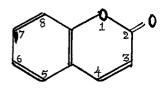
Part II : STUDIES WITH COUMARINS

5. Coumarizs

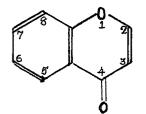
-

.

6. Ultraviolet absorption spectra of coumarins


7. Sorption studies with coumarins

8. Separation of coumarins


ł

COUMARINS (1,2)

The fusion of a pyrone ring with a benzene nucleus gives rise to a class of heterocyclic compounds known as benzopyrones, of which two distinct types are recognized : . (1) benzo-a-pyrones commanly called coumarins and (2) benzo-/ -pyrones, called chromones, the latter differing from the former only in position of the carbonyl group in the heterocyclic ring.

5.

Benzo-x-Pyrone

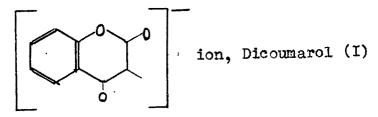
Benzo - Y- Pyrone

Representatives of three groups of compounds are found to occur in the vegetable kingdom, either in the free or in the combined state. Coumarin, the parent substance of the benzo-a-pyrone group, was first isolated from tonkabeans in 1820. Several coumarin derivatives have been found to be widely distributed in the plant kingdom. Particularly the plant belonging to the natural orders of orchidaceae, Leguminoceae, Rutaceae, Umbelliferae and Labiatae are rich sources of naturally occuring coumarins.

Coumarin and its derivatives are substances of potential value for synthetic purposes. Their easy accessibility opens the way through suitable reactions to the synthetic preparation of other heterocyclic compounds, such as coumarones, furanocoumarins (or furocoumarins) chromons-a-pyrone, flavano-a-pyrones and chromones as well as natural products containing such ring systems.

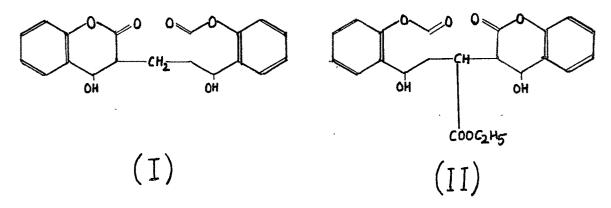
Coumarins have been found to be physiologically effective for animals as well as man. It has been observed that coumarin acts as a narcotic for rabbits, frogs, earthworms and many other animals. It is a sedative and hypnotic for mice. It has toxic effect on man as well as dog.

Some hydroxycoumarins possessing the power of absorbing ultraviolet light are extensively used as medicinals in skin diseases. Some coumarins in the plant play the important role of protecting the plant from harmful effect of the shortwave rediation.


<u>References</u> :

 Sethna, S.M. and Shah, N.M., Chem.Rev., <u>36</u>, 1 (1945).
 Sethna, S.M. and Phadke, R., Organic reaction, Roger Adams, Z, 1 (1953). ULTRAVIOLET ABSORPTION SPECTRA OF COUMARINS Introduction :

Tasaki (1) studied the absorption spectra of the substituted coumarins in alcoholic solution. Coumarin, hydroxy-and methoxycoumarins, dihydroxycoumarin, esculin, esculetin, acetylcoumarin, diacetylesculatin and methylenedihydroxyphenyl coumarin were studied. Coumarin showed two absorption maxima. When one or two hydroxy groups were introduced into the benzene nucleus of coumarin the substance showed only one absorption maximum.

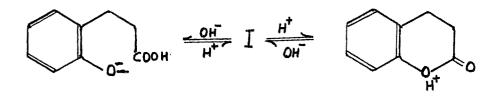

Mangini and Passerini (2) have reported the ultraviolet absorption maxima and log ϵ for coumarin (I) its 3-,4-,5-,6-,7-,8-Me, 3-, 4-, 6-, 7-Cl and 3-, 4-, 6-, 7-MeO derivatives in ethanol, C₆H₁₄, 60 % HClO₄ or H₂SO₄ (1:10⁵). I and the 3-, 5-, 6-, 7- and 8Me derivatives showed maxima at 2**92-9**6 mp, log ϵ 3.95-4.02; the 4-Me derivative at 287 mp log ϵ 3.55.

Examination of ultraviolet spectra by Chmielewska and Ciecierska (3) showed that the three substituted derivatives of 4-hydroxycoumarin in 96 % ethanol were completely ionized with the formation of an

and pelentan (II) under similar conditions did not form ions

of this type. The results, though not sufficient to prove the ketal structure of I and II, were considered to show that in ethanol both I and II given below, must occur in tautomeric form.

5-, 6- and 7-hydroxy (I), methoxy-(IIZ), methyl-(III) and acetoxycoumarins (IV) and 5,7-, 6,7- and 7,8-dihydroxy(V), dimethoxy (VI), dimethyl (VII), and diacetoxy (VIII) coumarins were prepared by Nakabayashi, Tokoroyama, Miyazaki and Isono(4) and the ultraviolet absorption spectra were determined in 95 % ethanol (III), (IV), (VII) and (VIII) showed spectra similar to that of coumarin, irrespective of the position or number of the substitutents; (I), (II), (IV) and (VI) on the other hand showed complicated spectra according to the position and number of substitutents present. On the assumption that the two absorption bands of coumarin at 270 and 312 mµ, were those of benzene around 200 and 240-260 mµ that had shifted to these regions the ultraviolet absorption spectra of these coumarin derivatives were qualitatively explained according to the latest theory regarding light absorption.


Jacobson and Amstutz (5) recorded ultraviolet absorption spectra of a series of thirteen new coumarins and concluded that neither addition of the 4-methyl group nor

of the 6-alkyl groups have significant effect on the spectra.

Goodwin and Pollock (6) studied the ultraviolet absorption spectra of a series of coumarin derivatives for use as a clue to the identification of unknown fractions isolated from the roots. They concluded that saturation of the double bond at the 3,4-position in the coumarin nucleus grately reduces absorption at wavelength larger than 300 mm, secondly 4-Me substitutionshasevery little effect upon the absorption and thirdly there is a great similarity between the absorption spectra of hydroxy derivatives and their ethers.

Cingolani (7) studied the ultraviolet absorption spectra in ethanol, 0.1 NaOH and 60 % HClO4 solution of coumarin (I), and its following derivatives, 3-Me, 3-Me-6-MeO, 3-Me-7-MeO, 3-Me-8-MeO, 3-Me-6,7-diMeO, 3-Me-6, 8-diMeO, 4-Me, 4-Me-6-MeO, 7-MeO, 4-Me-5,7-diMeO,4-Me-6,7-diMeO and 4-Me-7,8-diMeO and have given interpretation in terms of electronic structures. Variations of spectra in acid and alkaline solutions agree with the possibility that coumarins could ionise as bases or acids (by ring opening). Spectra in alcoholic solution were attributed to I, in O.1 N NaOH to II and 60 % HC104 to III. I,3-Me-I and 4-Me-I gave similar spectra in alcohol with a strong band at 265-275, and a weak band at 325-75 mp. The position of MeO in the ring influences the spectra. 6-MeO derivatives caused bathochromic shifts in the 1st band below 250 mp.; 8-MeO derivatives caused hypsochromic shifts. The maxima band of all 3-Me-I

derivatives were shifted to greater λ in contrast with 4-Me-I derivatives. The position of the Me caused a shift to

(II) (III) greater λ . This was evident when with the lactone form of 3-Me-I derivatives and explained by admitting that the equilibrium for 3-Me-I is shifted toward quinoid form, where as with 4-Me-I it was shifted to nonquinoid forms

Cingolani (8) examined the ultraviolet absorption spectra in ethanol, in 0.1 N NaOH, and after acidification of alkaline solution for coumarin and the following derivatives: -4-Me-8-OH, 8-OH, 4-Me-5, 8-(OH)₂, 3-Me, 4-Me, 4-Me-6-OH-5, $7-(Me0)_2$ and 4-Me-5-OH. The curves are characteristic enough for any of these compounds to be identified in an unknown solution, especially if the behaviour in alkaline solution is examined, since the lactone ring opens and the hydroxy cinnamic acid formed isomerizes at different rates according to structures. After isomerization the original lactone can only be recovered by acidification if a 5-OH group is present. In ethanol the 275 and 310 mp. bands of coumarin were shifted to longer λ by 6-OH or 6-Me, and to shorter λ by 5-or 8-OH or Me alone. Both 5 and 8 substituents together give bands for Me at 228, 293 and 343 mp. 7-OH or Me gives a single band at 310-30 mp.

Ganguly and Bagchi (9) studied the ultraviolet absorption maxima and log ϵ for coumarin (I), 3-Me(I), 3,4diMe(I), 4,8-diMe(I) and 4,6-diMe(I) in 95 % ethanol solution. Absorption measurement in region 220-340 mµ showed that it is possible to distinguish between them on the basis of absorption characteristics. A methyl group present either in the benzene or in the pyrone ring fails to show any significant change in the absorption properties of the parent compound.

Sen and Bagchi (10) studied the ultraviolet absorption spectra of coumarin (I), 7-OH(I), 7-OH-4-Me(I), 6-OH-4-Me(I), 4-OH(I), 4-OH-3-Me(I), 3-OH(I) and 5-OH-4-Me(I) in ethanol. Absorption spectra of coumarin substituted by hydroxy groups in the aromatic as well as in the heterocyclic **nucleus** in different positions showed bathochromic shift in the position of one or more of the principal bands.

The above data on the ultraviolet absorption spectra seem to be in rather largely. in not easily accessible literature and mutually not quite in agreement. The ultraviolet absorption spectra reported by Bagchi and coworkers could be useful in distinguishing between coumarins and chromones ; they, however, did not think that isomeric methylcoumarins could be distinguished by their data.

This chapter gives comparative survey of the published data on ultraviolet absorption spectra of coumarins and also reinvestigation of some coumarins with a view to assessing the usefulness of ultraviolet absorption

spectra in distinguishing substituted isomeric coumarins and their estimation in dilute solution.

Experimental :

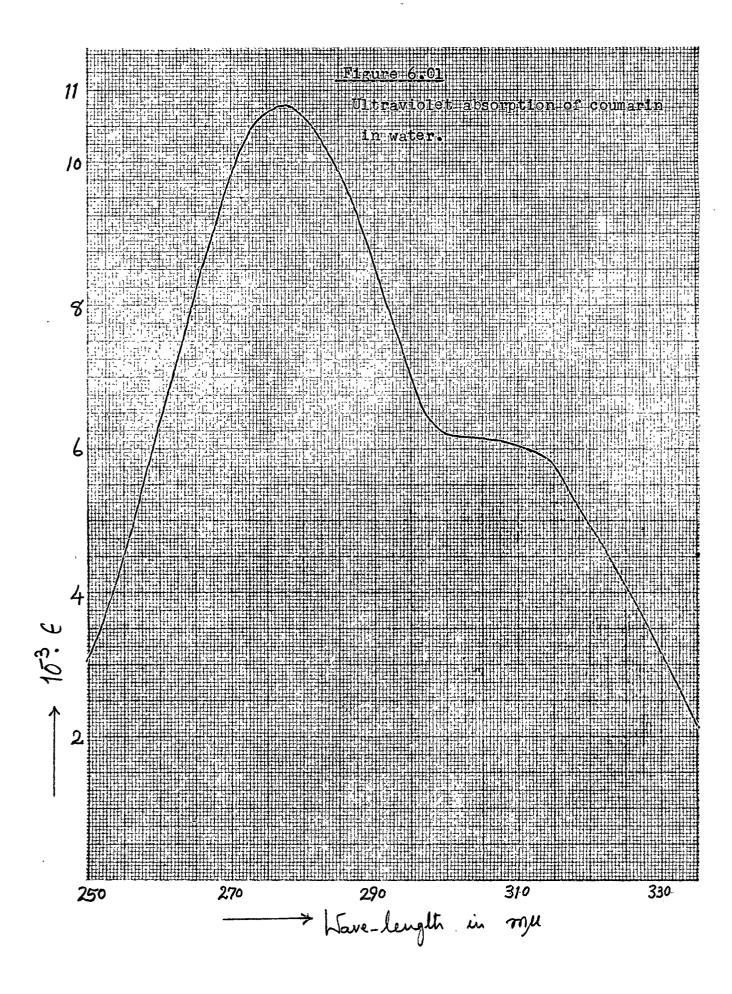
<u>Chemicals</u>: The substituted coumarins except 6-hydroxy-4methylcoumarin, 7-hydroxy-4-methylcoumarin, 5,7-dihydroxy-4-methylcoumarin and 5,7-dimethoxy>4-methylcoumarin were obtained from Prof. S.M.Sethna's laboratory and were recrystallised and checked for melting point. Distilled water, ethanol (95 %) and distilled methanol (B.D.H.) were used.

<u>6-Hydroxy-4-methylcoumarin</u> : (11)

Hydroquinone (5 g.) mixed with ethyl acetoacetate (5 g.) and sulphuric acid (25.0 ml., 80 %) was added slowly to it. The reaction mixture on keeping over night was poured in ice-cold water. The product which separated out crystallised from alcohol, m.p. $244^{\circ}C$.

