Appendix H
Basic binary correlation results

We denote a ky-body operator as,
Hkm) = Y viP ol (ke Bk . (H1)
p

Here, a'(ky) is the kg particle creation operator and S(kg) is the ky particle anni-
hilation operator. Similarly, vgﬁ are matrix elements of the operator H in ky parti-
cle space i.e., vgﬁ = (kyﬁ | H| kHa) (it should be noted that Mon and French [Mo-
73, Mo-75] used operators with daggers to denote annihilation operators and oper-

ators without daggers to denote creation operators). Following basic traces will be

used throughout,
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Equation (H2) follows from the fact that the average should be zero for m < k and
one for m = k and similarly, Eq. (H3) follows from the same argument except that
the particles are replaced by holes. Equation (H4) follows first by writing the k’-body

operator B(k') in operator form using Eq. (H1), i.e.,
B(K) =Y v gy @), (H6)
By

and then applying the commutation relations for the fermion creation and annihila-
tion operators. This gives Y., vg" Bk Y, af (k) e(k)y(k"). Now applying Eq. (H2)
to the sum involving «a gives Eq. (H4). Eq. (H5) follows from the same arguments
except one has to assume that B(k') is fully irreducible v = k' operator and therefore,
it has particle-hole symmetry. For a general B(k') operator, this is valid only in the
N — oo limit. Therefore, this equation has to be applied with caution.

Using the definition of the H operator in Eq. (H1), we have

(H{ky)H(kg)™
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= v4 T(m,N,kn).

Here, H is taken as EGOE(ky) with all the kg particle matrix elements being Gaussian

variables with zero center and same variance for off-diagonal matrix elements (twice

for the diagonal matrix elements). This gives (vj;';‘6 )2 = v%l to be independent of «, £
labels. It is important to note that in the dilute limit, the diagonal terms [« = f in Eq.
(H7)] in the averages are neglected (as they are smaller by at least one power of 1/N)

and the individual H’s are unitarily irreducible. These assumptions are no longer
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valid for finite- N systems and hence, evaluation of averages is more complicated. In

the dilute limit, we have

T(m,N, kg)
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Note that, we have used Eq. (H3) to evaluate the summation over § and Eq. (H2) to

= m
(’"“’”‘H) <za’f(kH)a<kH)> © m8)

evaluate summation over « in Eq. (H8). In the ‘strict’ N — oo limit, we have

- N
T(m, N, k) Y= | T . HY
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In order to incorporate the finite- N corrections, we have to consider the contribution

of the diagonal terms. Then, we have,
T{m,N, kH )

m
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Note that the prefactor 2’ in the second term of first line in Eq. (H10) comes be-

cause variance of the diagonal terms is twice that of the off-diagonal terms. Also, the

trace Y, af (kpatkma’ (k) alky) = Y af (kg)alky) as the operator af (k) a(ky)
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conserves the number of particles. Now we turn to evaluating fourth order averages.

For averages involving product of four operators of the form

(H(kg)G (k) H(kg) G(ke))™ |

with operators H and G independent and of body ranks ky; and kg respectively, there
are two possible ways of evaluating this trace. Either (a) first contract the H operators
across the G operator using Eq. (H5) and then contract the G operators using Eq.
(H4), or (b) first contract the G operators across the H operator using Eq. (H5) and

then contract the H operators using Eq. (H5). Following (a), in the dilute limit, we get

(H(kg) G(kc) H(kg) G k)™
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Similarly, following (b), in the dilute limit, we get

) (Glkg)Glkc)™

(H(kx)Glke) Hkm) Glke)™

= 2 2 m+kg—kyl{m~-kg\lm+ky\|{m
CHTG kg kg ky f\ku)

The result should be independent of the preference. In other words, the average

(H12)

should have the ky « kg symmetry. As seen from Egs. (H11) and (H12), this sym-
metry is violated except for the trivial case of ky = kg. However, the ky < kg sym-

metry is valid for ‘strict’ N — oo result and also for the result incorporating finite N
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corrections as discussed below. In general, the final result can be expressed as,

(H(kg)Gke) H(kg) Gka))™ = v vé F(m, N, ki, k¢) . (H13)

