j)™ systems.
Exact formulas for E.(m, J) and 0%(m, J) can be obtained from the results in [Ja-

79, Ja-79a, Wo-86, Ve-81, Ve-82, Ve-84, No-72]. However, they are too complicated and
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computationally extensive. An alternative is to use the bivariate Edgeworth form for
p(E, M) and seek expansions for the centroids and variances. The expansion coeffi-
cients then will involve fourth order traces over fixed-m spaces. We will derive the
expansions in Sec. 7.4.2. Trace propagation formulas for the expansion coefficients
are given in Sec. 7.4.3. Finally, in Sec. 7.4.4, we will discuss the structure of E;(m, ])

and o?(m, J) for (j)™ systems.

7.4.2 Expansions for centroids E. (i, J) and variances o (m, J)
Firstly, fixed-J averages of a J invariant operator & follow from fixed- M averages us-
ing,

(onmM - o

mJ
o DmM=N-DmM=J+1)

il

(7.4.6)

_aonM

o
OM  |Mm=J+112 OM  |p=yr12)

Here, 2 (m, M) is fixed-M dimension. We use an expansion for the bivariate distribu-
tion p™(E, M) and obtain the expansion for various quantities in Eq. (7.4.6). Ap-
plying this to H and H? operators, we have derived expansions to order [J(J + 1))? for
E (m,]) and o?(m, J). Now we present these results.

The operators H and J, whose eigenvalues are E and M, respectively, commute
and therefore the bivariate moments of p*™(E, M) are just M,s(m) = ( H" J$)™; note
that nuclear effective Hamiltonians are all J invariant. Now some important results
are: (i) M,;(m) = 0 for s odd and therefore all the cumulants k,s{m) = 0 for s odd;
(i) the marginal densities p(E) and p(M) are close to Gaussian, the first one is a re-
sult of the fact that nuclear H’s can be represented by two-body random matrix en-
sembles giving kso(m) ~ —4/m and the second as J; is a one-body operator giving
kos () ~ —~1/m; (iil) the correlation coefficient {},;,(m) = k11 (m) = 0 and hence the
bivariate Gaussian in (E, M) is just pg(E)pg(M); (iv) random matrix representation
of H shows that ks (m) ~ —2/3m in the dilute limit and this follows from the results
in Egs. (7.4.15), (7.4.16) and (7.4.22); (v) as k;s(m) ~ 1/m for r + s = 4, one can as-

sume further that k,¢(m) ~ 1/[mU*+5-2/2], With (i)-(v), it is possible to use bivariate
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ED expansion for p(E, M) and the system parameter that decides the convergence of
the expansion is the particle number m; see [Ko-01,Ko-84, St-87]. The expansion for
n(E, M) up to order 1/m? follow from Eq. (12) and Table 2 of [Ko-84]. Using these and
noting that E = He, (B) and B2 — 1 = He,(B), the traces ({(B)?))™", p=0, 1, 2 are
given by | |

ky2(m) Heo (V) + k14(m)

Hey(M)

il

(EN™ = @qmm{ 2L

kos(m) k1o(m) 1
+ »--~—-—~—-——-—--—48 He, (M)+O( 5,2)}

2

(7.4.7)

kg;(m) Hea (B + k14(m;i€12(m) Heo(W)

2
N kzz(mi:m(m) HeS(m+ko4(m)éfé12(m)l Hea(GD)

04 (M)

D(m,M) = @cg(m,m{Heo(M‘H Hey (M)

kos(m) —~  [koa(m)}? ~ 1
720 Heﬁ(m+wﬂeg(m+0(;n—g)}.

Here we have used the results that [ He,(E)Hes(E)ng(E)dﬁ = rl §,s and M=
M/o;,(m) with 0% (m) = (J2)".
Using Egs. (7.4.6) and (7.4.7) and carrying out some tedious algebra (and also

verified using Mathematica) will give the following expansions to order [J(J + 1)1,

pomyy ~ |N|@+D_ _g+1/2)?
T \m) VBrod (m) *P 205 (m)
(7.4.8)
ju+n]*

3,

_1JUD 15}] ’

ar, (m)

N {1+ koa(m) {
24
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st E;(m,])—E;(m)

_ ki2(m) 34 1 +k14(m) 5 5 N 1
2 4cr§z(m) 8 Gori(m) 480}z(m)

+kg4(m)k12(m) . 25 _ 1
4 40% (m) 24ar§z(m)

U [koom) kom0 1]
05 (m) 2 12 40% (m) (7.4.9)

+ kos(m) ki (m) 5 1
4 30'?2 (m)

LUg+nr { kis(m)  koa(m)kip(m) }
o7 (m) 24 6

o [_3k12(m) ] N kipo(m) JU+1) N { kia(m)  kos(m)kip(m) } JU+11?

