Appendix B

Exact variance formula for a given

member of EGOE(1+2)-s

For completeness, we reproduce here the formula for spectral variances generated by
each member of EGOE(1+2)-s. Given a one plus two-body Hamiltonian H, the fixed-
§ spectral variance o2(m, S) = (H2)™® — [(H)™S]2 will be a fourth order polynomial
in m and S(S + 1) {Fr-69, No-86]. This gives

o%(m,S) = 24:0 ap mP + Zzlo bym9S(S+1)+¢co[S(S+ DI, (B1)
p= g=

The parameters (a;, b;, ¢;) follow from o%(m, S) for m < 4 and to determine these in-
puts one has to construct H matrices for m up to 4. However an elegant method,
allowing 02(m,S) to be expressed in terms of (e;, V;.i.’:kg’l), is to use the embedding
algebra U(N) o U(Q) ® SU(2). With respect to this algebra, as pointed out in [Ko-
79, Ko-02a], h(1) decomposes into a scalar v = 0 part [given by the first term in the
first equation in Eq. (2.3.3)] and an irreducible one-body part with v =1. The v=0
and v = 1 parts transform, in Young tableaux notation [He-74], as the irreps [0] and
[21972] respectively of U(€). Similarly V°(2), s = 0,1 decompose into v = 0,1 and
2 parts. The scalar parts VY=%5=01 can be identified from Eq. (2.3.3) and they will
not contribute to the variances. The effective one-body parts VV=1=01 generated by
Vf}.zkg’l, are defined by the induced single particle energies 1;,j(s) given ahead in Eq.

(B2). The diagonal induced energies 1; ;(s) are identified for the first time in [Ko-79].
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However for EGOE(1+2)-s it is possible to have A; j(s), i # j. Now the irreducible two-
body part VY=%5=0 = y—yv=0:s=0_yv=1:5=0 and similarly VV=%*=! is defined. It should
be noted that the two v = 0 parts of V(2) transform as the U(Q) irrep [0] and the two
v = 1 parts of V(2) transform as the irrep [21%72], Similarly VV=%$=0 transforms as the
irrep [42%72] and the V¥=%5=1 as the irrep [221%4]. Using these and the group theory
of U(N) o U(Q) ® SU(2) algebra as given by Hecht and Draayer [He-74], a compact
and easy to understand expression for fixed- S variances emerges, with F2=8(S+1),
m*=Q-ml2, X(m,S)=m(m+2)-48(S+ D and Y(m,8) = m{m—2) —45(S+1),
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1 —
P mS) = Sor D@20 -3

{(#H*(3Q% - 7Q+6)/2+3m(m - 2)m*(m* - 1)

x(Q+1)(Q+2)/8-F?[6Q-3)Q+2)m*m+QQ~1)(Q+1)(Q+6)] 12},

with
€ =¢€;—€,

Api(8) =3 Vi (L+85p) — @71 Y Vi, L+ 65,
J k.l

Aj(s)=2 \/(1+5ki)(1+5kj)V,fikj for i#],
‘ (B3)

Vit = Ve = (V@D + (a9 + A, (8) @+2(-1)9 7],

VYRS — s Q4+ 2(-1)571 \/(1+5kz)(1+51«j)/1§,j for i#j,

kikj kikj
v=2,8 _ 1s§
V;.].,d = V;.}.kl for all other cases .

Equations (B2) and (B3) are tested, by using some members of the EGOE(1+2)-s en-

semble, for all S values with m = 6,7 and 8 and also for many different (2 values.
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