
Appendix F

Excess parameter y2(m, fm) in terms of 

SU{Q.) Racah coefficients

The formula for Yz(fn,fm), given by Eq. (4,4.7), involves (H4)m^m. As the Hamilto­

nian in Eq. (4.3.1) is a direct sum of matrices in fz = {2} and {l2} spaces, we have

< JJ4 )m’fm = (,H{2} + ^ 2})4)«.A (FI)

Expanding the RHS of Eq. (FI) using the cyclic invariance of the averages and ap­

plying the property that terms with odd powers of and j will vanish [see Eq. 

(4.3.6)], we have

{H4)m’fm = {(H{2})4)m,fm + {(H{lz})4)m‘fm +4{{Hm)HH{lz})2)m’fm

(F2)
+2(HmH{12}HmH{l2])m-fm.

Writing H in terms of the unit tensors B's using Eq. (4.4.3), the first two terms in Eq. 

(F2) will give

j. ... £ (fmv 1 I B(f2FVlO)Vl) I fmVz)
nyjm) VliV2ivi,vA,FvlFv2’FvvFVa,wvi,wV2.wV3>wV4
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X {fmV2 1 B{f2FV2(0V2) | fmV3)(fmVs I B{f2FV30)V3) 1 fmV4)

X {fmV4 I B(f2FViWV4) | fmVi) (F3)

x W(f2FVl coVl) W{f2FV2a)V2) W(f2Fv3ojV3)W(f2FViojVi).

I A \

Using Eq. (4.4.5), it is easy to see that the term (Hj) will have non-zero con-

tribution in three cases, (1) SF F = 1, = 1, 6PF = 1, = !■ W

sFVvFVi = !> S0>VV(0V4 = h 8pV2,FV3 = 1. 5wv2,wV3 = 1; and (iii) 5pV]iFV3 = 1. ^Vl,wV3 = 1,

SFV2,FV4 ~ l> 8(0y2,0>V4 = 1. The first two cases are equivalent due to cyclic invari­

ance of the traces and they can be called direct terms whereas the third case involves 

cross-correlations and thus is called the exchange term. For (i) and (ii), applying

the Wigner-Eckart theorem and carrying out simplifications using the properties of
2

(H%)m,fmthe Wigner coefficients (see Appendix E), the direct terms reduce to 2 

Similarly, for the exchange term, reordering of the Wigner coefficients [see Eq. (E7)] 

yields an expression in terms of a new Racah coefficient. With these, we have

<*ip +h%mFZ)?da{fm)

FV1,FT2,P1,P2,P3.P4 /dn(FVl)da{FV2)
U{fmfmfmfm> (FVl)p1p3 (Fvf^pzpf^

x (fm II B(f2FVl) || fm)pi (fm\\B{f2FV2) || fm)p2

(F4)

x (fm II B(f2FVl) || fm)ps (fm II B{f2Fn) || fm)p4 .

In Eq. (F4), the multiplicity labels appearing in the new (/-coefficient [this is quite 

different from the (/-coefficient appearing in Eq. (4.4.10)] can be easily understood 

from the corresponding labels in the reduced matrix elements. Similarly, we have

/ tt2 tj2
(F5a)
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= X\2]X\lZ]dAm)dA{[l2})da{fm)

(F5b)

x (fm || B{{2}FVl) || fm)pi (fm 1| B«12}FV2) || fm)pz

x </w || B({2}FVl) || fm)pa (fm || B({12}FV2) || /m)p4 .

Substituting the results in Eqs. (F4), (F5a) and (F5b) inEq. (F2) gives Using

this and Eqs. (4.5.5) and (4.4.7), we have the analytical result for the excess parameter 

72This involves SU{Q) Racah coefficients with multiplicity labels and eval­

uation of these is in general complicated [Gl-05, Kl-09]. Similarly, evaluation of the 

reduced matrix elements in Eq. (F4) is also complicated. The only simple situation is, 

when the multiplicity labels are all unity. We denote the 17(0) irreps that satisfy this 

as and we have verified that one of these irreps is {4r} where m = 4r. For these 

irreps, the expression for 72 is,

The Slv (/2: m, fm) in Eq. (F6) are defined by Eq. (4.5.6). They can be calculated using 

Xjju given in Table 4.4. Therefore the only unknown in Eq. (F6) is the SU(O) Racah 
coefficient U(/^f /^f;FVlFV2). There are many attempts in the past to derive

analytical formulation and also to develop numerical methods for evaluating gen­

eral SU(N) Racah coefficients [Bi-68,Lo-70a,Lo-70, Bl-87,Bi-82, Se-88, Vi-95]. There 

are also attempts to derive analytical formulas for some simple class of Racah coef­

ficients; see [Vi-95, Li-90] and references therein. In addition, there is a recent effort

(F6)
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to develop a new numerical method for evaluating SU\N) Racah coefficients with 

multiplicities [G1-G5, Kl-09]. From all the attempts we made in trying to use these re­

sults, we conclude that further group theoretical work on SU(N) Racah coefficients is 

needed to be able to derive analytical formulas for, or for evaluating numerically, the 

Racah coefficients appearing in Eq. (F6),
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