
Appendix H

Basic binary correlation results

We denote a fc#-body operator as,

H(kH) = E ccf{kH)P(kH). (HI)
a,p

Here, oft{kn) is the ku particle creation operator and (5{kn) is the kn particle anni­

hilation operator. Similarly, v^f are matrix elements of the operator H in kH parti­

cle space i.e., v'jf = {kuP I H | kn«) (it should be noted that Mon and French [Mo- 

73, Mo-75] used operators with daggers to denote annihilation operators and oper­

ators without daggers to denote creation operators). Following basic traces will be 

used throughout,

J^af{k)a(k) = n \ mkj ^£ocHk)a(k)} = mlk I

£a(k)af(k) = N~h\
k (? \m (ffP

a(k)af(k)J = m = N-m.

£afa:)S(fe')a(fc) = |B(fc')\h- k'\ 
1 k

\ m{k)B(k')a{k)) ■■ 
a /

m-k' IB(Jfc')

(H2)

(H3)

(H4)
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£a(fc)jB(jb')a:t(k) =

a

N~n-k 
k

A
S(fc')

(H5)
/£a(fc)B(fc')a+(k)

\ a

m (m-k B(k')

Equation (H2) follows from the fact that the average should be zero for m < k and 

one for m = k and similarly, Eq. (H3) follows from the same argument except that 

the particles are replaced by holes. Equation (H4) follows first by writing the fc'-body 

operator B{k') in operator form using Eq. (HI), i.e.,

B{k') = £ i/f /3+(fc')y(fc'), (H6)
Ar

and then applying the commutation relations for the fermion creation and annihila­
tion operators. This gives v^r ftf{k') a^{k)a(k)j(kr). Now applying Eq. (H2) 

to the sum involving a gives Eq. (H4). Eq. (H5) follows from the same arguments 

except one has to assume that B(k') is fully irreducible v = k' operator and therefore, 

it has particle-hole symmetry. For a general B{k') operator, this is valid only in the 

N-+00 limit. Therefore, this equation has to be applied with caution.

Using the definition of the H operator in Eq. (HI), we have

<■H{kH)H{kH))m = £\vajf (aHkH)mH)(iHkH)a{kH))m
a,fi

m
- i,2VH ( Ea+fe) \ £/3(%)/3+(fcH) \ a{~kH) (H7)

= v'jj T{m,N, ktf).

Here, H is taken as EGOE(fcn) with all the kjj particle matrix elements being Gaussian 

variables with zero center and same variance for off-diagonal matrix elements (twice 
for the diagonal matrix elements). This gives = v2H to be independent of a, (3 

labels. It is important to note that in the dilute limit, the diagonal terms [a = (3 in Eq. 

(H7)] in the averages are neglected (as they are smaller by at least one power of 1 IN) 

and the individual H’s are unitarily irreducible. These assumptions are no longer
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valid for finite-lV systems and hence, evaluation of averages is more complicated. In 

the dilute limit, we have

nm,N,kH) = (y «+fe) \^YP(kB)ft (kH) | a{kH)

\ mY«f(kH)a{kH)) CH8)

'fh+ki{ m
< k» j N

Note that, we have used Eq. (H3) to evaluate the summation over /3 and Eq. (EE) to 

evaluate summation over a in Eq. (H8). In the ‘strict’ N—> oolimit, we have

T(m,N,kH) N~*oo m
kn

(H9)

In order to incorporate the finite-JV corrections, we have to consider the contribution 

of the diagonal terms. Then, we have,

T[m,N,kH)

m
Y «+ {kH)l3{kH)P1:{JcH)a[kH) \ + 2 ( £ at (kH)a{kH)a+ [kH)a{kH)

\*W /

m

m
S YP(kH)Pf(kH)\a(kH)

\a [ fi J /
(H10)

+
(Y ) a (kH) (%) a{kH)^

'm + kn ( m j m ( \ m m + N
i kH > IN IN kHJ A kH j

Note that the prefactor '2' in the second term of first line in Eq. (H10) comes be­

cause variance of the diagonal terms is twice that of the off-diagonal terms. Also, the 

trace £aa+(%)a(&#)«(£//) = ik^aiku) as the operator a^ik^ociku)
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conserves the number of particles. Now we turn to evaluating fourth order averages. 

For averages involving product of four operators of the form

{H(kH)G<JcG)H{kH)G{kG))m ,

with operators H and G independent and of body ranks fc# and kG respectively, there 

are two possible ways of evaluating this trace. Either (a) first contract the H operators 

across the G operator using Eq. (H5) and then contract the G operators using Eq. 