<u>7-Hydroxy-4-methylcoumarin</u>: (12)

Resorcinol (5 g.) was condensed with ethyl acetoacetate (5 g.) in presence of sulphuric acid (25 ml. 80 %) and kept overnight. The reaction mixture was poured in icecold water. The product obtained was crystallised from alcohol,m.p. 185°C.


5<u>,7-Dihydroxy-4-methylcoumarin</u> : (13)

Philoroglucinol (12 g.), ethyl acetoacetate (12.5 g.) and sulphuric acid (60.0 ml., 80 %) were kept overnight. The next day the reaction mixture was poured in **isec**old water and yellow product obtained was crystallised from alcohol, m.p. 290-91°C. Pechmann and Cohen (13) give m.p. 282-84°C.

5.7-Dimethoxy-4-methylcoumarin : (14)

5,7-Dihydroxy-4-methylcoumarin (1 g,) was dissolved in acetone (70 ml.) and refluxed with dimethyl sulphate (0.8 ml.) and anhydrous potassium carbonate (3.0 g.) for 9 hrs. The reaction mixture was filtered and the acetone recovered. The solid obtained was crystallised from alcohol, m.p. 174°C. Canter, Curd and Robertson (14) give the same melting point.

<u>Procedure</u>: The stock solution of coumarins were first prepared by dissolving known weights of coumarins in solvents and the concentrations were calculated from weights. The stock solutions were then suitably diluted with solvent. The ultraviolet absorption spectra were studied with a Beckman Model DU Spectrophotometer using 10 mm. quartz cells in the range 240 mp-370 mp. The values of the extinction coefficients, ϵ , were calculated by dividing the observed optical density, D, by the concentration of coumarins in gram moles per litre.

<u>Results</u>:

``

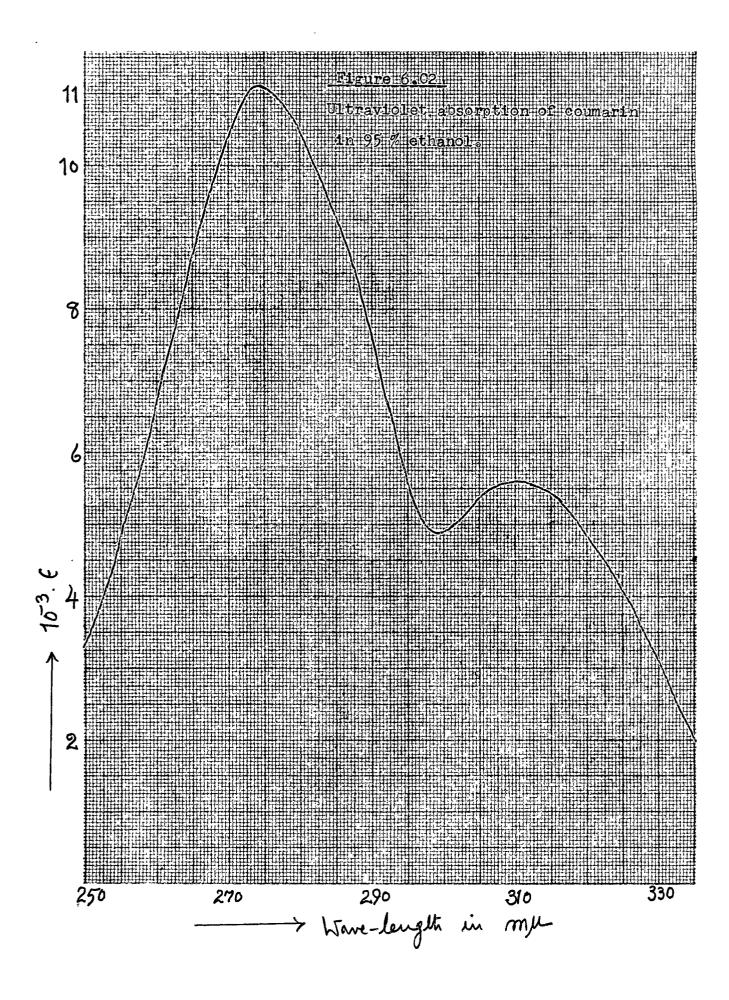
ļ

Table 6.01

,

* . . .

: .

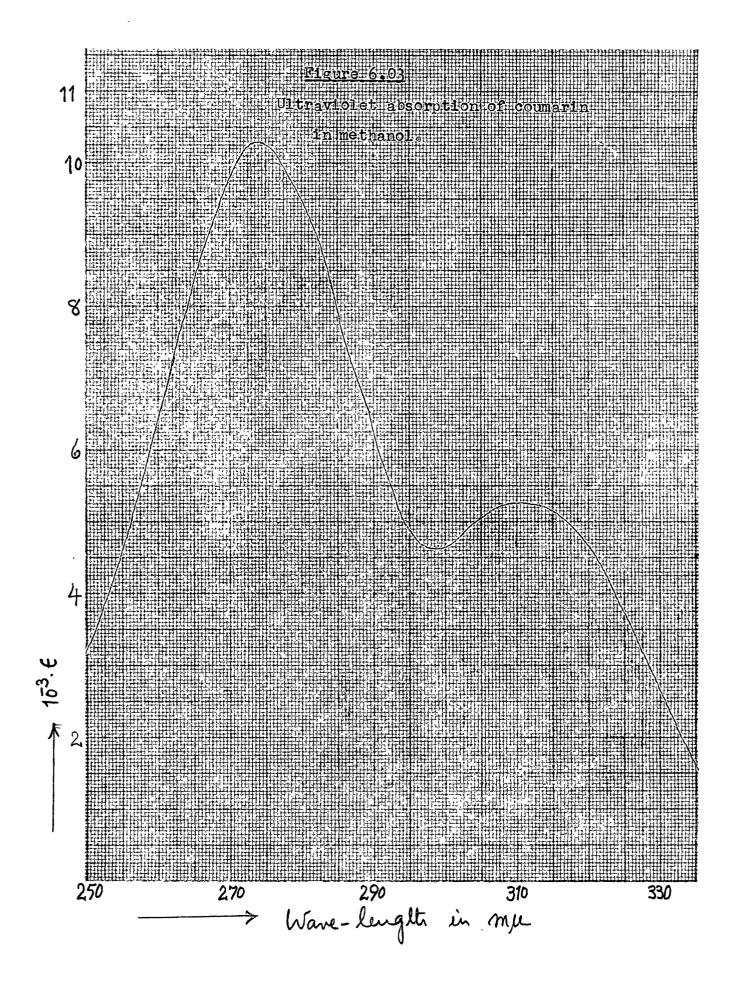

Ultraviolet absorption sof coumarin in water

••

· ·

Nave length		Wave lengt	h
(mµ)	E	(mµ)	E
250	3008	280	10530
252	3548	284	10000
254	4191	286	9506
256	4804	296	6615
258	5549	298	6353
260	6220	300	6176
264	7739	305	6132
266	8468	310	6059
268	9082	312	5987
270	9668	314	5855
272	10210	316	5593
274	10460	325	4235
276	1061+0	31+0	1139
278	10680	350	219•1

د .



.

Ultraviolet absorption of coumarin in ethanol

Wave length	andhara Annara ya Annara ana ana ana ana ana ana ana ana an	Wave lengt	;h
(mµ)	E	(mµ)	e
250	3242	. 276	10810
252	3825	278	10630
254	4512	280	10290
256	5228	286	9024
260	6805	296	5125
264	8324	305	5330
266	9 03 8	310	5504
268	9709	315	5359
270	10320	325	3967
272	10760	340	935
274	11010	350	102

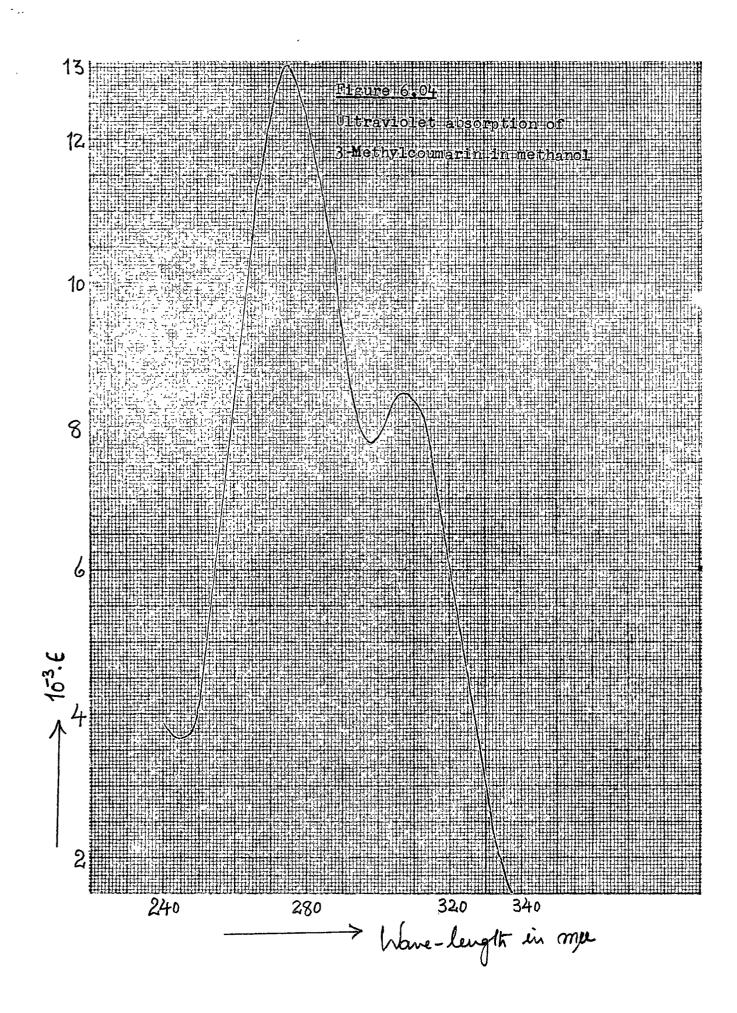
.

-

Ultraviolet absorption of coumarin in methanol

Wave length		Wave leng	Wave length	
(mµ)	6	(mp)	E	
250	3212	278	9754	
252	3782	280	9419	
254	1+1+10	286	7856	
256	5111	296	4717	
258	5884	305	5140	
260	6643	310	52 2 8	
264	8032	312	5242	
266	8660	314	5183	
268	9258	316	5053	
270	9813	325	3650	
272	10120	340	832	
274	10200	350	102	
276	9959	-		

٠


.

•

*

t

•

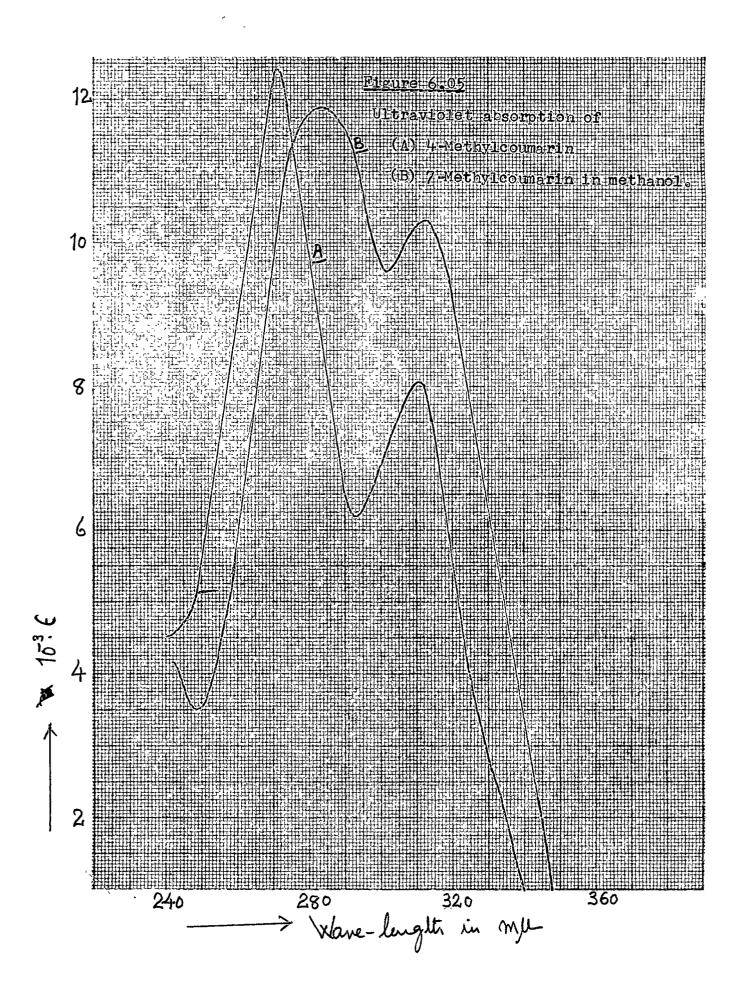
Taple 6.04

٠

Ultraviolet absorption of 3-methylcoumarin in methanol

Nave length (mル)	e	Wave lengt (mA)	Wave length (mll) E	
240	3885	286	11060	
242	37 52	290	93 13	
244	3664	296	79 0 2	
246	3730	298	7767	
248	3752	300	7945	
250	<u>1</u> +1+J)+	305	8364	
252	4988	310	8320	
254	5584	315	7681	
256	6555	320	6223	
260	8299	325	4591	
264	9913	330	3311	
268	11460	335	1832	
270	12290	340	905	
274	13020	345	574	
278	12470	350	375	
282	11940	360	265	

-


- '

,

.