2 2 0% (m) 24 6 of m) '’

a*(m,])
o?(m)

=)™ - (™)

_ [1 _ 3kp(m) N 3[k12(m))? N 5kys(m)  Skig(m)kiz(m)

2 2 8 2
_ 5kpa(m) kog(m) + 15Kko4(m) [klz(m)Iz] JU+1) N 1
4 4 o (m)  40% (m)
{7.4.10)
k; 5k 5k k
{ 222(m) e )P — zfz(m) N 14(”2 12(m) Koa () ke (m)?

. 5kyo (M) koa(m) }
4

Jgrn 1 F {k24(m)~k14(m)k12(m)
oi(m) 4or§z(m) 24 3

_ ke (mkoa(m) | 5kos(m) {klz(m)]z}
6 6
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2

N {1_3k22(m)]+{k22(m) J(]+1)+{k24(m)_k22(m)ko4(m)} JUJ+1)
2 2 Ui(m) 24 6 Ui(m)

The last step in Eq. (7.4.9) follows from the assumption that ai (m) >> 1. Similarly, in
the last step in Eq. (7.4.10), assuming that O'i (m) >> 1, we have neglected 1/ 4‘71 (m)
terms and so also the terms with squares and products of cumulants that are expected
to be small. Note that the expansions to order J(J + 1) were given before [Ko-02a]
and the terms with [J(J + 1)]* are new. From now on, we use the last forms in Egs.
(7.4.9) and (7.4.10) and apply them to (j)™ systems in the present section. To proceed
further, we need to define and evaluate the bivariate cumulants k,;{m).
Bivariate cumulants k, s(mn) are defined in terms of the bivariate moments (H” J$)™

with H=H-{(H)™,

% (HIZH)"
k = —3, k -
04 (111) 031*2 o 12(m) O'(m)ai o
" 6 (HJ2\™
kia(m) = ( ]z4> L ]§> : (7.4.11)
o(m)o; (m) o(m)oy (m)
(B n"
kp(m) = Jﬁz(m)az(m)
2 m 4\ a2 m
iy = TG ()

a;%z (m) 02(m) aj,z (m) oi (m) o2(m)

. 2
[(F2)"]
aﬁz(m) o2(m)

Note that, o%(m) = ( B*)"".

7.4.3 Propagation equations for bivariate camulants k, ;(m) for (j)™
systems

To begin with, let us mention that the tensorial decomposition of the H and J? oper-
ators with respect to the U(N), N =2j +1, algebra will be useful for deriving propaga-
tion equations for k,s(m). For the single-j shell situation, the H operator is defined

by the two-body matrix elements V}, = ((j)2/2 | H (j)?J) with J; being even taking

224



values 0,2,...,2j — 1. Using the results in Appendix A, unitary decomposition for the

operators H and J? are,

H= Hv::() + H"’=2 ’
R -1
2 2 iy
H? e V2=V, -V,
o= U
20 aN-#) , . . ’

U2 = P2 =R+D)-2j-D(+1D).
To proceed further, we write the cumulants defined in Eq. (7.4.11) in terms of HY =2
and (J)¥=2. For this purpose, we use the equalities (H?J2)™ = (H?PJ?)" /3 and
(HP Y™ = (HP(J?*)™ 15~ (HP(J%))™ /15. Then the formulas are,

(H‘V=2 (]2)’V=2>m
3o(m)os (m) ’

kipm) =

1 1
k U 2\v=2r y2 'V=2Hv=2 m
14(m) pera O'}Z(m) {5 (U9 (] ) )

_ [ ggi(m} + 1}5] (=2 Hv=2>m} (7.4.14)

1 1 - =2y oy

4 =2 v
AL ((Jz)V"ZH”"2>’”},
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((H‘V=2)2(]2)V==2>m
Saf,z (m) o2(m)

koa(m) =

¥

9 1 UD"  (ATHHETHH”

k —
24(m) 5 505(m) of(m)  50% (m)o?(m)