In the ‘strict’ dilute limit, both Eqs. (H11) and (H12) reduce to give result for
F(m,N,kH, kG),

F(m, N, kg, k¢) = (m;GkH) (,:'; ) (;Z ) (é\(’; ) , (H14)

In order to obtain finite- N corrections to F(--+), we have to contract over operators
whose lower symmetry parts can not be ignored. The operator H(ky) contains irre-
ducible symmetry parts & (s) denoted by s =0, 1,2,..., kg with respect to the unitary
group SU(N) decomposition of the operator. For a ky-body number conserving op-
erator [Ch-71,Mo-75],

ki (m—s
H(kg) = F(s).. H15
(kn) s‘;(k;;—s) (s) (H15)

Here, the % (s) are orthogonal with respect to m-particle averages, i.e., (9 (FT(s) )m =
dss. Now, the m-particle trace in Eq. (H11) with binary correlations will have four

parts,

(H(kg)Gkg) Hkm) G k)™
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Note that we have decomposed each operator into diagonal and off-diagonal parts.
We have used the condition that the variance of the diagonal matrix elements is twice
that of the off-diagonal matrix elements in the defining spaces to convert the re-
stricted summations into unrestricted summations appropriately to obtain the four
terms in the RHS of Eq. (H17). Following Mon’s thesis [Mo-73] and applying unitary
decomposition to y8' (also 5yT) in the first two terms and a8’ (also Ba') in the third
term we get X, Y} and ¥>. To make things clear, we will discuss the derivation for
X term in detail before proceeding further. Applying unitary decomposition to the
operators y' (kg)6 (kg) and y(kg)8' (kg) using Eq. (H15), we have

ke
X=vhv} ;‘;52 (kG_) (ot e BUem &5 (s)ﬁ*(ka)a(kg)%a(s)> . (H17)
a0, 5=0

Contracting the operators S across %’s using Eq. (H5) and operators ' across &

using Eq. (H4) gives,

2
m+kg— -
X= vHUGZ(m S) (m k: s) (’QHS);S(g;&(s)yyg(s))m. (H18)
L

kG -8
Inversion of the equation,

t m &
> {1 ka)dtkadt ke)y (k)" = Qumy =}
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2
(Z,_ ) Z(gya(s}e%a(ﬂ) , (H19)
gives,

(kG.. ) Z<9 6(s)9.,5(s)>

2
) (m - S) (N_ m) (m) [(kg — )Is? (N —2s+1) (H20)
kg—s S §

N 55_: (DS (N - t—kg)t1?

= (s—DUN—s— 1+ DN - SThaad

It is important to mention that there are errors in the equation given in Mon's thesis

and we have verified Eq. (H20) using Mathematica (Mon = Eq. (H20)/[(N ~ 2s)!(s)?]).
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For the average required in Eq. (H19), we have

- + + m: m+kglim
Qum = S{y' ks kd" ey o) ( o )(kG) (H21)

Sirnplifying Eq. (H20) using Eq. (H21) and using the result in Eq. (F18) along with the

series surnmation

S (-DFS(N -t~ kg)! ! YN -kg~ $)!
Z =1 ko) lkg+10 _ k! (N—-kg— ! [kg) IN+1 ’ (H22)
= -2 (N-s—t+1)! (N+1-9)! § s
the expression for X is,
X = vAviF(m,N,kn,ke);

I

-' ks (m—s\(m+ky—s\(m—s
“F(m,N, kg, k) ’ ’
H2G s;)(kc-—s ( kH

N=2s+1(N-s\ " ke)™
N-s+1\ k¢ s)

Although not obvious, X has ky < kg symmetry and we have verified this explicitly
for ky, kg < 2. Similarly, the terms Y; and ¥, are given by,

Yi = viviB(mN,knke), Ya=vhvgB(m,N ke km);
kg m—szfﬁ+kH-—s m— s\ (m
B(m,N, kg, kg) =
(m, N, k, ko) é(ka~s)( kn Mok s Ils (H24)
-1 -1 -
N-2s+1[N-s) [kg
N-s+1\ kg s