(H4), or (b) first contract the G operators across the H operator using Eq. (H5) and 

then contract the H operators using Eq. (H5). Following (a), in the dilute limit, we get

{H{kH)G{kG)H{kH)G{kG))m

= L{vf ¥ (ahkH)pikH)GikG)pHkH)a(kH)G(kG)\m 
a,p 1

(Hll)

= V2
H

in + kj[ - kG m-kG
kH , k* ,

(iG{kG)G{kG))m

v2 v2 VH VG
m + kH-kA m - kG\ f~ i \ (m + kG

k kH ) i kli ) < k° j

m!

Similarly, following (b), in the dilute limit, we get

mkH)G(kGmkH)G(kG))m

m + kG- k[A m-kii in + kn m
kG j K kG J

, kH , kHi

(H12)

The result should be independent of the preference. In other words, the average 

should have the fc// kG symmetry. As seen from Eqs. (Hll) and (H12), this sym­

metry is violated except for the trivial case of kn = kG. However, the ku ^ kG sym­

metry is valid for ‘strict’ N oo result and also for the result incorporating finite N
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corrections as discussed below. In general, the final result can be expressed as,

(mkH)G{kG)H{kH)GOcG))m = 4 4 F(m,N,kH, kG). (H13)

In the 'strict' dilute limit, both Eqs. (Hll) and (H12) reduce to give result for 

F{m,N,kfj,kG),

F(m,N,kH,kG) =
m-kn m\ (N

kffj W N
(H14)

In order to obtain finite-iV corrections to F(- • •), we have to contract over operators 

whose lower symmetry parts can not be ignored. The operator Hikn) contains irre­

ducible symmetry parts 3?{s) denoted by s = 0,1,2,..., with respect to the unitary 

group SU{N) decomposition of the operator. For a jfc#-body number conserving op­

erator [Ch-71, Mo-75],
hm=l fr~s)j?(s)- (Hi5)

Here, the J^O) are orthogonal with respect to m-particle averages, i.e., {3F{s)^{$'))m = 

6sst. Now, the m-particle trace in Eq. (Hll) with binary correlations will have four 

parts,

mkH)G{kG)mkH)G{kG))m

= 44 L {kH)P(kH)r (kG)S(kG)pi(kH)a(kH)dHkG)r(kG)'j 
a,p,f,S

+ 44 L {ai{kH)a{kH)rfikG)S(kG)af(kH)a{kH)Sf(kG)r{kG)Sj 
a,r,S x

+44 L {aHkH)p{kH)yHkG)y{kH)ft{kH)a{kH)yhkG)r{kG))
a,p,r

+44 H (a+ ^kH)cc{kH)8f (kG)S (kG) af (kH)a(kH)Sf (kG)S {kG) ^
a,6

= X+Yi + Y2 + Z.
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Note that we have decomposed each operator into diagonal and off-diagonal parts. 

We have used the condition that the variance of the diagonal matrix elements is twice 

that of the off-diagonal matrix elements in the defining spaces to convert the re­

stricted summations into unrestricted summations appropriately to obtain the four 

terms in the RHS of Eq. (H17). Following Mon’s thesis [Mo-73] and applying unitary 

decomposition to yd* (also in the first two terms and affl (also /3at) in the third

term we get X, Y\ and F2. To make things clear, we will discuss the derivation for 

X term in detail before proceeding further. Applying unitary decomposition to the 

operators y1* {kG)S{kG) and Y{kG}Sf(kG) using Eq. (H15),wehave

X=v2hv2g £ ifr5) («+ (MJ3+ (%)a{kHWrS(s))m . (H17) 

a,Ar,5 s=0\kG-S) x ' '

Contracting the operators /3/31' across &’s using Eq. (H5) and operators a1 a across 8F 

using Eq. (H4) gives,

kg

5=0

m-s\2 (m + kff-s /m-skG-sj ( kH , £ /^s(s)3Frs(s)\ . (H18)
y,5

Inversion of the equation,

kgYJ(rf(kG)SikG)5i{kG)Y(kG)Sjm = Q(m) = £
5=0

m-s)[kG_sj £(^>)<%Cs)) , (H19)

gives,
m-s)

[kG_s, £»>•%«)
y ,6

m-s
kG-s

N-m
s

\
m [(kG-s)\s\f(N-2s+l) (H20)

«£.....
^0(s-t)l{N-s-t+l)\tl(N-tY.

It is important to mention that there are errors in the equation given in Mon’s thesis 

and we have verified Eq. (H20) using Mathematica (Mon = Eq. (H20)/[(iV-2s)!(s!)2]).