2 [((}2)V:2Hv=2>m] 2 _ ((]2)'V=2(H’V=2)2>m
3 aj;z(m) o%(m) 15 aﬁz(m) o(m)

4 ((]2)1/=2(HV=2)2>m
5 cr?z (m) o2(m)

Simple trace propagation formulas that follows from the results in Appendix A are as

follows,
2 m)=(J2Y" = v=oym _ MIN-m) 1
o5 m=(2)" = (U) " NGV-D 3/U*D@eI+D,
9
(I = —Ui.(m) - —0; (m)+= ((IZJV‘ZUZ)V“Z) (7.4.15)

m_mm-1)(N-m)(N-m-1) Y @+ DXV ¥
= T2 "R -

Vel yv=2
(X Y > NN-1(IN~-2)(N-3) T

Note that for 0?(m) = (H*=2H"=2)" is given by X = Y = H in last equality in Eq.
(7.4.15). Similarly, (H¥=2(J%)"=2)" and ((J?)¥=2(J?)¥=2)"" are given by X = H, Y =
FPand X =Y = J?, respectively. From now on, we use the symbols m™ = (N —m)
and [X], =X(X-1)...(X—-r+1), X =m,N, m*™. Then, the propagation equation for
(UAV=2(A)"=2 H"=2)" is [Ko-01],

[mlslm }3A+ [mlz2lm™ 4+ [mlylm™]y B, (7.4.16)

ZAV=2 ¢ 124 V=2 =2\
(U0 = [Nlg [Nle

where

s
i

Z (”‘1)A(2A + 1)_“2 [ﬁA((]Z)V=2)]2ﬁA(HV=2) ’
A

(7.4.17)

o
i

=212 =
(A== =) = Y eh+ 1) |05 vy
J2
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Note that A symbol in Eq. (7.4.17) should not be confused with ‘A’ used in Chapters
2-6. In Eq. (7.4.17), the term A is more complicated involving particle-hole matrix
elements B2 of the (J2)¥=? and H*=? operators. The * for a v = 2 operator V, in the

example of a single j shell is

prvy=-2 Y (-DAV2A+1 @R+1) 11 h vy, - (7.4.18)
Ja=even j i A

For j >> 1, (J%)¥=? can be approximated as

- BER:
(JZ)};2=—21(j+1)(2j+1){{ J 12 } (7.4.19)
Ji

Substituting this in Egs. (7.4.18) will give,

i j A
ﬁA[(]z)"zzl=2j(j+1)(2j+1)\/2A+1(-1)A[%%,H(—I)Ml{ L H

JiJjl
(7.4.20)
Now A in Eq. (7.4.16) takes a simple form,
A = -8[j(j+DRj+ DY @L+1 VE™2 X5
I
2
[ j T 1 A
X5, = Y.2A+D) ARG —8a; + (1A 7
A iioa)3 jil
o (7.4.21)
.. o .. jJj Ik
17 J R j i1 J ik . .
= 3) . . 2y . NP1
ji1 i1 jJj 1 o
17

uny . UAEGG+D -1 UAAURR+2
- +
6Y; Y? av?

i

1

where Y; = j(j +1)(2j +1). Above simplifications are obtained using the results given

in [Ed-74, Br-94] for angular-momentum recoupling coefficients. Going further, Eq.
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(7.4.16) will give the expression for {(J%)V=2(H"=%)2)" with A and B defined by

A
A:Z(l)

B2V AU,

(7.4.22)

vy
I

;(212 + DV UALE.
2

Using the expression for g for a v = 2 operator from Eq. (7.4.18) and the simple

formula for B2((J%)¥=2) given by Eq. (7.4.20), the term A in Eq. (7.4.22) simplifies to,

A = 8jj+1@2j+1) ) CL+DEL+1D ]j;=2v]*£’=2

Iy
) (7.4.23)
iiR\iin Boii
{ff 1}{11' 1}"{1 le}
2 | 2
= TTDEIT 122(2]2»{&1){/}‘;’2(]2)7;2}
(7.4.24)