In order to derive Eq.(H24), we have used Q(m) = ( ,’C’; ) along with the series summa-

tion,

S, (~D)!S(N-t—ke) kgl 8! kG!(N — kg —s)! ("G) ) (H25)

g, -2 (N-s—t+1)! (N+1-9)! s

Note that Mon's thesis gives (™ *) in place of (", *) with k = ky or kg for X, ¥; and Y»
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in Egs. (H23) and (H24) and it should be a printing error. The expressions given in
Eqs. (H23) and (H24) agree with the results given in Tomsovic’s thesis [To-86]. Finally,

the result for Z is

m

z=v3 2 Y (@ kmatkns’ ke)s (ko)al ki atkis’ ka)s(ke))
a,6

= vy X (' tkmatkn) " 3 (0 tke1o k)"

(H26)

= v%v% C(m,N,ky, kg);

m m
C(m; N; kH: k(}) - (’CH) (kG) .

Equation (H26) is in agreement with the result in Mon'’s thesis with ky = kg = k. How-
ever, it differs from the result given in Tomsovic's thesis. For a one-body operator,

obviously Z = m? and this confirms that Eq. (H26) is correct. Therefore Eqs. (H16)-

(H26) give the final formula for the trace (H(ky)G(kg) H(ky) G(kg))™. Tt is easily seen

that dominant contribution to the average (H(kp)G(kg) H(ky)G(kg))™ comes from

the X term and therefore, in all the applications, we use

(H(ky)G(kg)H(kg) G(k))™ = X = v3, v: F(m, N, kg, k) - (H27)

An immediate application of these averages is in evaluating the fourth order aver-
age ( H*(kp) )m There will be three different correlation patterns that will contribute
to this average in the binary correlation approximation (we must correlate in pairs

the operators for all moments of order > 2),

(H (k) Hk ) Hik ) Hk g )™

il

(HA (k)™

“+

(f}"{ﬁ;‘,;{}H{kg}ﬁ(k;g)ﬁ{kg})m (H28)

(H kY H ki) Hlkp) Hlkyg ™.

+
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In Eq. (H28), we denote the correlated pairs of operators by same color in each pat-
tern. The first two terms on the RHS of Eq. (H28) are equal due to cyclic invariance

and follow easily from Eq. (H7),

(Hkg)Hkiy Hikg) Hikg )™ (H{k) H (k) Hk ) Hlkeg ™

11

{H29)
= [(H2 k)" ]2 :
Similarly, the third term on the RHS of Eq. (H28) follows easily from Eq. (H27),
(H (k) H(kp) Hk ) Hk)™ = vy Fom, N ki, k) (H30)
Finally, W is given by,
(HYkm)™ = vy, [2 {T(m, N, ki) + F(m, N, kg, kn)] . (H31)

Simplifying T(:-+) and F(---) in ‘strict’ N — oo limit and using Eqgs. (H7) and (H31),

the excess parameter for spinless EGOE(kp) is,

)
Hi(kp))™" k oky K
yotmy = ) g\ KAy K (H32)
(2™ m
ky

Equation (H32) was first derived in [Mo-75]. As seen from Eq. (H32), state densities
for spinless EGOE(ky) approach Gaussian form for large m and they exhibit, as m in-

creases from ky, semicircle to Gaussian transition with m = 2ky being the transition

point. The results for (H2(ky))™ and ( H4(ky))™ easily extend, though not obvious,
to averages over two-orbit spaces with operator H having fixed body ranks in the two
spaces. It is useful to mention that the details for the two-orbit averages using bi-
nary correlation approximation are not available in literature. Now, we will discuss
the two-orbit results.