,

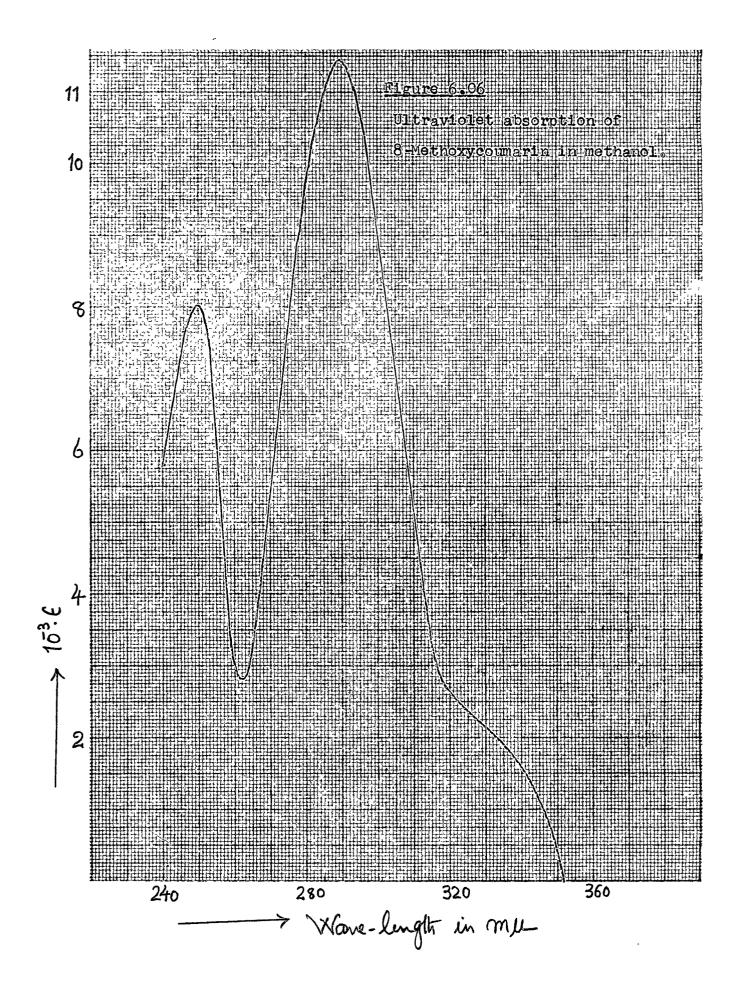
;

Ultraviolet absorption of 4-methylcoumarin in methanol

lave length (mµ)	E	Wave length (mµ)	
2 ¹ 40	4524	278	9860
242	4583	282	8686
244	4644	286	7268
246	4945	290	6273
248	5368	292	6152
250	5880	296	6454
252	6454	300	7117
254	7147	305	7690
256	7962	310	8052
258	8746	315	7087
260	9380	320	5126
262	9922	325	3680
266	11100	330	2745
270	12300	335	1659
272	12250	340	814
274	11640	345	573

-

•


•

Ultraviolet absorption of 7-methylcoumarin in methanol

,

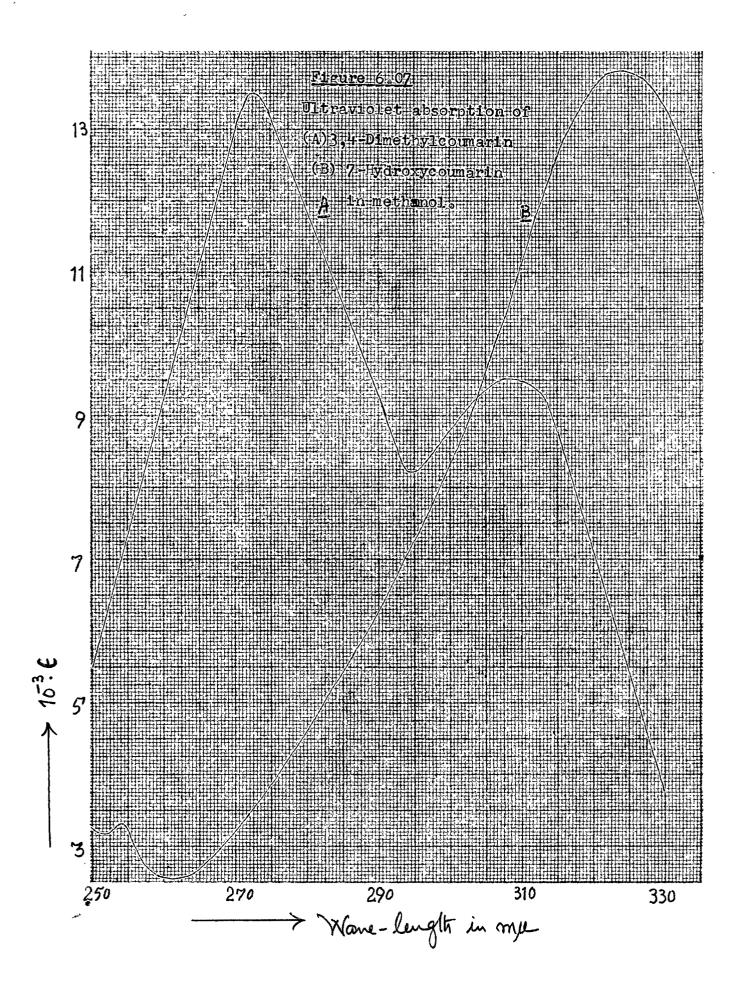
Wave length		Wave lengt	ı
(mµ)	E	(mµ)	E
242	¥1¥7	286	11800
244	3992	288	11700
246	3585	290	11410 /
248	3430	294	10470
250	3623	296	9979
25 2	3953	300	9535
254	4360	305	9883
256	4825	310	10230
260	6124	315	9845
264	7558	320	8778
268	9126	325	7207
272	10950	330	5658
276	11450	335	4225
280	11620	340	2635
282	11690	350	775
284	11760	360	504

.

Ultraviolet absorption of 8-methoxycoumarin in methanol

.

ave length		Wave length	
(mja)	E	(tym)	e
240	5737	276	8137
242	6,4,49	280	9674
246	7499	284	10730
248	3800	290	11320
250	7949	294	10800
252	7725	296	10310
254	7060	300	9 936 6
256	5438	305	6974
258	39 38	310	4762
260	3075	320	2550
262	2813	330	2063
266	37 50	340	1500
268	4537	350	975
272	6412	360	600
274	7311		


.

۶

1

`,

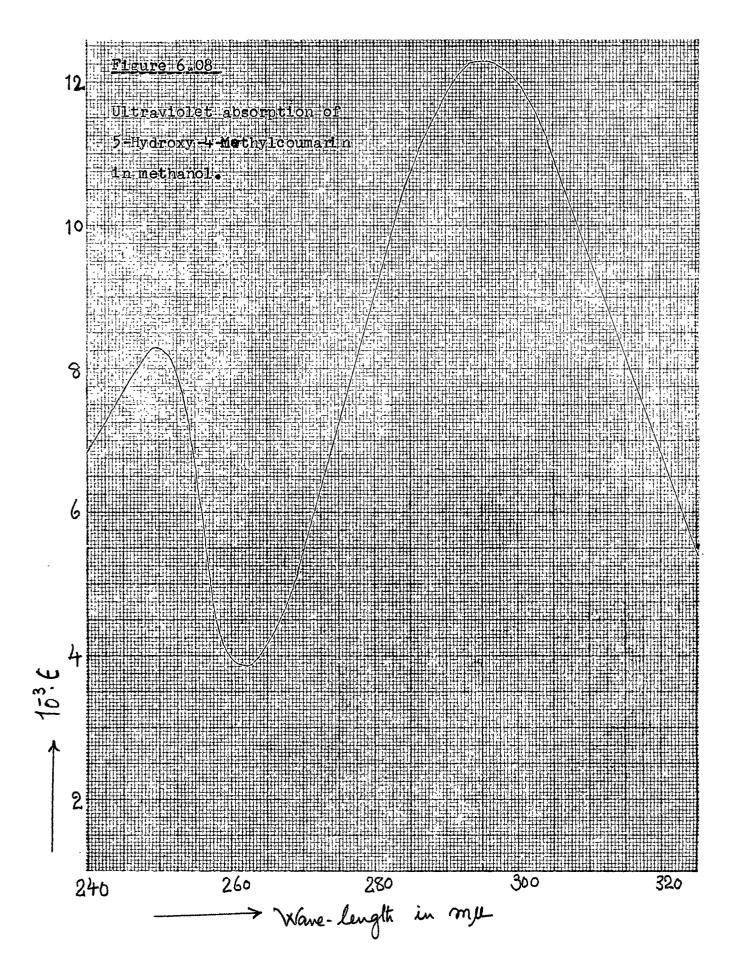
: ;

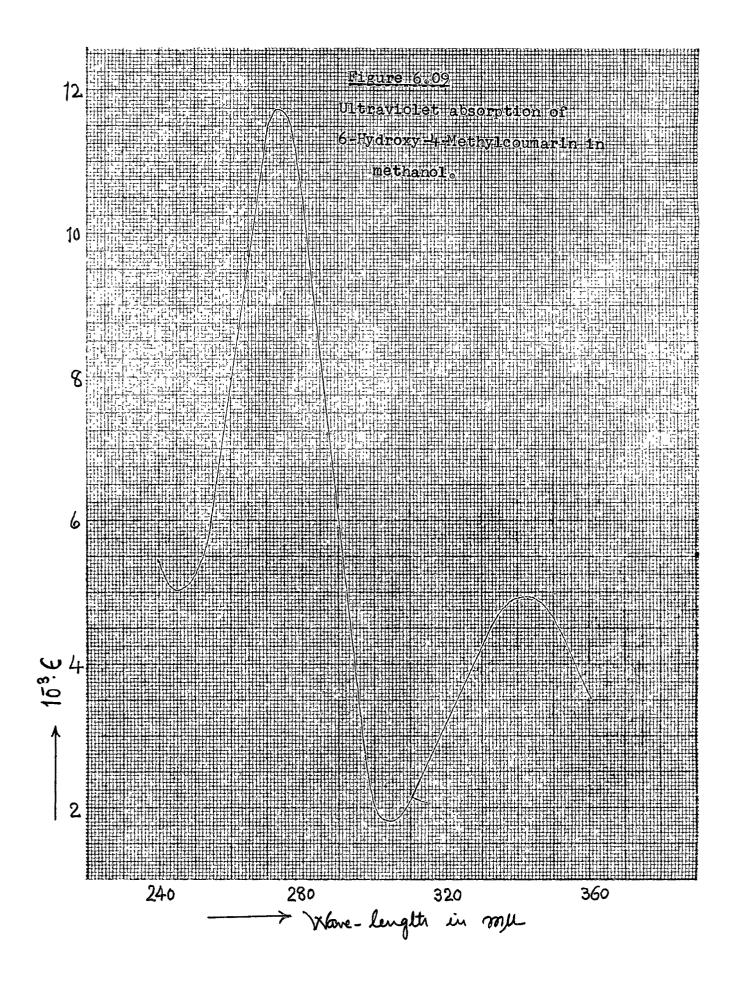
	۲۰۰ ۲۹۰۰ - ۱۹۹۵ - ۲۰۰ - ۲۰۰ - ۲۰۰ - ۲۰۰ ۲۰۰ - ۲۰۰ ۲۰۰ - ۲۰۰ ۲۰۰	J.t J. m. +b	
Wave length (mµ)	E	Wave lengt (mµ)	n Ę
250	3272	284	5378
252	3240	290	61+148
253	3207	294	6965
254	3336	298	78 3 9
255	3013	302	8 58 4
256	2851	306	9815
258	2818	310	11240
260	2592	314	12440
262	2657	318	13280
269	2689	322	13600
266	2851	324	13710
268	3240	326	13680
270	3466	330	13220
272	3661	334	11920
274	3823	338	10530
276	4083	342	9005
278	4373	348	6253
279	4406	355	3240
280	4731	360	2138
282	5087	370	1652

-

Ultraviolet absorption of 7-hydroxycoumarin in methanol

Ultravio	T <u>able 6.0</u> let absorption	9_ of 3,4-dimethyl	coumar in In meth
lave length		Wave length	UNIVERSITY OF
(mµ)	E	(mp)	E
2 ¹ +0	4591	276	12630
242	4412	278	12330
244	4366	280	11640
246	4658	284	10880
248	5150	288	9539
250	5665	292	8420
252	6338	296	8330
254	7099	298	8598
256	7881	300	886 7
258	8688	305	9361
260	9539	310	9404
262	10350	315	8 59 8
264	11060	320	6539
266	11730	325	5218
268	12410	330	3493
270	12990	335	1792
272	13390	31+0	940 ·
274	13210	345	582



