Appendix I

Fixed-(m, M) occupation numbers

Our purpose here is to derive a simple expression for the occupation probabilities

mM
<nmzi> for m fermions in N sp states labeled by J, quantum number m,. Here,

mM
M are the eigenvalues of the J, operator. As <ani> is an expectation value, we

can write a polynomial expansion in terms of the J, operator [Dr-77],
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where M = M/o 1,(m), T=J,l07,(m) and P,,(M) are orthogonal polynomials defined
by the density pj, (M) which is close to a Gaussian. Retaining terms up to order 2, the

expansion is,
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In the above expression we used ( j'g)”‘ = 3, the value for a Gaussian pj, (M). Now the

formulas for the traces in Eq. (I2) are as follows. Firstly,
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This implies n"“0 = 7/ N. Also,
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with <<nmz,. J z>> = m,,. Unitary decomposition of the number operator gives,
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Now,
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where we have used the result that n}’nj? = fi/ N deduced from Eq. (I3). Thus,
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Substituting above traces in Eq. (I12) we have,
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where m = m/N. The expression for the occupation number <ani> is close to
that obtained in [Mu-00, Ze-04] where statistical mechanics approach has been em-
ployed. Thus, we have successfully reproduced the previously obtained results using

moment method formalism.
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