In many nuclear structure applications and also for applications to interacting

spin systems, fourth order traces over two orbit configurations are needed. Let us
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consider m particlés in two orbits with number of sp states being N; and Ny réspec~
tively. Now the m-p’article space can be divided into configurations (m;, my) with m;
partiéles in the #1 orbit and m; particles in the #2 orbit such that m = m; + m;. Con-
side"fing the operatdr H with fixed body ranks in m; and m, spaces such that (m;, my)

are preserved by this operators, the general form for H is,

Hkg= Y [ piPr i, J)] OTRO O 08 (H33)
o i+j=kgia,By.d )

Now, it is easily seen that, in the dilute limit,

= Y G Y {aloparine@Fhadsiprm)
i+fj=kg a,ﬂ,y,ﬁ

' (H34)
= ¥ G, J)Z<a: (z)ﬁﬂz)ﬁ*(z)m(z)) B NGOG A
Y.6

l'+j=kH

= ) Vg, ) Timy, Ny, i) T(ma, Ny, j) -
i+j=kg
Note that v%l(i D= {v“‘ﬁy 5(1 j)]2 and T’s are defined by Egs. (H8) and (H9). The
ensemble is defined such that v (z j) are independent Gaussian random variables

with zero center and the variances depend only on the indices i and j. The formula

for (H (kH)H (kg))™™2 with finite (N}, No) corrections is,

(fizl.+ i) (f’ﬁz:ﬁ-j) w1l
1 J

Similarly, with two operators H and G (with body ranks kz and kg respectively)
- that are independent and both preserving (m1, mp), (H(ki)G(ke) H(ki)G(kg))™ ™

(H(kH)H(kH))m.i’mz‘;‘: Y. vHG, J}( )(mz) (H35)

ikj=ky J
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is given by,

(Hkg)Glkc)Hky) Glkg))™ ™2 =
{H36)
Z v%{(i;j) Ué(t, u) F(merlgi, t) F(mZ)NZyjy u) .

i+j=kg, t+u=kg

Also, extending the single orbit results with finite- N corrections, we have,

(H(km)Glke) H(kp) Glkg)y™ ™
(H37)

= 2 > v, ) vA(tu)
i+j=ky, t+u=kc @1,B1,Y1,61,%2,02,72,02

x (e} Y08 (WL W D8] N @)

m;
x ((DBDYS W2 BN (NE} ya () -
Applying Egs. (H16)-(H26) to the two traces in Eq. (H37), we get

(H(kp)Glkg) Hkg) Glkg))™ ™2 = Y v, j) vE(t, u)

i+j=ky, t+u=Kkg

x [F(my, Ny, i, ) F(mg, Na, j, ) + B(my, Ny, i, ) B(mz, Na, j, 1) (H38)

+ B(mIrNI; t, i)B(mZINZ} u, j) + C(mlx Nl; i; t)c(st NZ,j; u)] .

The F(---)’s appearing in Eq. (H38) are given by Eq. (H23). Also, the B’s and C’s are
given by Egs. (H24) and (H26) respectively. Finally, in the strict dilute limit as F(--+)’s
dominate over B’s and C’s, we get back Eq. (H36). In all the applications discussed in

Chapter 7, we use Eq. (H36). Now, using Egs. (H34) and (H36), we have

2
(HAkem))™™ =2 | Y. v4(, ) Tmy, Nv, i) T(mg, Ny, j)
i+j=kg
(H39)
+ Yy v (i, j) v5(t, 1) F(my, Ny, i, 8) F(mg, Na, j, u) .

i+j=kg, t+u=ky
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As a simple application of Eqs. (H34) and (H39), let us consider y2(m, Mgs) for
EGOE(2)- Mg ensemble. For this ensembles, H will preserve Mg and it is defined for
a system of m fermions carrying spin s = % degree of freedom (see also Appendix G).
Then, we have two orbits with Ny = N> = Q, my = m/2+ Mg and my = m/2 - Mg. Here,
orbit #1 corresponds to sp states with m; = +-;: and orbit #2 corresponds to sp states
with ms = —1. Note that the fixed-Ms dimension is D, Ms) = (552 p1.) (mrzans)-

By substituting m; = m/2 + Mg and my = m/2 — Mg, Eqs. (H34) and (H39) will give

(H42))™Ms and (H2(2))™™, respectively. Then, the fixed-(m, Ms) excess parame-
ter y2(m, Mg) in the dilute limit is given by,
Y VR VR W) Fim, Q. 1) F(ma,Q, j, u)
i+j=2, t+u=2
Y2(m, Mg) = 5 -1, (H40)
> VR, ) TOmy, Q,0) T(mg,Q, )

i+j=2

with T'(---)’s and F{(---)’s given before.
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