
Appendix H

Basic binary correlation results

We denote a fc#-body operator as,

H(kH) = E ccf{kH)P(kH). (HI)
a,p

Here, oft{kn) is the ku particle creation operator and (5{kn) is the kn particle anni

hilation operator. Similarly, v^f are matrix elements of the operator H in kH parti

cle space i.e., v'jf = {kuP I H | kn«) (it should be noted that Mon and French [Mo- 

73, Mo-75] used operators with daggers to denote annihilation operators and oper

ators without daggers to denote creation operators). Following basic traces will be 

used throughout,

J^af{k)a(k) = n \ mkj ^£ocHk)a(k)} = mlk I

£a(k)af(k) = N~h\
k (? \m (ffP

a(k)af(k)J = m = N-m.

£afa:)S(fe')a(fc) = |B(fc')\h- k'\ 
1 k

\ m{k)B(k')a{k)) ■■ 
a /

m-k' IB(Jfc')

(H2)

(H3)

(H4)
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£a(fc)jB(jb')a:t(k) =

a

N~n-k 
k

A
S(fc')

(H5)
/£a(fc)B(fc')a+(k)

\ a

m (m-k B(k')

Equation (H2) follows from the fact that the average should be zero for m < k and 

one for m = k and similarly, Eq. (H3) follows from the same argument except that 

the particles are replaced by holes. Equation (H4) follows first by writing the fc'-body 

operator B{k') in operator form using Eq. (HI), i.e.,

B{k') = £ i/f /3+(fc')y(fc'), (H6)
Ar

and then applying the commutation relations for the fermion creation and annihila
tion operators. This gives v^r ftf{k') a^{k)a(k)j(kr). Now applying Eq. (H2) 

to the sum involving a gives Eq. (H4). Eq. (H5) follows from the same arguments 

except one has to assume that B(k') is fully irreducible v = k' operator and therefore, 

it has particle-hole symmetry. For a general B{k') operator, this is valid only in the 

N-+00 limit. Therefore, this equation has to be applied with caution.

Using the definition of the H operator in Eq. (HI), we have

<■H{kH)H{kH))m = £\vajf (aHkH)mH)(iHkH)a{kH))m
a,fi

m
- i,2VH ( Ea+fe) \ £/3(%)/3+(fcH) \ a{~kH) (H7)

= v'jj T{m,N, ktf).

Here, H is taken as EGOE(fcn) with all the kjj particle matrix elements being Gaussian 

variables with zero center and same variance for off-diagonal matrix elements (twice 
for the diagonal matrix elements). This gives = v2H to be independent of a, (3 

labels. It is important to note that in the dilute limit, the diagonal terms [a = (3 in Eq. 

(H7)] in the averages are neglected (as they are smaller by at least one power of 1 IN) 

and the individual H’s are unitarily irreducible. These assumptions are no longer
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valid for finite-lV systems and hence, evaluation of averages is more complicated. In 

the dilute limit, we have

nm,N,kH) = (y «+fe) \^YP(kB)ft (kH) | a{kH)

\ mY«f(kH)a{kH)) CH8)

'fh+ki{ m
< k» j N

Note that, we have used Eq. (H3) to evaluate the summation over /3 and Eq. (EE) to 

evaluate summation over a in Eq. (H8). In the ‘strict’ N—> oolimit, we have

T(m,N,kH) N~*oo m
kn

(H9)

In order to incorporate the finite-JV corrections, we have to consider the contribution 

of the diagonal terms. Then, we have,

T[m,N,kH)

m
Y «+ {kH)l3{kH)P1:{JcH)a[kH) \ + 2 ( £ at (kH)a{kH)a+ [kH)a{kH)

\*W /

m

m
S YP(kH)Pf(kH)\a(kH)

\a [ fi J /
(H10)

+
(Y ) a (kH) (%) a{kH)^

'm + kn ( m j m ( \ m m + N
i kH > IN IN kHJ A kH j

Note that the prefactor '2' in the second term of first line in Eq. (H10) comes be

cause variance of the diagonal terms is twice that of the off-diagonal terms. Also, the 

trace £aa+(%)a(&#)«(£//) = ik^aiku) as the operator a^ik^ociku)

287



conserves the number of particles. Now we turn to evaluating fourth order averages. 

For averages involving product of four operators of the form

{H(kH)G<JcG)H{kH)G{kG))m ,

with operators H and G independent and of body ranks fc# and kG respectively, there 

are two possible ways of evaluating this trace. Either (a) first contract the H operators 

across the G operator using Eq. (H5) and then contract the G operators using Eq. 