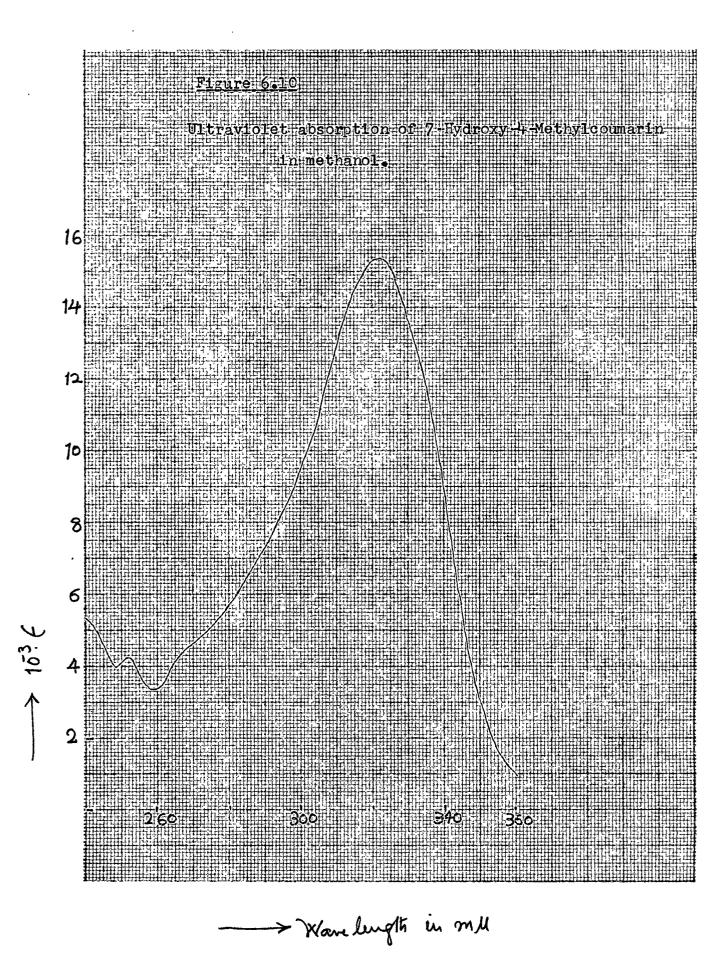

Table 6.10 Ultraviolet absorption of 5-hydroxy-4-methylcoumarin in methanol.

Wave length	E	Wave lengt	
(mµ)		(mp)	£
240	67 54	278	8377
21+2	7207	282	9654
246	7815	286	10690
248	8009	29 0	11730
250	8226	292	11990
252	8074	294	12130
254	7425	296	12080
256	57 58	298	11930
258	4720	300	11800
260	4005	305	11040
262	3832	310	9439
266	1+1+38	320	6537
270	5585	330	4200
272	6234	340	2706
274	6926	350	1429
276	7663	360	823

.

,

:



Ultraviolet absorption of 6-hydroxy-4-methylcoumarin

in methanol.

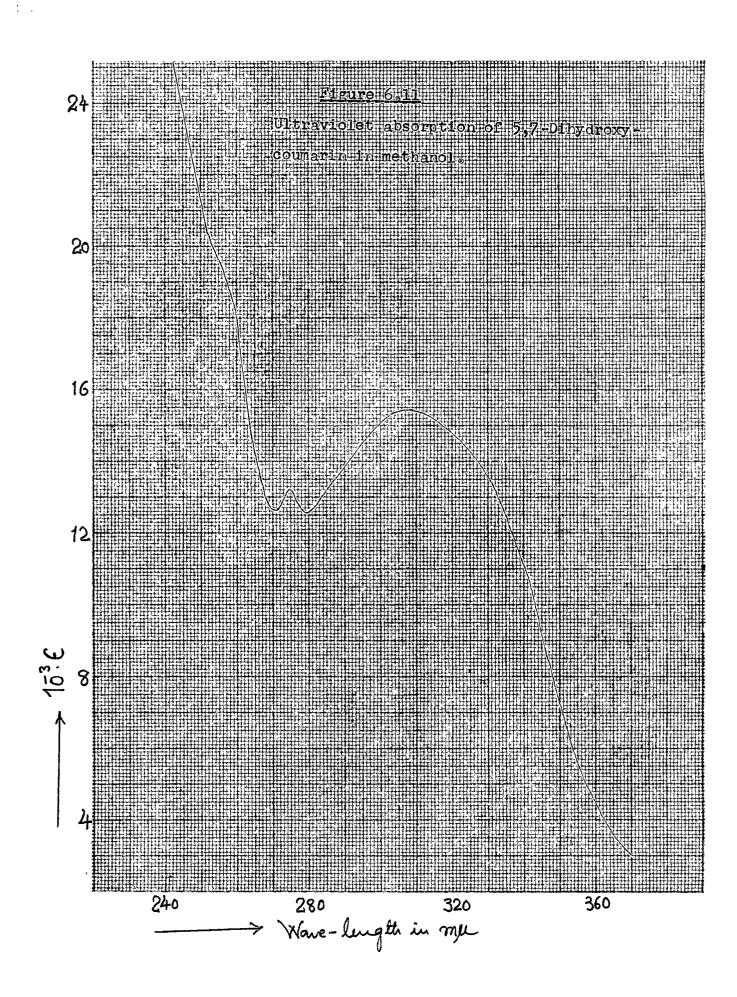
Wave length		Wave lengtl	n
(mµ)	E	(mµ)	e
240	55 0 7	29 0	6045
242	5202	295	3468
246	5086.	300	2038
248	5248	305	1875
250	5389	310	2203
252	5670	315	2695
254	609 2	320	3280
256	6631	325	3819
258	7333	330	4265
260	8013	335	4686
262	8694	340	4920
266	10310	342	4944
272	11620	345	4920
274	11670	350	4593
276	11570	355	4171
280	10 ¹ +20	360	3468
284	8622		

;

-

1

Ultraviolet absorption of 7-hydroxy_4-methylcoumarin in methanol.


Wave length			Wave lengt	th
(mµ)	E		(mpi)	E
2 ¹ +0	5248		310	12880
242	5042	>	315	14220
248	4075		320	15230
252	4213		325	15020
254	3868		328	14270
258	3384		330	13400
262	3522		335	11630
266	4385	1	340	9736
272	14834	,	345	6042
278	5352		350	3350
284	6492		355	1589
290	7423		360	967
300	9149			
داره روستان و روستان و روستان و المروستان و المروستان و روستان و روستان و روستان و روستان و روستان و روستان و ر				- ,

,

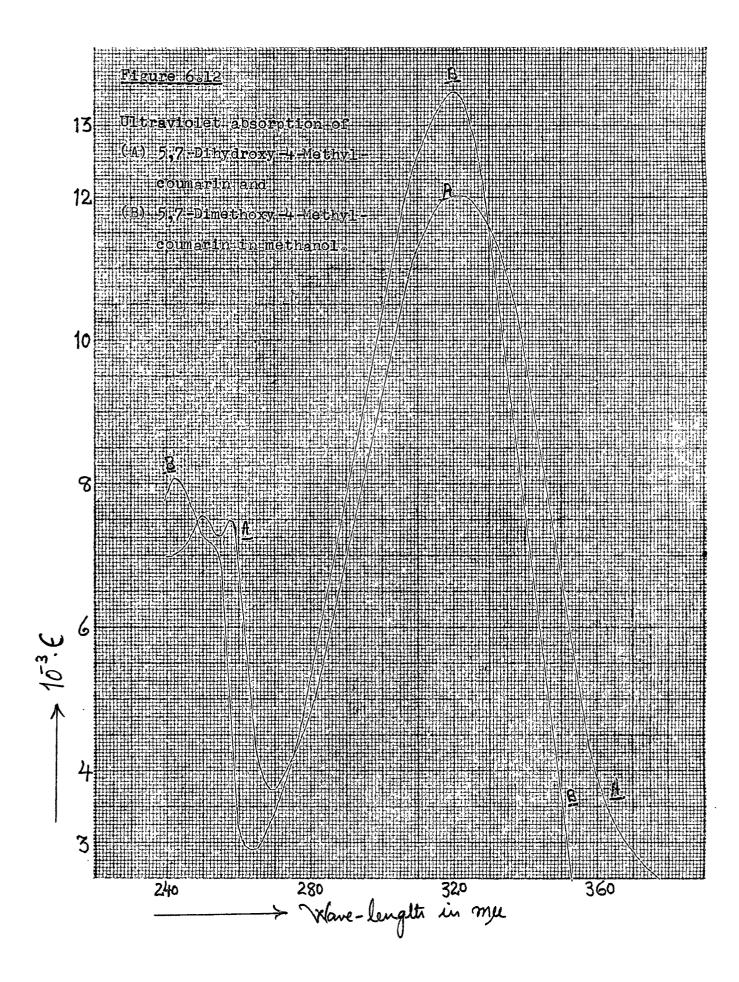
7

, ,

.

Taple 6.13

Ultraviolet absorption of 5,7-dihydroxycoumarin


in methanol.

,

Wave length	Wave length		
(mµ)	e	(mµ)	e
240	25770	29 0	13 74 0
21+2	24630	294	14090
246	22630	296	14450
248	21780	300	14950
250	21140	305	15310
252	20290	310	15170
254	19510	315	14950
256	19070	320	14520
258	18150	325	14030
260	17230	330	13310
262	15590	335	11890
266	13460	340	10600
268	12960	345	8898
272	12670	350	7190
274	13110	355	5482
276	12390	360	<u>1+1+11+</u>
280	12750	370	3203
284	12880		

.

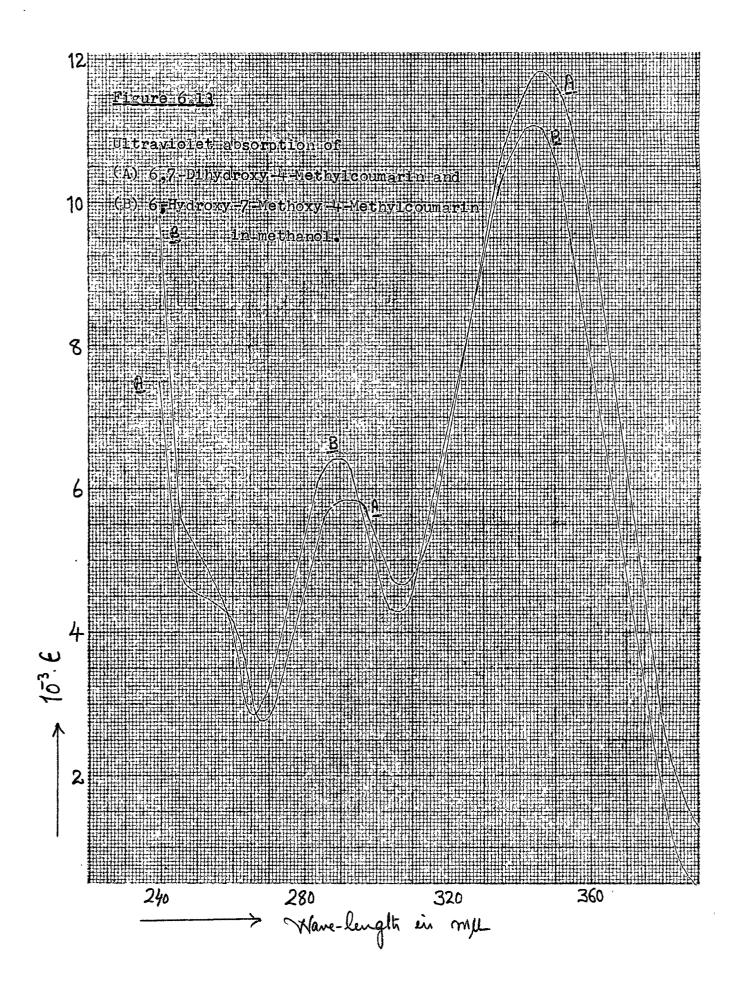
:

<u>Table 6.14</u>

Ultraviolet absorption of 5,7-dihydroxy-4-methylcoumarin in methanol

Wave length	Wave length			
(mµ)	E	(mpr)	e	
240	6971	296	8580	
242	70 ¹ + ¹ +	300	9367	
246	7223	305	10470	
248	7471	310	11300	
250	7 508	315	11730	
252	7365	320	11940	
254	7223	325	11800	
256	7330	330	11400	
258	7437	335	10620	
260	6794	340	9510	
262	5434	. 345	8 007	
266	3896	350	6436	
268	3718	355	5077	
272	3968	360	3968	
276	4183	365	3290	
280	4826	370	2932	
281+	5649	380	2502	
290	7079			