290



For the average required in Eq. (H19), we have

Q(m) = £ (rf0cG)6(kG)61:{kG)r0cG)) =
r,8 '

[m + kG 
kG a (H21)

Simplifying Eq. (H20) using Eq. (H21) and using the result in Eq. (H18) along with the 

series summation

y (-U^iN-t-kdnkG + m
£5 (s- f)! (f!)2 (N-s- f +1)!

kG\(N-kG-s)\
{N+l-s)l

'N+1)
* ’

the expression for X is,

(H22)

X = v\jV^F{m,N,kH,kG);

kG (
F(m,N,kH,kG) = £ 

s=0

m-s
[kG~S.

(~\
m
s

m
\SJ (H23)

JV-2s + l(lV-s\ Vfcc'j 1 

N-s+1 { kG [ s j
Although not obvious, X has kH *-* kG symmetry and we have verified this explicitly 

for kH, kG < 2. Similarly, the terms Y\ and Yz are given by,

Yi = v2Hv2GB(m,N,kH,kG), Y2 = v2Hv2GB{m,N,kG,kH)-,

B(m,N,kH,kG)
ko£s=0

m-s
2 (m + k}j - s\ m-s\ 'mV

kG-S/ l I 1 k» 1
!V-2s+l/'lV-s'\ Vjfc^ 1 
N-s + 1 [ kG ) [st

(H24)

In order to derive Eq.(H24), we have used Q(m) = (^) along with the series summa­

tion,
V (~1 f-HN-t-kcV-kol t\ _ kGl{N-kG-s)[ 

fto (s- t)l (f!)2 {N-s-1+1)! ~ (1V+1 —s)!

Note that Mon’s thesis gives (m~5) in place of (m^s) vyith k = kH or kG for X, Yi and Y2

kG
s

(H25)

291



in Eqs. (H23) and (H24) and it should be a printing error. The expressions given in 

Eqs. (H23) and (H24) agree with the results given in Tomsovic’s thesis [To-86]. Finally, 

the result for Z is

Z = v2hv2gY, (a1 {kH)a{kH)8^{kG)8{kG)a\kH)a{kH)8^{kG)8{kG)sl
a,8

= (*«)“(*«)) Y,(shkG)S(kG)Sj
a S

(H26)

= v2hVq C{m,N, kn, kG);

C{m,N, kn,kG) =
m \ to'
w

Equation (H26) is in agreement with the result in Mon’s thesis with kn = kG = k. How­

ever, it differs from the result given in Tomsovic’s thesis. For a one-body operator, 

obviously Z = m2 and this confirms that Eq. (FI26) is correct. Therefore Eqs. (H16)- 

(H26) give the final formula for the trace (H(kn)G(kG)H{kH)G{kG))m. It is easily seen 

that dominant contribution to the average (H{kn)G{kG)H{kH)G(kG))m comes from 

the X term and therefore, in all the applications, we use

(H(kH)G(kG)H(kH)G(kG))m = X = v2h v2F{m,N,kH,kG). (H27)

An immediate application of these averages is in evaluating the fourth order aver­

age {HA{ku))m. There will be three different correlation patterns that will contribute 

to this average in the binary correlation approximation (we must correlate in pairs 

the operators for all moments of order > 2),

(.H4(kH))m = (H(kH)mkH)H(kH)mkH))m

+ (H{kH) mkH)H(kH)H(kH))m (H28)

+ (h (kH) mkH) mkH) mkH))m.
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In Eq. (H28), we denote the correlated pairs of operators by same color in each pat­

tern. The first two terms on the RHS of Eq. (H28) are equal due to cyclic invariance 

and follow easily from Eq. (H7),

(H(kH)H{kH)H(kH)mkH))m = (mkH)mkH)mkH)H(kH)>m

2
(H29)

Similarly, the third term on the RHS of Eq. (H28) follows easily from Eq. (H27),

{H(kH)H(k„)H(kH}H(kH))m = v% F(m,N,kH,kH). (H30)

Finally, {i74 (£#))'” is given by,

(H4(kH))m = 4 t2 {T(m,N,kH)}2 + F{m,N,kH,kH)} . (H31)

Simplifying T{---) and F(---) in ‘strict’ IV —> oo limit and using Eqs. (H7) and (H31), 

the excess parameter for spinless EGOE(L/y) is,

72 (m) =
{HHkH))m 

<H2(kH))m

(m - kft

kn m»kn

m
(H32)

Equation (H32) was first derived in [Mo-75]. As seen from Eq. (H32), state densities 

for spinless EGOE(fc//) approach Gaussian form for large m and they exhibit, as m in­

creases from k/i, semicircle to Gaussian transition with m = 2kh being the transition 

point. The results for and (H4{kH)}m easily extend, though not obvious,

to averages over two-orbit spaces with operator H having fixed body ranks in the two 

spaces. It is useful to mention that the details for the two-orbit averages using bi­

nary correlation approximation are not available in literature. Now, we will discuss 

the two-orbit results.