(H4), or (b) first contract the G operators across the H operator using Eq. (H5) and 

then contract the H operators using Eq. (H5). Following (a), in the dilute limit, we get

{H{kH)G{kG)H{kH)G{kG))m

= L{vf ¥ (ahkH)pikH)GikG)pHkH)a(kH)G(kG)\m 
a,p 1

(Hll)

= V2
H

in + kj[ - kG m-kG
kH , k* ,

(iG{kG)G{kG))m

v2 v2 VH VG
m + kH-kA m - kG\ f~ i \ (m + kG

k kH ) i kli ) < k° j

m!

Similarly, following (b), in the dilute limit, we get

mkH)G(kGmkH)G(kG))m

m + kG- k[A m-kii in + kn m
kG j K kG J

, kH , kHi

(H12)

The result should be independent of the preference. In other words, the average 

should have the fc// kG symmetry. As seen from Eqs. (Hll) and (H12), this sym

metry is violated except for the trivial case of kn = kG. However, the ku ^ kG sym

metry is valid for ‘strict’ N oo result and also for the result incorporating finite N
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corrections as discussed below. In general, the final result can be expressed as,

(mkH)G{kG)H{kH)GOcG))m = 4 4 F(m,N,kH, kG). (H13)

In the 'strict' dilute limit, both Eqs. (Hll) and (H12) reduce to give result for 

F{m,N,kfj,kG),

F(m,N,kH,kG) =
m-kn m\ (N

kffj W N
(H14)

In order to obtain finite-iV corrections to F(- • •), we have to contract over operators 

whose lower symmetry parts can not be ignored. The operator Hikn) contains irre

ducible symmetry parts 3?{s) denoted by s = 0,1,2,..., with respect to the unitary 

group SU{N) decomposition of the operator. For a jfc#-body number conserving op

erator [Ch-71, Mo-75],
hm=l fr~s)j?(s)- (Hi5)

Here, the J^O) are orthogonal with respect to m-particle averages, i.e., {3F{s)^{$'))m = 

6sst. Now, the m-particle trace in Eq. (Hll) with binary correlations will have four 

parts,

mkH)G{kG)mkH)G{kG))m

= 44 L {kH)P(kH)r (kG)S(kG)pi(kH)a(kH)dHkG)r(kG)'j 
a,p,f,S

+ 44 L {ai{kH)a{kH)rfikG)S(kG)af(kH)a{kH)Sf(kG)r{kG)Sj 
a,r,S x

+44 L {aHkH)p{kH)yHkG)y{kH)ft{kH)a{kH)yhkG)r{kG))
a,p,r

+44 H (a+ ^kH)cc{kH)8f (kG)S (kG) af (kH)a(kH)Sf (kG)S {kG) ^
a,6

= X+Yi + Y2 + Z.
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Note that we have decomposed each operator into diagonal and off-diagonal parts. 

We have used the condition that the variance of the diagonal matrix elements is twice 

that of the off-diagonal matrix elements in the defining spaces to convert the re

stricted summations into unrestricted summations appropriately to obtain the four 

terms in the RHS of Eq. (H17). Following Mon’s thesis [Mo-73] and applying unitary 

decomposition to yd* (also in the first two terms and affl (also /3at) in the third

term we get X, Y\ and F2. To make things clear, we will discuss the derivation for 

X term in detail before proceeding further. Applying unitary decomposition to the 

operators y1* {kG)S{kG) and Y{kG}Sf(kG) using Eq. (H15),wehave

X=v2hv2g £ ifr5) («+ (MJ3+ (%)a{kHWrS(s))m . (H17) 

a,Ar,5 s=0\kG-S) x ' '

Contracting the operators /3/31' across &’s using Eq. (H5) and operators a1 a across 8F 

using Eq. (H4) gives,

kg

5=0

m-s\2 (m + kff-s /m-skG-sj ( kH , £ /^s(s)3Frs(s)\ . (H18)
y,5

Inversion of the equation,

kgYJ(rf(kG)SikG)5i{kG)Y(kG)Sjm = Q(m) = £
5=0

m-s)[kG_sj £(^>)<%Cs)) , (H19)

gives,
m-s)

[kG_s, £»>•%«)
y ,6

m-s
kG-s

N-m
s

\
m [(kG-s)\s\f(N-2s+l) (H20)

«£.....
^0(s-t)l{N-s-t+l)\tl(N-tY.

It is important to mention that there are errors in the equation given in Mon’s thesis 

and we have verified Eq. (H20) using Mathematica (Mon = Eq. (H20)/[(iV-2s)!(s!)2]).