٠


i

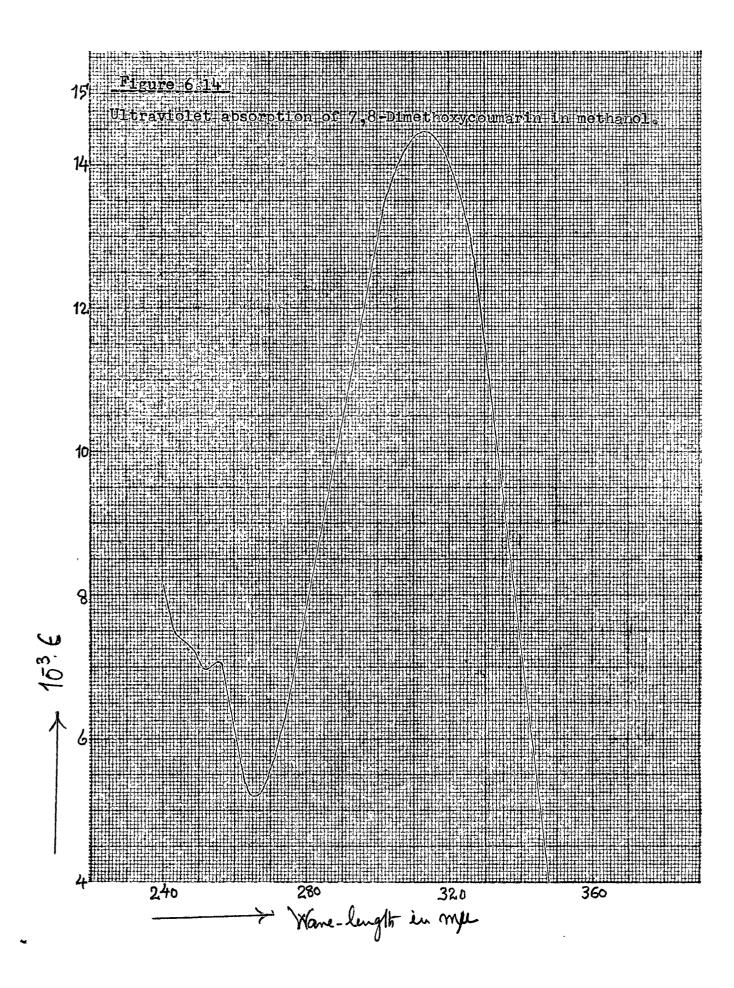
•

Ultraviolet absorption of 5,7-dimethoxy-4-methylcoumarin in methanol.

lave length		Wave lengt	h
(mp)	e	(mji)	ε
21+0	7736	29 0	7561
242	8041	294	, 8736
246	7780	296	9344
248	7518	300	10430
250	7214	305	11610
252	7214	310	12470
254	7041	315	13120
256	6433	320	13390
258	4911	325	12690
260	3694	330	11480
262	301+2	335	9933
266	2998	340	8042
268	3173	345	5476
272	3651	350	3303
274	3868	355	1999
276	4216	360	1217
280	5042	370	782
284	5998	380	652

.

.

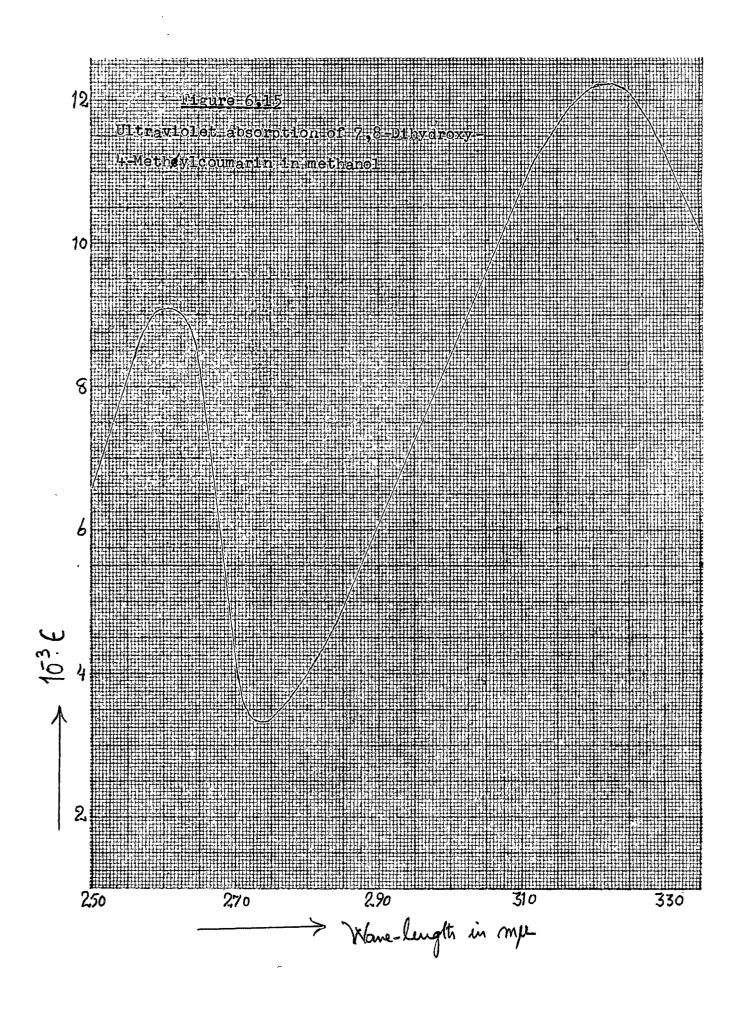

Ultraviolet absorption of 6,7-dihydroxy_4-methylcoumarin in methanol.

Wave length		Wave lengt	th
(mµ)	e	(mµ)	E
240	7464	29 0	5782
242	6236	294	5801
21+1+	5367	296	5782
246	4780	300	5328
248	4612	305	¹ +780
250	4516	310	4780
252	4516	315	5499
254	<u>յեյեյե፲</u>	320	6671
256	4403	325	7936
258	4252	330	9279
260	4102	335	10580
262	3836	340	11340
266	2967	345	11760
268	2777	350	11570
272	3024	355	10770
274	3307	360	9618
276	3648	370	6331
280	4460	380	29 29
284	5367	390	1323

Ultraviolet absorption of 7-methoxy-6-hydroxy-4-methylcoumarin in methanol.

ve length	,	Wave leng	th
(mp)	e	(mµ1)	e
240	9687	290	6356
242	7802	294	6049
244	6531	296	5720
246	5676	300	4909
248	5326	305	4296
250	5129	310	4559
252	4975	315	5501
254	4756	320	6774
256	4625	325	8 1 10
258	4406	330	9 29 ¹ +
260	4012	335	10280
262	3442	340	. 10890
266	2849	345	10980
268	2981	350	10500
272	3594	355	9491
274	4033	360	8110
276	° 41+06	370	4690
280	5370	380	1644
284	6049	390	Ø 504

.



Ultraviolet absorption of 7,8-dimethoxycoumarin in methanol.

#***#**###############################	Wave	length	
e	(mj	i) (
816	+ 280) 785	56
776	+ 281	+ 899	97
739	5 288	1010	60
727	L 292	2 1128	Ĩo
720	5 296	5 1239	0
705	5 300) 1309	0
696	305	i 1393	30
7 02	5 310) 1435	50
705	5 315	1427	0
671	320	1387	0
625	325	1288	0
566	330	1119	0
529	335	924	.3
520	340	708	6
533	345	. 462	2
566	350	255	8
607	360		
847	370	49	3
693			
647	:		360 0 86 370 49

ŧ

.

.

Ultraviolet absorption of 7,8-dihydroxy-4-methylcoumarin in methanol.

Wave length		Wave leng	th
(mµ)	e	(mµ)	E
250	6377	290	5848
252	7099	292	6306
254	7839	294	6834
256	8333	296	7311
258	8684	300	8368
260	8966	305	9690
262	8984	310	10800
264	8620	315	11530
266	7450	320	12070
268	5865	325	11940
270	4422	330	11110
272	3612	335	99 70
274	3294	340	8403
276	3418	345	6290
278	3593	350	4298
280	3893	355	2766
282	4263	360	1726
284	4615	370	· 652
286	4967	380	352
288	5426		

Table 6, 20

.

Ultraviolet absorption maxima and extinction coefficients for coumarins

5 1	14	£1	12	11	0T	9	8	7	6	স	4	ω	N	Ч	Sl. No. L.
À	Λ	Å	A	A	1	A	Q	A	ш	Q	Q	Q	A	Water	Solvent 2.
7-Me0 (I)	7-Me0 (I)	6-MeO (I)	5-Me0 (I)	8-Me (I)	7-Me (I)	7-Me (I)	7-Me (I)	6-Me (1)	5-Me (I)	¼-Me (I)	3-Me (I)	(1)	(1)	(1)	Substancestance 3.
252		278		281	283		284	278	275	271	274	274	27 ¹ +	277	ک ^{ر سل} ت ۲۰
, 318-23	323	342	298 .	310	313	315	312	320	315	310	307	311	311	3 0 5	∑2 ¤µu
3 . 32		4,06	-	4. 07	l+• 03		4.10	1+• 07	¹ ۲• 0٫	14. 10	4.11	4 • 01	4.03	ի՞ 03	10g 61 6.
4 . 17	4.33	3. 69	4• 11	3. 65	3,92	3.95	14° 01	3.74	3.84	3,90	3.92	3.72	3.74	3.73	$\log \epsilon_2$

62

. .

ţ

.

(Continued
gu
next
page
\smile

4-Me-6-MeO (I) 273
252
271+
250
276. 5-8
277-8.5
273-3.5
272
252
,
253
254
280
250
250
4

`、)

 \langle

1

111

1

Table 6.20 (Continued)

63

н 1

Da: No s 6 re 31,37 al		40	39	38	37	36	35	34	ω 3	32	ŗ
ta for co eported b nd 38 rep	(I) ind	a	Q	B	£	Q	Q	Ω	Q	a	າ ເ
Data for compound Mos. 1-5, 8,16,19,24,28-30,32-36,39 and 40 Nos 6 reported by (1); for Mos. 7,9,12-14, 17 and 18 reported by 31,37 and 38 reported by (3); and for Mos. 25-27 reported by (7).	indicates coumarin. A = 95 % ethanol ; B = ethanol	4-Me-7,8-d10H (I)	7,8-diMeo (I)	3-Me-6,7-dMeo (T)	4-Me-6,7-diMeo (I)	4-Me-6-0H-7-MeO(I)	4-Me-6,7-diOH (I)	4-Me-5,7-diMe0 (I)	4-Me-5,7-diOH (I)	5,7-(OH)2 (I)	3.
,24,28-30,3 14, 17 and 14, 25-27 r	ethanol;	261	255	295	290	290	294	252	. 258		ţ.
2-36,39 and 18 reported ported by	B = ethand	322	312	340	342	345	346	320	320	306	ۍ •
d 40 reported by d by (2) ; for N (7).	ol ; and C = methanol.	3.95	3.85	3.76	3.72	3.80	3.76	3.86	3.87		6.
40 reported by (15); data for by (2); for Nos. 10, 11, 15, 20-23 7).	;hanol.	80 [•] †	4.16	4. 10	1+° 06	14. 014	4.07	¹ + , 13	14 . 08	4 . 18	7.

.

Table 6.20 (Continued)

64

, ,

•

when in the position indicated is substituted by methyl, methoxy or hydroxy groups.	$\Delta \Lambda_2$ indicates	$\Delta \lambda_1$ indicates the when the H in	œ	- 7	σ	অ	4	دىرە			Position	Effect of
osition inc	the shift	the H in	+ ∞	+ &	+	+		+	$\Delta \lambda_{l}$			substitut:
licated is s	from the se	from the fi osition indi	+ 0	+ +	* ©	+ +	1 0	I	$\Delta \lambda_2$	Me		lon on the u
ubstituted by	cond ultraviol	shift from the first ultraviolet absorption the position indicated is substituted by me	I 22	1 22	+ 4	ł	ł	8	$\Delta \lambda_{l}$	MeO	t sang	<u>Table 6.21</u> of substitution on the ultraviolet absorption maxima of coumarin
methyl, methoz	et absorption.	t absorption ituted by me	- 18	+ 12	+ 32	- 16	I	a	$\Delta \lambda_2$		Substituent	<u>j</u> orption maxim
ky or hydroxy g	shift from the second ultraviolet absorption maxima, 311 mu, of coumarin	n maxima, 274 mµ, of coumarin hthyl,methoxy or hydroxy grou	I 22	1 22	+ 4	I 22	B	1	$\Delta \lambda_{1}$	Ю		na of coumarin
roup s.	µ, of coumarin	shift from the first ultraviolet absorption maxima, 274 mµ, of coumarin the position indicated is substituted by methyl, methoxy or hydroxy groups.	- 18	+ 12	+ 32	- 16	1	8	$\Delta \lambda_{z}$	д		

65

:

Discussion :

Table 6.20 gives the values for ultraviolet absorption maxima and log of extinction coefficients for coumarins. Coumarin shows one principal maximu, at 274 mµ and second maximu at 311 mp. In almost all cases the principal maxima are sharp and well defined but is second maxima except in few cases are in general broad . Table 6.21 gives the shifts from these maxima when one H in coumarin is substituted by methyl, hydroxy or methoxy group. Methyl-substituted coumarins : The data presented in tables 6.21 indicate that when one H in coumarin is substituted by a methyl group, the shifts in the two maxima of coumarin are small, but significant and characteristic for the position of substitution. A study of results presented in table 6.20 also indicates that for dimethylcoumarins, the shifts in the two maxima of coumarin are in fair agreement with those calculated from algebric addition of the shifts for the maxima for the two groups from table 6.21. Thus the shifts given in table 6.21 should be useful in distinguishing between different monomethyl- and dimethylcoumarins.