In many nuclear structure applications and also for applications to interacting 

spin systems, fourth order traces over two orbit configurations are needed. Let us

293



consider m particles in two orbits with number of sp states being N} and N2 respec­

tively. Now the m-particle space can be divided into configurations (mi, m2) with mi 

particles in the #1 orbit and m2 particles in the #2 orbit such that m = mi + m2. Con­

sidering the operator H with fixed body ranks in mi and m2 spaces such that (mi, m2) 

are preserved by this operators, the general form for H is,

mkH) = £
i+j=kH;a,p,y,S

apy6
H

(hj )

Now, it is easily seen that, in the dilute limit,

{HHkH))mi,m2

(H33)

= £ vzH{i,j) £ (a}(i)^i(0r|O')^2(j))3i(i)ai(i)^(j)y2(j))/ni’W2
i+j=kH a,p,y,S '

(H34)
= £ vzH(i,j) £ («+ (/)(/)(/)«1 (/))mi £ (rl(J)^|(J)T2(J))

i+j=kH a,p y,S

= Z T{m\,N\,i) T(m2,N2,j).
i+j=kH

Note that v2H{i,j) = [v^fr6 (i, j}}2 and T’s are defined by Eqs. (H8) and (H9). The 

ensemble is defined such that v^frS(i, j) are independent Gaussian random variables 

with zero center and the variances depend only on the indices i and j. The formula 

for {H{kji)H{kE))mi,mz with finite {N\,N2) corrections is,

mkH)H(kH))mum2l= £
'mi'

i+i=kH

mi + i \ | m2 + j
+ 1

\
(H35)

Similarly, with two operators H and G (with body ranks kjy and kg respectively) 

that are independent and both preserving (mi, m2), (H(kH)G(kG)H(kH)G(kG))muTn2
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is given by,

mkH)G{kG)mkH)G{kG))m'’m2 =

E v* 2H(i,j) v2G{t, u) F(mi,Ni, i, t) F{m2,N2,j, u).i+j=kn, t+u-ka

Also, extending the single orbit results with finite-AT corrections, we have,

(H36)

(H(kH)G(kG)H(kH)G(kG))mi'm2

= E E *&(*>./)i+j=kH, t+u-ka «i,Pi,yi,81,1*2,fan,82

x ^J (jf) js2 (j) r J c w) ^2 c ^ js J c j) cr2 c/) ^ J c iw) r 2 c w))mz •
Applying Eqs. (H16)-(H26) to the two traces in Eq. (H37), we get

<H(kH)G{kG)H(kH)G{kG))m»m2 = £
i+j-ka, t+u=kG

(H37)

x [F(mi, All, i, f)F{m2,N2,j, u) + B{m\,N\t i, t)B{m2,N2,j, u) (H38)

+ B(mi,Ni, t, i)B(m2,N2, u,j) + C{mi,N1, i, t)C(m2,N2,j, u)} .

The F(- • * )’s appearing in Eq. (H38) are given by Eq. (H23). Also, the B’s and C's are 

given by Eqs. (H24) and (H26) respectively. Finally, in the strict dilute limit as F(- • • )’s 

dominate over B’s and C’s, we get back Eq. (H36). In all the applications discussed in 

Chapter 7, we use Eq. (H36). Now, using Eqs. (H34) and (H36), we have

{HA[kH))mi,mz = 2
2

E VhUJ) T[mi,Ni,i) T{mz,N2,j)i+j=kH

+ E vzH(i,j) v%(t, u) F{mi,Ni, i, t) F(m2,N2,j, u). 
i+j=kn, t+u-kn

(H39)
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As a simple application of Eqs. (H34) and (H39), let us consider j2{m,Ms) for 

EGOE(2)-Ms ensemble. For this ensembles, H will preserve Ms and it is defined for 

a system of m fermions carrying spin s = | degree of freedom (see also Appendix G). 

Then, we have two orbits with Nx = Afe = O, mi = m/2+Ms and m2 = m/2-Ms- Here, 

orbit #1 corresponds to sp states with ms = + \ and orbit #2 corresponds to sp states 

with ma = Note that the fixed-Ms dimension is D(m,Ms) = (m/2aiws)(m/2+Ms)- 

By substituting m\ = m/2 + M$ and m2 = ml2 - Ms, Eqs. (H34) and (H39) will give 
{H4(2))m'Ms and {H2(2))m'Ms, respectively. Then, the fixed-(m,Ms) excess parame­

ter 72 (m, Ms) in the dilute limit is given by,

72(m,Ms) =

£ vhU’i’i VHF(mi,n, i, t) F(m2,G,;, u)
i+j=2, t+u=2

L v2H{i,j)T{mi,Q.ti)T{m2,n,j) 
i+}= 2

(H40)

with r(---)’s and given before.
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