290



For the average required in Eq. (H19), we have

Q(m) = £ (rf0cG)6(kG)61:{kG)r0cG)) =
r,8 '

[m + kG 
kG a (H21)

Simplifying Eq. (H20) using Eq. (H21) and using the result in Eq. (H18) along with the 

series summation

y (-U^iN-t-kdnkG + m
£5 (s- f)! (f!)2 (N-s- f +1)!

kG\(N-kG-s)\
{N+l-s)l

'N+1)
* ’

the expression for X is,

(H22)

X = v\jV^F{m,N,kH,kG);

kG (
F(m,N,kH,kG) = £ 

s=0

m-s
[kG~S.

(~\
m
s

m
\SJ (H23)

JV-2s + l(lV-s\ Vfcc'j 1 

N-s+1 { kG [ s j
Although not obvious, X has kH *-* kG symmetry and we have verified this explicitly 

for kH, kG < 2. Similarly, the terms Y\ and Yz are given by,

Yi = v2Hv2GB(m,N,kH,kG), Y2 = v2Hv2GB{m,N,kG,kH)-,

B(m,N,kH,kG)
ko£s=0

m-s
2 (m + k}j - s\ m-s\ 'mV

kG-S/ l I 1 k» 1
!V-2s+l/'lV-s'\ Vjfc^ 1 
N-s + 1 [ kG ) [st

(H24)

In order to derive Eq.(H24), we have used Q(m) = (^) along with the series summa

tion,
V (~1 f-HN-t-kcV-kol t\ _ kGl{N-kG-s)[ 

fto (s- t)l (f!)2 {N-s-1+1)! ~ (1V+1 —s)!

Note that Mon’s thesis gives (m~5) in place of (m^s) vyith k = kH or kG for X, Yi and Y2

kG
s

(H25)
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in Eqs. (H23) and (H24) and it should be a printing error. The expressions given in 

Eqs. (H23) and (H24) agree with the results given in Tomsovic’s thesis [To-86]. Finally, 

the result for Z is

Z = v2hv2gY, (a1 {kH)a{kH)8^{kG)8{kG)a\kH)a{kH)8^{kG)8{kG)sl
a,8

= (*«)“(*«)) Y,(shkG)S(kG)Sj
a S

(H26)

= v2hVq C{m,N, kn, kG);

C{m,N, kn,kG) =
m \ to'
w

Equation (H26) is in agreement with the result in Mon’s thesis with kn = kG = k. How

ever, it differs from the result given in Tomsovic’s thesis. For a one-body operator, 

obviously Z = m2 and this confirms that Eq. (FI26) is correct. Therefore Eqs. (H16)- 

(H26) give the final formula for the trace (H(kn)G(kG)H{kH)G{kG))m. It is easily seen 

that dominant contribution to the average (H{kn)G{kG)H{kH)G(kG))m comes from 

the X term and therefore, in all the applications, we use

(H(kH)G(kG)H(kH)G(kG))m = X = v2h v2F{m,N,kH,kG). (H27)

An immediate application of these averages is in evaluating the fourth order aver

age {HA{ku))m. There will be three different correlation patterns that will contribute 

to this average in the binary correlation approximation (we must correlate in pairs 

the operators for all moments of order > 2),

(.H4(kH))m = (H(kH)mkH)H(kH)mkH))m

+ (H{kH) mkH)H(kH)H(kH))m (H28)

+ (h (kH) mkH) mkH) mkH))m.
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In Eq. (H28), we denote the correlated pairs of operators by same color in each pat

tern. The first two terms on the RHS of Eq. (H28) are equal due to cyclic invariance 

and follow easily from Eq. (H7),

(H(kH)H{kH)H(kH)mkH))m = (mkH)mkH)mkH)H(kH)>m

2
(H29)

Similarly, the third term on the RHS of Eq. (H28) follows easily from Eq. (H27),

{H(kH)H(k„)H(kH}H(kH))m = v% F(m,N,kH,kH). (H30)

Finally, {i74 (£#))'” is given by,

(H4(kH))m = 4 t2 {T(m,N,kH)}2 + F{m,N,kH,kH)} . (H31)

Simplifying T{---) and F(---) in ‘strict’ IV —> oo limit and using Eqs. (H7) and (H31), 

the excess parameter for spinless EGOE(L/y) is,

72 (m) =
{HHkH))m 

<H2(kH))m

(m - kft

kn m»kn

m
(H32)

Equation (H32) was first derived in [Mo-75]. As seen from Eq. (H32), state densities 

for spinless EGOE(fc//) approach Gaussian form for large m and they exhibit, as m in

creases from k/i, semicircle to Gaussian transition with m = 2kh being the transition 

point. The results for and (H4{kH)}m easily extend, though not obvious,

to averages over two-orbit spaces with operator H having fixed body ranks in the two 

spaces. It is useful to mention that the details for the two-orbit averages using bi

nary correlation approximation are not available in literature. Now, we will discuss 

the two-orbit results.