5.6.7 and 8-monohydroxy- and / or methoxycoumærins : The results in table 6.21 is also indicate that the substitution of hydroxy or methoxy groups substantially shifts the maxima of coumarin. These could be used, however, for mono-substituted coumarins, the substituent being OH or MeO, to distinguish between (5 or 8), 6 or 7 positions of substitutions. However, the shifts could not be used to decide whether the substituent is OH or MeO. Also, the shifts are

not additive for di(OH and / or MeO) substituted coumarins, as calculated from table 6.20; : (15). References : 1. Tasaki, T., Chem. Abst., 22, 1543 (1928). 2. Mangini, A. and Passerini, R., Chem. Abst., 46, 3047d (1952). 3. Chmielewska, I. and Ciecierska, D., Chem. Abst., 47, 9773d (1953). 4. Nakabayashi, T., Tokoroyama, T., Miyazaki, H. and Isono, S., J. Pharm. Soc., Japan, 73, 669 (1953). 5. Jacobson, C and Amstutz, E., J. Org. Chem., <u>18</u>, 1117 (1953). 6. Goodwin, R. and Pollock, B., Arch.Biochem.Biophys., 49, 1 (1954). 7. Cingolani, E., Chem. Abst., 49, 5964a (1955). 8. Cingolani, E., Chem. Abst., <u>51</u>, 14418e (1957). 9. Ganguli, B. and Bagchi, P., J. Org. Chem., 21, 1415 (1956). 10. Sen, K. and Bagchi, P., J. Org. Chem., 24, 316 (1959). 11. Desai and Mavani., Proc.Indian Acad.Sci., 15A, 11 (1942). 12. Shamshurin, A., Trudy Uzbekskogo Gosudarst. Univ. Sbornik Robot Khim., 15, 33 (1939). 13. Pechmann, H. and Cohen, J. Ber.dtsch.chem.Ges., 17, 2187 (1884). 14. Canter, F., Curd, F. and Robertson, A., J. Chem. Soc., 1255 (1931). 15. Shah, R.S. and Bafna, S.L., Indian. J. Chem., 1, 400 (1963).

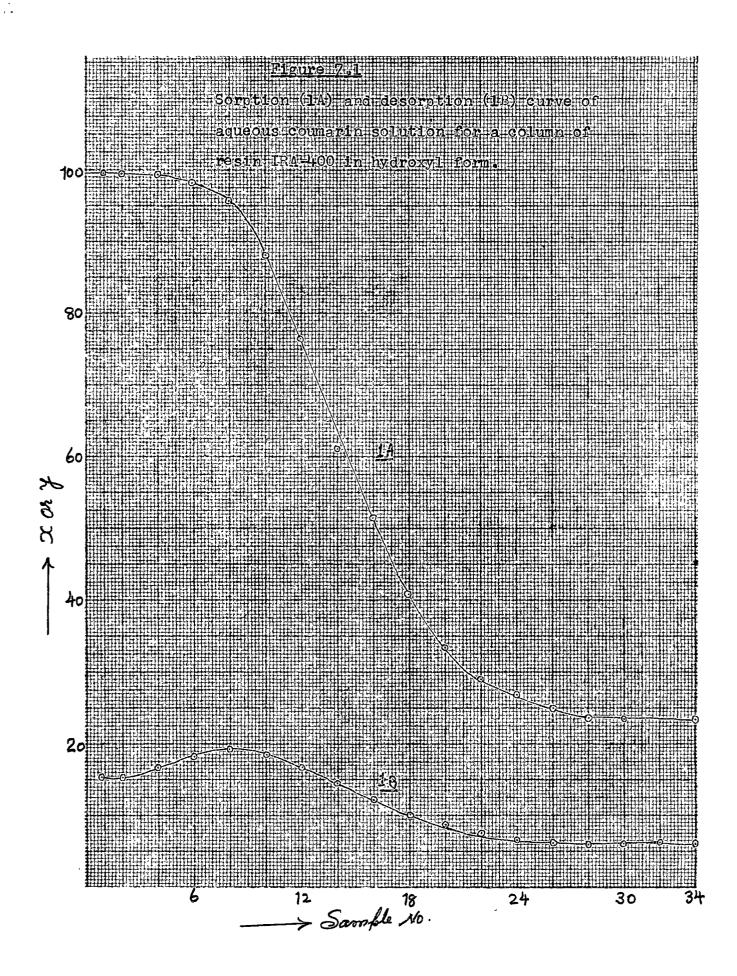
SORPTION STUDIES WITH COUMARINS

Sorption of weak nonelectrolytes on ionexchange resins has been investigated by several workers (1-20); no study with coumarins is, however, available. So the column sorption-desorption of coumarin with water and methanol as solvents and the comparative sorption of coumarin and twelve substituted coumarins in 10 % methanol (by volume) on a strongly basic anion-exchange resin, Amberlite IRA-400, are described in this chapter (22).

Experimental :

<u>Resin</u>: The resin used was Amberlite IRA-400 (Rohm and Haas Co.). This is a strongly basic anion exchange resin, obtained by introducing strongly basic quaternary ammonium groups, as ionogenic groups, into a styrene divinylbenzene copolymer. The resin was air-dried and -40,+60 mesh fraction was used in this work.

The resin was cycled thrice between sodium chloride and sodium hydroxide, finally regenerated with a large excess of sodium hydroxide, washed free of alkali, air-dried, and stored. The moisture content was estimated by drying samples (~ 0.5 g.) to a constant weight at 105°C. For capacity estimation, weighed samples (~ 0.5 g.) were placed in contact with 50 cc. of standard hydrochloric acid (~ 0.1 N) with intermittent shaking and the acid sorbed was estimated: Moisture content = 21.15 %; capacity per g. of air-dried and oven dried resin = 2.035 meq. and 2.58 meq. respectively.


<u>Chemicals</u>: 8-Hydroxycoumarin, 7,8-dihydroxy-4-methylcoumarin and 7,8-dimethoxycoumarin were obtained from Prof.S.M.Sethna's

laboratory, were recrystallised and checked for melting points. Coumarin and rest of substituted coumarins were from samples used in chapter 6. Hydrochloric acid and sodium hydroxide of A.R. quality, distilled water and distilled methanol(B.D.H.)were used.

<u>Procedure</u> : Coumarin and substituted coumarins were estimated in column effluent samples by ultraviolet absorption(21)with Beckman Model DU spectrophotometer, using 10 mm. quartz cells. <u>Results and Discussion</u> :

Run one : A resin column of the following column data was set up : capacity of the resin in the column = 92 meq. bed volume = 123 ml. bed length = 53.5 cm, void-volume = 30 ml. An aqueous coumarin solution $(5.49 \times 10^{-4} \text{ M})$ was passed downflow in the column at the rate of 10 ml./min. and 36 samples (each of 100 ml.) were collected. The first sample included 30 ml. of water from void-volume. The first sample and then even numbered samples were estimated for coumarin. Let 'a' and b' denote for the sorption run the concentration (in g. moles/litre) of solute in the influent solution and effluent samples respectively ; then 100(a-b) / a is denoted by x. The sorption curve is obtained by plotting x against the effluent sample number. The sorption curve obtained in this way is shown in Fig. 7.1. Plot 1 A.

After 36th sample, the column was drained, backwashed with distilled water, resin allowed to settle, and then distilled water was passed downflow at the rate of 10 ml./min.; 36 samples (each of 100 ml.) were collected. The first and then the even numbered samples were estimated for coumarin. Let b denote the concentration of solute (in g.moles./litre)

Table 7.01 a

Sorption of coumaring solution with water on Amberlite IRA_400 in hydroxyl form

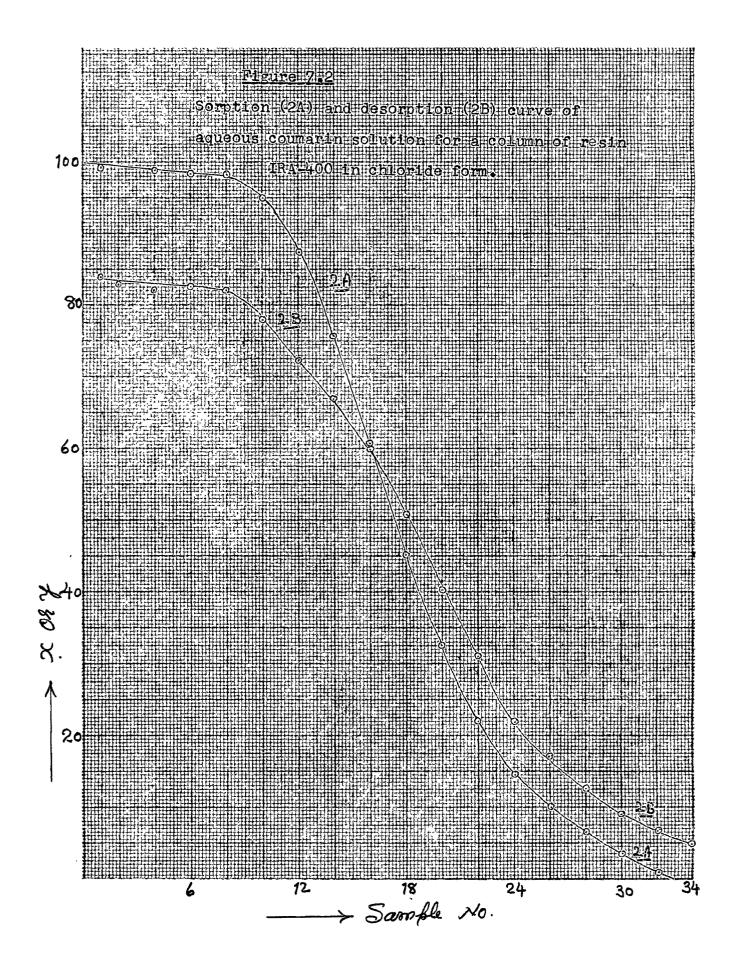

Bample No.	X	Sample No.	x	Sample No.	x
1	100	14	61.5	26	25.8
2	100	16	50.2	28	24.4
4	100	18	42.2	30	24.0
6	100	20	34.0	32	24.0
8	95.9	22	29.7	34	24.0
10	88.3	24	27.8	36	24.0
12	76.8				

Table 7.01 b

Elution of coumarin after the above run with water

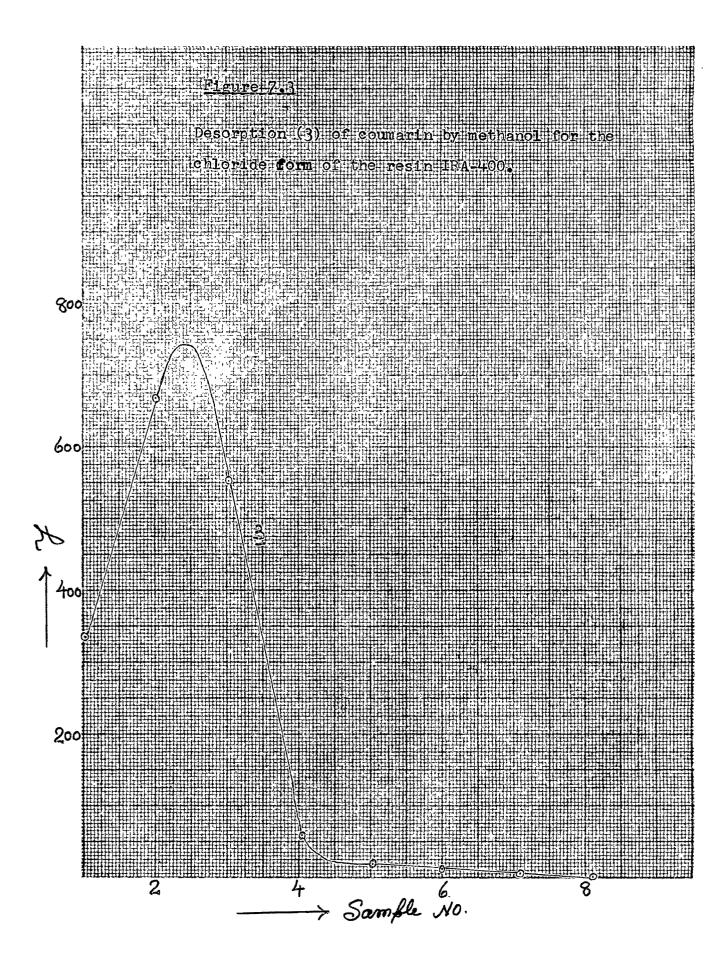
Sample No.	У	Sample No.	У	S _{amp} le No.	У
1	15.7	1 ¹ +	14.9	28	6.0
2	15.9	16	12.6	30	5.9
կ	16.9	18	10.6	32	5.8
6	18.4	20	9.0	34	5.8
8	19.5	22	7.8	36	5.8
10	18.8	24	7.1	38	5.8
12	17.1	26	6.4		

۲

Table 7.02 a

from in Sorption of coumaring solution with water on IRA_400 in chloride form.