- 2) RhR+DVH?RU2+1D).
J2

Most complicated is the kyq(m) cumulant that involves ((J2)Y=2(J2)Y=2(H"=2)(H"=%))"".
Equations (69) and (70) in [Wo-86] give a formula for this trace in a complex form. Af-
ter carrying out the simplification of these equations and correcting errors at many
places, itis seen that there will be 9 terms in the propagation equation. Table 7.5 gives
the final result. We have verified that the results in Table 7.5 are correct by replacing
(J%¥=2 with H"=? and then comparing with the formulas given in [No-72]. Results
that are simple as in Table 7.5 for k4 (m) for multi-j shell situation are not yet avail-
able and because of this, we have restricted our discussion to single-j shell in this
section. For multi- j shell with realistic sp energies, the EGOE(1+2)-] is also called
realistic TBRE (RTBRE) [F1-00].
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Table 7.5: Propagation equation for (((J%)"=2(J2)V=2 HV=2 H=2))"™. Column 2 gives the input
trace in a symbolic form and the corresponding expressions are given in the footnote. Column
3 gives the corresponding propagators. Multiplying the terms in column 2 with corresponding
ones in column 3 and summing gives the propagation formula. Note that N =2j + 1.

term InputTrace Propagator
#1 ]lHlHljl (N—8) + (N— ) +4(N—8)

m—2 m—4.

m-4 m—3 m-5 Ni\m—4

#2 JARH2H! Z(N—s) + % {(N—B) + (N-s)}_~ 24 (ng)

B PEEr G A0S+ G- R0

m—~4 m-3) " \m-5 Nim—4
# JEELH ~a(3) -4 +8(N%)
#5° TS -2(08) -2
oo HGEH! 29 -2(47)

#1 BLPLPLA 3(-%)

#  BLEAPYLBY 4(5175) +4(n 2 ~8(n3)
#9%  BLELBY ~8(m_a)

= (o= ar=22))™, w2= (==
=<< (J )V~2 >> (((HV=2)2>>mx2

zr+1>{ J j r }»(12 ¥=2BM A BAHY?) VY

A
A ppv=2 A e p2yv=2412
};mﬂ) (822" B D)
_ 24v=2y pA [ pv=2 AT, Iy 2\v=2 yv=2
#8=Y BAUHH BAHH Y @I+ 1)@+1) U)r &

A I'3l3 A B 3
“Terms J' % 3,J' and H'B%B5H" follow from appropriate permutations of (J%)*=2
and H"=2 in the J' 565, H' expression. Similarly 8}, 66561, follows by appropriate
permutations in the §}5%6% B}, expression.
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7.4.4 Structure of centroids and variances

Centroids E.(m, )

In the dilute limit with m — co, N — oo and m/N — 0, the centroids E.(M, J) given by
Eq. (7.4.9) take a simple form. Firstly, the constant term in the expansion for E.(M, J)

is [after simplifying k1, (m) and kj4(m)],

12( ) m?

E.(m)-30(m) 2(2]2+1)V,2. (7.4.25)
]2
Similarly, the J(J +1) term is
klZ(m) 3 IV
= 2L, +1)V, . 7.4.2
G(m)szi(m) 2[j(j+ D] Zz\ﬂz( o+ 1) Vi, U (7428

: 2 glm)kia(m)  glm)koa(m)kis(m)
More remarkable is that the [J(J + 1)]° term 240% (m) 60 (m) also takes a

simple form. The results in Sec. 7.4.3 will give the expression for the first term as,

ku(m) V2 o .
o(m) 20t (m) %(ZJZH)VJZ Sh;

ll

9 2 v—z o2 (7.427)

~4UE2 j(+D) [2NP-2Nm+2m?]}

Similarly, we can write the expression for 9(—"”@%%4—2-@ and in the dilute limit this

reduces exactly to the second piece in the expression for Sy, in Eq. (7.4.27). Therefore,

in the dilute limit, the term multiplying [J(J + 1)]? in the E.(m, J) expansion is,

o(m) [k(m) B koa(m) k1o (m) } _ - .
o7 (m) { 24 6 = 122(2]2+ V™ Rp;

(7.4.28)
9(N - 2m)?

By~ OmE N —m2NE JG+ DA

{8lr+-2jG+1]}.