In many nuclear structure applications and also for applications to interacting 

spin systems, fourth order traces over two orbit configurations are needed. Let us
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consider m particles in two orbits with number of sp states being N} and N2 respec

tively. Now the m-particle space can be divided into configurations (mi, m2) with mi 

particles in the #1 orbit and m2 particles in the #2 orbit such that m = mi + m2. Con

sidering the operator H with fixed body ranks in mi and m2 spaces such that (mi, m2) 

are preserved by this operators, the general form for H is,

mkH) = £
i+j=kH;a,p,y,S

apy6
H

(hj )

Now, it is easily seen that, in the dilute limit,

{HHkH))mi,m2

(H33)

= £ vzH{i,j) £ (a}(i)^i(0r|O')^2(j))3i(i)ai(i)^(j)y2(j))/ni’W2
i+j=kH a,p,y,S '

(H34)
= £ vzH(i,j) £ («+ (/)(/)(/)«1 (/))mi £ (rl(J)^|(J)T2(J))

i+j=kH a,p y,S

= Z T{m\,N\,i) T(m2,N2,j).
i+j=kH

Note that v2H{i,j) = [v^fr6 (i, j}}2 and T’s are defined by Eqs. (H8) and (H9). The 

ensemble is defined such that v^frS(i, j) are independent Gaussian random variables 

with zero center and the variances depend only on the indices i and j. The formula 

for {H{kji)H{kE))mi,mz with finite {N\,N2) corrections is,

mkH)H(kH))mum2l= £
'mi'

i+i=kH

mi + i \ | m2 + j
+ 1

\
(H35)

Similarly, with two operators H and G (with body ranks kjy and kg respectively) 

that are independent and both preserving (mi, m2), (H(kH)G(kG)H(kH)G(kG))muTn2
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is given by,

mkH)G{kG)mkH)G{kG))m'’m2 =

E v* 2H(i,j) v2G{t, u) F(mi,Ni, i, t) F{m2,N2,j, u).i+j=kn, t+u-ka

Also, extending the single orbit results with finite-AT corrections, we have,

(H36)

(H(kH)G(kG)H(kH)G(kG))mi'm2

= E E *&(*>./)i+j=kH, t+u-ka «i,Pi,yi,81,1*2,fan,82

x ^J (jf) js2 (j) r J c w) ^2 c ^ js J c j) cr2 c/) ^ J c iw) r 2 c w))mz •
Applying Eqs. (H16)-(H26) to the two traces in Eq. (H37), we get

<H(kH)G{kG)H(kH)G{kG))m»m2 = £
i+j-ka, t+u=kG

(H37)

x [F(mi, All, i, f)F{m2,N2,j, u) + B{m\,N\t i, t)B{m2,N2,j, u) (H38)

+ B(mi,Ni, t, i)B(m2,N2, u,j) + C{mi,N1, i, t)C(m2,N2,j, u)} .

The F(- • * )’s appearing in Eq. (H38) are given by Eq. (H23). Also, the B’s and C's are 

given by Eqs. (H24) and (H26) respectively. Finally, in the strict dilute limit as F(- • • )’s 

dominate over B’s and C’s, we get back Eq. (H36). In all the applications discussed in 

Chapter 7, we use Eq. (H36). Now, using Eqs. (H34) and (H36), we have

{HA[kH))mi,mz = 2
2

E VhUJ) T[mi,Ni,i) T{mz,N2,j)i+j=kH

+ E vzH(i,j) v%(t, u) F{mi,Ni, i, t) F(m2,N2,j, u). 
i+j=kn, t+u-kn

(H39)
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As a simple application of Eqs. (H34) and (H39), let us consider j2{m,Ms) for 

EGOE(2)-Ms ensemble. For this ensembles, H will preserve Ms and it is defined for 

a system of m fermions carrying spin s = | degree of freedom (see also Appendix G). 

Then, we have two orbits with Nx = Afe = O, mi = m/2+Ms and m2 = m/2-Ms- Here, 

orbit #1 corresponds to sp states with ms = + \ and orbit #2 corresponds to sp states 

with ma = Note that the fixed-Ms dimension is D(m,Ms) = (m/2aiws)(m/2+Ms)- 

By substituting m\ = m/2 + M$ and m2 = ml2 - Ms, Eqs. (H34) and (H39) will give 
{H4(2))m'Ms and {H2(2))m'Ms, respectively. Then, the fixed-(m,Ms) excess parame

ter 72 (m, Ms) in the dilute limit is given by,

72(m,Ms) =

£ vhU’i’i VHF(mi,n, i, t) F(m2,G,;, u)
i+j=2, t+u=2

L v2H{i,j)T{mi,Q.ti)T{m2,n,j) 
i+}= 2

(H40)

with r(---)’s and given before.
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