Sample No.	x	Sample No.	x	Sample No.	x
1	100	12	87.4	24	15.2
2	100	Jj÷	75.9	26	10.0
4	100	16	61.2	28	5.2
6	100	18	45.7	30	3.0
8	100	20	33• 3	32	1.5
10	95	22	22.8	34	0,0


Table 7.02 b

Elution of coumarin after the above run with water

Sample No.	¥	sample No.	¥	samyle No.	¥
1	84.0	14	67.1	28	10.0
2	82.8	16	60.9	30	6.8
4	81.9	18	56.0	32	4.5
6	82.8	20	38.5	34	2.6
8	82.2	22	29.9	36	1.3
10	77.6	24	19.9	38	0,4
12	70,5	26	15.6	40	0.1

ż

. ,

Table 7.03 b

Elution of coumarin after the absorption of aqueous solution of coumarin with methanol

Sample No.	у	Sample No.	У	
l	3 ¹⁴ 7 ⁺	6	10.5	
2	669	7	8.0	
3	551	8	1 _{4•} 0	
<u>1</u> .	63	9	1.5	
- 5	22.5	10	0,0	
	l			

1

۰ , $\frac{\text{Table 7.04}}{\text{from}}$ Sorption of coumaring solution in 10 % methanol on IRA-400 in chloride form.

Sample No.	x	Sample No.	X T	Sample No.	x
1	62.3	6	1. 57	12	0,5
2	19.4	8	0.87	14	0.17
4	14 ° 14	10	0.7	-	-

Ta	bl	е (7.	05
	launigin i sprandi S	-		-

Sorption of 7,8-dimethoxycoumaring solution in 10 % methanol on IRA-400 in chloride form.

Samplé No.	x	Sample No.	X	Sample No.	x
J.	53.9	6	5 . 4	12	2.0
2	18.9	3 8	3.5	14	1.2
14	8.3	10	2.9	16	-

from Sorption of 6,7-dimethoxy-4-methylcoumaring solution in 10 % methanol on IRA-400 in chloride form.

Sample No	x	Sample No	x	Sample No	x
· 1	55.0	6	8.6	12	3.7
2	22.2	8	5.4	14	2.1
)†	11.4	10	4.6	15	0.8

Table 7.07

Sorption of 8-methoxycoumaring solution in 10 % methanol on IRA-400 in chloride form.

Sample No.	x	Sample No.	x	Sample No.	x	Anned an annuum of
l	72,2	6	5.8	12	0,3	
2	33.6	8	2.5	14	- '	
λ μ .	12.5	lo	1.1	16	′ 🕳	

Sorption of 3-methylcoumarin $_{\text{A}}$ solution in 10 % methanol on IRA-400 in chloride form.

Sample No.	x	Sample No.	x	Sample No.	x	9,1
1 .	75.8	6	5.6	12	0.7	
2	35.71	8	3.1	14	0.7	
ւ	14.2	10	1,1	16	0.5	

Table 7.09

from Sorption of 7-methylcoumaringsolution in 10 % methanol on IRA-400 in chloride form.

Sample No.	x	Sample No.	x	Sample No.	x	
l	79.2	6	8.7	12	2,9	
2	38.9	8	5.3	77+	= 2 , 2	
4	16.6	10	4.1	16	-	

;

,

Sorption of 8-hydroxycoumaringsolution in 10 % methanol on IRA-400 in chloride form.

•

Sample No.	x	Sample No.	x	Sample No.	x
1	92.9	8	18.7	16	8.6
2	7 9• 5	10	13.5	18	8.3
, ¥	46.8	12	11.2	19	-
6	28.7	14	9.0	20	.
Sor on				from solutio Dumarin _d in 10	
Sample No.	x	Sample No.	x	Sample No.	x
1	96.0	8	22.4	16	7.6

l	96.0	8	22.4	16	7.6	
2	80.0	10	19.2	18	3•3	
4	49.3	12	17.2	19	2,8	
6	34• 3	14	14.2	20	-	

4

,

Sorption of 7-hydroxycoumaringsolution in 10 % methanol on IRA_400 in chloride form.

Sample No.	X	Sample No.	x	Sample No.	x
and the second second second second	100.0	8	46.8	16	25.6
2	98.0	10	36.6	18	24.5
<u>4</u> .	90.0	12	32.0	19	22.8
6	74.8	14	28.7	20	

Table 7.13

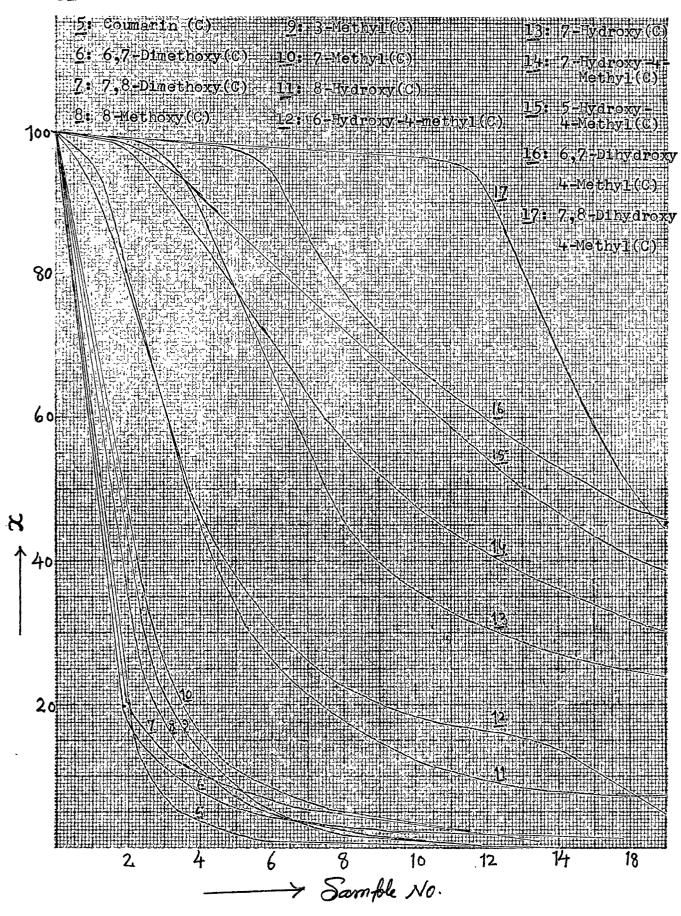
Sorption of 7-hydroxy-4-methylcoumaringsolution in 10 % methanol on IRA_400 in chloride form.

Sample No.	x	Sample No.	x	Sample No.	x
1	100.0	8	56.7	16	32.9
2	98.0	10	49.0	18	29.8
24	86.3	12	41.9	19	28.5
6	71,6	14	37.0	20	

Sorption of 5-hydroxy-4-methylcoumarin/solution in 10 % methanol on IRA-400 in chloride form.

Sample No.	x	Sample No.	x	Sample No.	x
1	100.0	8	72.8	16	40,9
2	98.0 100.0	10	62.1	18	38.9
Ն	91.2	12	54.7	19 5	38,0
6	82.4	14	47.8	20	-

Table 7.15


S orption of 6,7-dihydroxy-4-methylcoumaringsolution in 10 % methanol on IRA-400 in chloride fform.

Sample No.	x	Sample No.	x	Sample No.	x
l	100.0	8	78.2	16	49.6
2	100.0	. 10	67.8	18	44.2
<u>1</u>	98.5 100,0	12	60.3	19	43.7
6	93.6	14	54.0	20	-
					~

`____

;

Curve

Table 7.16.

from Sorption of 7,8-dihydroxy-4-methylcoumarin/solution in 10 % methanol on IRA-400 in chloride form.

Sample No.	x	Sample No.	x	
۲	100.0	12	90.1	
2	100.0	1 ¹ +	72.1	
) _t	99•5	16	50.3	
6	98.1	18	39.7	
8	97.4	19	36.9	
10	96.7	20	-	
				1999 yr 1997 yw 1994 yw 1994 yw 1994 yw 1994 yw 1994

for the desorption run in the effluent samples. Then 100 b/a is denoted by y and the plot of y against effluent sample number provides the desorption curve. The plot 1 B in Fig. 7.1 is the desorption curve obtained in this way. Fig. 7.1 indicates that, on the hydroxy form of the resin used, the break-through for the sorption curve 1A is not sharp and the elution (1B) is slow.

Run two : Another resin column (capacity of the resin in the column = 81.4 meq.) was set up, a large excess of sodium chloride solution was passed , and then washed free of chloride ions with distilled water. The resin was then in chlofide form and the column data were : bed volume = 112 ml, bed length = 47 cm, void volume = 30 ml. An aqueous solution of coumarin $(5.571 \times 10 \text{ M})$ was passed downflow in the column at the rate of 10 cc./min. and 36 samples (each of 100 ml.) were collected. The first sample included 30 ml. of water from void-volume. The first and the even numbered samples were estimated for coumarin. In figure 7.2, plot 2 A shows the sorption curve, obtained by the precedure noted above. The column was then drained, backwashed with distilled water, resin bed allowed to settle, and then distilled water passed downflow at the rate of 10 ml./min. 36 samples, each of 100 ml, were collected. The first and then eyen numbered samples were estimated for coumarin and the desorption curve 28 in figure 7.2 was obtained by the procedure detailed above.

Comparison of figures 7.1 and 7.2 indicates that the chloride form of resin used is more suitable for sorptiondesorption of coumarin from aqueous solution than the hydroxyl

form of the resin. From plot 2A (Fig.7.2), the amount of coumarin sorbed per 100 meq. of resin is calculated to be equal to 12.14×10 g. moles,

<u>Run three</u>: After run two, the same resin column was further washed with a large excess of distilled water, backwashed, and the resin allowed to settle. 3.6 lit**ves** of aqueous coumarin solution (5.30 x 10 M) were passed downflow at the rate of 10 ml./min. The column was then drained, backwashed with methanol and resin bed allowed to settle. Then methanol was passed in the column downflow at the rate of 5 ml./min. 10 samples (each of 100 ml.) were collected and estimated for coumarin. The desorption curve obtained is given in figure 7.3. Comparision of figure 7.3 and curve 2B in figure 7.2 indicates that methanol is more suitable for desorption of coumarin for the chloride form of the resin used than water.

<u>Run four</u> : After run three, the resin column was further washed with excess of methanol, backwashed with methanol and resin bed allowed to settle. A solution of coumarin in methanol (55.0×10 M) was passed downflow in the column at the rate of 5 ml./min. The samples (100 ml. each) were collected and estimated for coumarin. The first sample included 30 ml. of solvent from void-volume. The values of x for first three effluent samples were 75.5, 4.2 and 0.0. The coumarin sorbed per 100 meq. of resin is calculated equal to 3.85×10^{-4} g. moles. A comparison with sorption run in run two indicates that though the ratio of coumarin concentrations in influent solution is 9.87, the ratio of amounts of coumarin

sorbed per 100 meq. of resin is only 0.317. This supports that methanol is less suitable for sorption and more suitable for desorption of coumarin on the chloride form of the resin.

<u>Bun five</u> : Another column of the resin (capacity of the resin in the column = 6.1 meq.) was set up and the resin converted into chloride form. Excess of 10 % methanol (by volume) was then passed in the column. The column data were : bed-volume = 7.3 ml.; bed-length = 15.2 cms. A solution of coumarin in 10 % methanol (5.55×10^{-4} M) was passed in the column downflow at the rate of 10 ml./min. and samples (100 ml. each) were collected. Curve 5 in figure 7.4 shows the sorption curve obtained by plotting x against sample number. The column was then washed with excess of each of the following: methanol, methanolic hydrochlorid acid, distilled water, aqueous sodium hydroxide, distilled water, aqueous sodium chloride, distilled water and 10 % methanol. The column was then backwashed with 10 % methanol and resin bed allowed to settle.

Run 6 to 17 : Runs were repeated, using the procedure set for run five, with solutions (5.55 x 10 M) in 10 % methanol for each of the following : 7,8-diMeO (I), 6,7-diMeO (I), 8-MeO (I), 3-Me(I), 7-Me(I),8-OH(I), 6-OH-4Me(I), 7-OH(I), 7-OH-4-Me(I), 5-OH-4-Me(I),6,7-di OH-4-Me(I) and 7,8-di OH-4-Me(I). The sorption curves (6 to 17) are shown in figure 7.4. (I) denotes coumarin.

The family of 13 sorption curves (5 to 17) in figure 7.4 indicates that coumarin and methoxy-, methyl-,

and hydroxycoumarins are sorbed on the chloride form of strongly basic anion-exchange resin used in 10 % methanol. The sorption increases in the order : Coumarin< methoxycoumarins < methylcoumarins < hydroxycoumarins. For methoxycoumarins, the sorption study indicates that sorption increases in the order : dimethoxy < monomethoxy and 8-methoxy < 6-methoxy. On the other hand, the sorption for hydroxycoumarins increases in the order : monohydroxy < dihydroxy and 6-hydroxy < 8-hydroxy < 7-hydroxy < 5-hydroxy.

In chapter 6, it was observed that from the ultraviolet absorption maxima, hydroxy and methoxy substitution, when the substitution was in 5,6,7, or 8 position in the benzene ring of coumarin, could not be distinguished; also, the same was true for 5- and 8-hydroxycoumarins. Figure 7.4 indicates that such cases could be distinguished from their sorption curves.