It is already pointed out in [Ko-02a] that the constant term and the j(J + 1) term as
given by Egs. (7.4.25) and (7.4.26) are same as those derived by Mulhall et al [Mu-
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00, Mu-02] using statistical mechanics approach that is completely different from the
present moment method approach. For EGOE(2)-] ensemble, Egs. (7.4.25)-(7.4.28)
will give the distribution of the centroids over the ensemble as discussed in [Mu-02].
More remarkable is that the [J(J + 1)]? term given by Eq. (7.4.28) is also very close to
the formula given by Mulhall [Mu-02]. These results confirm that the approximations
used in [Mu-00, Mu-02] are equivalent to the proposition that p(E, M) is a Edgeworth
corrected bivariate Gaussian as assumed in the present approach. The equivalence
of Mulhall et al approach with the moment method approach in the dilute limit is

further substantiated by the expansion for fixed- M occupancies; the results are given

in Appendix I.
T T T T T T I T T 1 T T 1 T
0.2 L p:( (1 9/2)m=6,d=4 B
o~ - -
g [ ] . :
- - Ne— PW .
0O 01 - A _ -
- present calculation -
0 i i i ilodt m* ; o |
0 5 10 15 20
o

Figure 7.1: Probability distribution for widths o for EGOE(2)-J ensemble; see text for details.

Variances ¢%(m, J)
In the dilute limit, simplifying k> () and o2 (m) will give

2

o2(m,)) = —'—"N—Q—;(ZJZH)(V,V;Z)Z
2

(7.4.29)

37U+1) =212 12yv=2

— 2]+ D)V (F .

However to add [(J(J + 1)]? correction, we need to simplify kp4(m) and this is quite
cumbersome. A quantity of interest, as pointed out by Papenbrock and Weidenmiiller
[Pa-04] (PW) is the probability distribution for the spectral widths o = {( H2)™/}}/2 =
[0®(m, J) + E2(m, )1*/? over the EGOE(2)-] ensemble. To compare with PW results,

we have generated a EGOE(2)-] ensemble for (12—9)’”:6 system with 2500 members, i.e
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we have used 2500 sets of V},’s. Using the formalism described in Secs. 7.4.2and 7.4.3
we have calculated the bivariate cumulants k,s(m). For our example o, (m) = 12.124
and koq(m) = —0.229. The ensemble averaged cumulants M, m ~ 0 as ex-
pected. However 7c-2—2(—m) = -0.053 and m = —0.114. With these, it is clear that the
expansions to order [J(J + 1)]2 are needed. Equation (7.4.10) is found to be good for
J < 30. We have calculated (H2)™/ for each member of the ensemble and then P; (o)
vs o histograms are constructed for various J values. Results for J = 4 are shown in
Fig. 7.1. The calculated histogram is in good agreement with the exact curve given by
PW [Pa-04]; in [Pa-04] a completely different formalism is used. Though not shown
in Fig. 7.1, we have noticed that for J = 0, the widths given by the exact results (they
are reported in [Pa-04]) are somewhat larger than the numbers given by the present
formalism. This could be because J = 0 is at one extreme end of the Edgeworth ex-

pansion and therefore, the truncation to 1/m? terms may not be adequate.

7.5 Summary

To summarize, by extending the binary correlation approximation method for two
different operators and for traces over two-orbit configurations, we have derived for-
mulas for y; and y, parameters for EGOE(1+2)-n ensemble. Note that EGOE(1+2)-7
is defined by the embedding algebra U(N) o U(N,) ® U(N.) with the Hamiltonian
breaking the symmetry in a particular way as discussed in Chapter 5. In addition, we
have derived formula for the fourth order trace defining correlation coefficient of the
bivariate transition strength of the transition operator relevant for Ov-5f decay. We
have also derived the formulas for the fourth order cumulants in order to establish bi-
variate Gaussian form of the transition strength densities. Here also the embedding
algebra is U(N) o U(Np) ® U(N,) with the Hamiltonian preserving the symmetry and
the transition operator breaking the symmetry in a particular way. Going further, we
have considered an application to EGOE(2)-J for fermions in a single-j shell. Here
the embedding algebra is U(2j + 1) > SO;(3). Expansions to order [J(J + 1)]? for en-
ergy centroids E.(m, J) and spectral variances o (m, J) are obtained. Formulas are
derived for fixed-m bivariate cumulants and they are used to show the expansion to
order [J(J+1)]? explain the structure of fixed- J centroids and variances. These results

are important in the subject of regular structures generated by random interactions.
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