References :

- 1. Gregor, H.P., Collins, F.C. and Pope, M., J.Colloid Sci., <u>6</u>, 304 (1951).
- Wheaton, R.M. and Bauman, W.C., Ind. Eng. Chem., <u>45</u>, 2281 (1953).
- 3. Wheaton, R.M. and Bauman, W.C., Ann. N.Y. Acad. Sci., <u>57</u>, 159 (1953).
- 4. Simpson, D.W. and Bauman, W.C., Ind.Eng.Chem., <u>46</u>, 1958 (1954).
- 5. Anderson, R.E. and Hansen, R.D. Ind.Eng.Chem., <u>47</u>, 71 (1955).
- 6. Bafna, S.L. and Govindan, K.P. Ind.Eng.Chem., <u>48</u>, 310 (1956).
- 7. Chasanov, M.G. and Kunin, R. and McGervey, F.X., Ind.Eng.Chem., <u>48</u>, 305 (1956).
- 8. Reichenberg, D. and Wall, W.F., J.Chem.Soc., 3364 (1956).
- 9. Samuelson, 0., Dechema-Monograph, <u>26</u>, 219 (1956).
- 10. Govindan, K.P. and Bafna, S.L., J.Sci.Ind.Res., (India), <u>16B</u>, 321 (1957).
- 11. Clerk, I.T., Anal.Chem., <u>30</u>, 1676 (1958).
- 12. Cerrai, E. and Godoa, F., Nature, <u>183</u>, 1528 (1959).
- 13. Radzitzky, P.de., Ind. Chem. Belge. Suppl., 1, 156 (1959).
- 14. Tamamushi, B. and Tamki, K., Trans. Faraday Soc., 55, 1013 (1959).
- 15. Wasmer, H.B., J.Polymer Sci., <u>36</u>, 461 (1959).
- 16. Cesarano, C. and Lepscky, C., J. Inorg. Nucl. Chem., 14, 276 (1960).

- 17. Sargent, R.N. and Graham, D.L., Ind.Eng.Chem.Process Design Develop., <u>1</u>, 56 (1962).
- Turse, R., Gerdes, W.H. and Rieman, W., Z. Physik. Chem.,
 33, 219 (1962).
- 19. Vassiltou, B. and Dranoff, J., A.I. Chem. Eng. J., <u>8</u>, 248 (1962).
- 20. Griffin, R.P. and Dranoff, J.J., J.Chem.Soc., 283 (1963).
- 21. Shah, R.S. and Bafna, S.L., Indian.J.Chem., <u>1</u>, 400 (1963).
- 22. Shah, R.S. and Bafna, S.L., J.Indian.Chem.Soc., <u>42</u>, 179 (1965).

SEPARATION OF COUMARINS

In this chapter, the separation of mixtures of some coumarins (1), at room temperature ($\sim 30^{\circ}$ C) is described. Experimental :

<u>Resin and Chemicals</u>: The resin used was a strongly basic anion exchanger, Amberlite IRA-400 (Rohm and Hass); this and the chemicals used were from the samples used in the earlier work (1,2).

Procedure : A column of the resin Amberlite IRA-400 in the hydroxyl form was set up. The column data were : moisture content of the air-dry resin = 21.15 %; capacity of the air-dry resin per gm = 2.035 meq. ; capacity of the resin in the column = 20.37 meq. ; bedvolume = 25.0 ml. ; bedlength = 49.0 cms. The resin was converted into the chloride form by passing a large excess of sodium chloride solution. The column was then washed free of chloride ions, backwashed and allowed to settle under gravity. Then several bedvolumes of 10 % methanol (100 ml. of methanol made to a litre with distilled water) were passed to replace the water in the column. Then the solvent level was brought to the resin bed level and 50 ml. of the solution of coumarin in 10 %methanol were passed. The flow rate used in all the runs was 5 ml./minute. When the solution level was again at resin bed level, 10 ml. of the proper eluent were added and then the column was connected to an overhead reservoir of the eluent. The effluent was collected in samples. The first sample, numbered as v.v., was equal to the void volume. After this

100 ml. samples were collected and numbered as 1,2,3 and so on. The solute content in the effluent was estimated by ultraviolet absorption (3) using Beckman Model DU spectrophotometer and 10 mm. quartz cells. When the run was discontinued, the eluent was further passed, (without collecting the samples) to remove all the sorbed solute. The column was then washed free of the eluent with distilled water, backwashed, allowed to settle under gravity and 10 % methanol was passed to replace water in the column. The column was then ready for the next run, and the run was repeated for another compound.

In the separation studies, 50 ml. of the mixture in 10 % methanol were passed. When the solution level was at resin bedlevel, 10 ml. of the first elment were added and the column was connected to an overhead reservoir of the first eluent. The eluent was passed to elute the first component. Then the eluent was changed to the second elent to elute the second component. In the case of ternary mixtures, the eluent was then changed to the third eluent to elute the third component. Then the column was washed free of the eluent, backwashed, allowed to settle and water replaced by passing 10 % methanol. Then the procedure was repeated with the next mixture.

Nomenclature :

Table 8.1 a

ŧ"	

τ,

.

•

۰	Co	lumn elution dat	a of coumarins.	
Compound	= Couma	rin 3-Me(I)	3,4-diMe(I)	7-Me(I)
10 ² .w	= 2.82	2.92	2,88	2.93
Eluent	= a	a	a	a
Sample No	• Pw	= P =	P =	P _w =
v. v.			14-1999 WIN-9595-44-14-4880-4848-48-49-19	and a state of the
1		-	-	-
2	20.80	6.43	3 . 38	1.60
3	28.05	14.40	8.45	10.10
4	21.45	16.08	11.82	16.85
5	14.90	16.08	12.16	15.10
6	6, 11	12.85	11.50	13.50
7	4.95	11.26	10,15	11.80
8	1.65	8.03	9.50	9.20
9	R. D.	6.40	7.60	8.40
10		4.82	6.75	6.75
11		3.05	5.92	5.00
12		R. D.	5.10	R. D.
13			<u>}</u> +• j +O	
ጋነተ			3. 38	م
15			R, D,	

•

Column elution data of coumarins.

•

.

.

ð

.

Column elution data of coumarins.

Compound	=	7-0H(I)	7-0H(I)	7-0H(I)	7-0H(I)	7-0H(I)
10 ² .W	=	2.82	2.82	2,90	2.87	2.89
Eluent	=	a	Ъ	c ₁	с	C2
Sample No.	•	Р _w =	P_=	P _w =	P _w =	P _w = .
1.		2.	3.	4 .	5.	6.
v. v.		n 200			- -	
l		-	-	24.27	. 58.32	94.13
2			 ,	6.13	34.54	4.02
3		-		4.12	. 3.88	1,81
ì ₊		***		2.34	2.03	R. D.
5		-	-	2,10	0.73	
é	-		***	R. D.	$R_{\bullet} D_{\bullet}$	
7		-	0.22			
8			0.53			
9 '			1.15		,	
10		-	1.97			
11		-	3.00			
12		-	3.90			
				(Continue	ed on next pa	ga)

.

.

,

1.	2.	3. ¹ 4.	5.	6.
13		4. 50		adin adin artist kantle adina adin situ di an
14	-	5.20		
15		5.61		
16	-	5.85		
17	-	5.98		
18	-	6.10		
19	-	5.80		
20		5.10		•
21	R. D.	5 . 08		
22		4.99	,	
23		4.98		
2 ¹ +		4.60		
25		4.31		
26		$R_{\bullet} D_{\bullet}$		

,

.

.

Table 8.1 b (Continued)

1

;

•

Ta	ble	8.	1	С
Manthone	And the owner of the owner owner owner owner o	THE OWNER WHEN THE OWNER	-	

Compound =	6,7-diMeO- 4-Me(I)	7,8-diMeO(I)	8-0H(I)	. 9_ OH(I)
10 ² .w =	2.70	2.77	2.75	2.81
Eluent =	a	a	Ъ	с
Sample No.	P = ` w	P = W	P = W	P = W
. V. V.	nann hear sa dhaan ah an dhaan dha an dhaan dha an dhaan d	Millin Gran Allen angli Gran Allen a dan dan dan dan dan dan dan dan dan	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
1	-	-	-	70,21
2 2	8.57	3. 20	-	24,60
3	15.60	11.16		2.95
4	14,00	16.90	1.03	1.91
5	11,00	15.95	3.07	R. D.
6	9.35	12,70	5.60	
7	7.80	9.75	7.32	
8	7.00	7.50	8.43	
9	6.25	6.00	8.90	
10	5.45	¹ +• 30	8.80	
11	4.69	, 3.50	8.00	
12	3.90	2,50	7.23	
13	3.12	2.25	6.14	
14	$R_{\bullet} D_{\bullet}$	$R_{\bullet} D_{\bullet}$	5.27	
15			4.56	
16			4.03	
17			3.00	

Column elution data of coumarins,

,

، م

- }

Table 8.1 d

Column elution data of coumarins.

	979-11-0			,
Compound =	6,7-diOH_4-Me(I)	6,7%diOH_4_Me(I		
10 ² .w =	2,87	2,90	4-Me(1) 2.85	4-Me(I)
Eluent =	b	c	2.09 b	c
	کی ہوتے ہیں جب جب جب میں بین میں میں میں میں میں میں ایس میں ایس میں ایر	ما ويون حيرة ويون حيرة ويون من عال عال من حيل حيل حيل حيل الما عليه		ومع وقت شيد فيه الله عنه منه عنه ولا الله وم الله و
Sample No.	₽ _w =	P _w =	® _₩ =	P v =
V. V.			anna à 1944 anna 1960 anna 1960 anna 1960 anna 1970	1999 - Το
1	w i	141 _{4•} 61+		43.94
2	~~	42.78	*=	249.240
3) ***	9.19	-	5.36
λ ι.	-	3.10	-	1.34
5	-	0,12	-	R. D.
6	-	R. D.	-	
7	-		-	
8	800 I		-	
9	-			
10			-	
11	-		545	
12	-			
13			-	
14	-		-	
15		•		
16	-		***	
17	20		-	
18	~			
19	R. D.	•	R.D.	

	10 ² .w = 1.43	3. Components = 6,%,d1MeO_).+ 4-Me(T)	2. Components = 7-Me(I) 10 ² .w = 1.48	1. Components = 7-Me(I) 10 ² .w = 1.45	1. 2.	Mixture First No. component	υ. Φ	·
° (Continued on r	1. 41	ол -+ 8 0Н(I)	+ 7,8-diOH-4-Me(I) 1.42	+ 80H(I) 1. 41	μ. •	Second componant	Table & Separation of some mixtures	
		_ 8	e(I)	ı	Li -	Third component		
		ą	ູ ອີ	ą	5.	First component eluted with	coumarins.	
on next page)	•	۲ ۵	Q	Q .	eluted with			
	-	1	i	I		After elution of second component, third component eluted with		

93

.

;

10 ² . w	7. Components	10 ² W	6. Components	10 ² . W	5. Components	10 ² , w	4. Components	1.	nalę ordzach ordzania od stala najenia odki najenia od stala naje
= 0 <u>872</u>	= 6,7mdiMe0- 4-Me(I)	= 0.872	= 7-Me(I)	= 1,40	= 8-0H(I)	= 1, ¹ +3	= 6,7-d1Me0- 4-Me(T)	P .	n an
0.845	* 7-0H(I) +	0,838	+ 8-0H(I) +	1, 42	+ 7,8-diOH- / 4-Me(I)	1,42	+ 7,8-diOH - 4-Me(T)	ĥ	T <u>able 8</u>
1. 13	6,7-di0H- h-Me(I)	1, 14	7,8-d10H. 4-Me(I)		8		I	4.	T <u>able 8,2</u> (Continued)
	ß		Q		ರ್		a	भ	d)
	, סי		ರ		o		Q	6.	
	CO A		O		ſ		ł	7.	and an

、

.

Table 8,2 (Continued)

94

;

R.D. = run discontinued.

a	= 10 % methanol (prepared by diluting 100 ml. of
	methanol to one litre with distilled water).
Ъ	= $N/10$ HCl in 10 % methanol.
c	= $N/100$ HCl in methanol.
c ₁	= methanol.
C ₂	= 1 N HCl in methanol.

<u>Results and discussion</u> :

Table 8.1 gives the column elution data for coumarin and the substituted coumarins studied. From these data, it is observed that the compounds studied may be broadly divided into three groups : group A includes coumarin, 3-Me(I), 7-Me(I), 3,4-diMe(I), 6,7-diMeO-4-Me(I) and 7,8-diMeO(I); group B includes 7-OH(I) and 8-OH(I) and group C includes 6,7-diOH-4-Me(I) and 7,8-diOH-4-Me(I). It is observed that group A compounds are eluted with 10 % methanol, group B compounds are not eluted with 10 % methanol but are slowly eluted with N/10 HCl in 10 % methanol and also eluted with N/100 HCl in methanol and group C compounds are not eluted with 10 % methanol but are eluted with N/100 HCl in methanol. Hence it should be possible to separate the binary and ternary mixtures containing not more than one compound from each group.

Table 8.2 gives the binary and ternary mixtures which were studied to illustrate the validity of this procedure.

References :

- 1. Shah, R.S. and Bafna, S.L., Nature, 208, 76 (1965).
- 2. Shah, R.S. and Bafna, S.L., J.Ind. Chem.Soc., <u>42</u>, 179 (1965).

3. Shah, R.S. and Bafna, S.L., Ind.J. Chem., 1, 400 (1963).

1

•

• •