, .

CHAPTER 4 SORPTION ELUTION ,

.

,

.

,

•

,

,

÷

.

¥

¢

-

,

4.1 INTRODUCTION

Chromatography¹⁻²⁰ is a physical method of separation in which the components to be separated are distributed between two phases one of these phases constituting a stationary bed of large surface area, the other being a fluid that percolates through or along the stationary bed. The separation of the components depends upon the differential migration resulting from a resistive action, namely selective sorption of the components of the mixture. Chromatography is the most variable and in many respects the most adaptable technique in all branches of science, because it may be used for the examination of avariety of chemical substances.

The two major subdivisions of chromatography, based on the mobile phase used, are gas chromatography and liquid chromatography, of which the former has extraordinary success. However, only about 15% of organic compounds are ameanable to gas chromatographic analysis. Insufficient volatility and thermal instability of many organic compounds are mainly responsible for this unfortunate limitation imposed on gas chromatography.

Liquid chromatography was in limited use even from ancient times though the principles underlying this remained unrecognised, for example, the utility of some earths for the purification of sea water was known even to Aristotle. The tremendous advances in researches in biochemistry, diagnostic medicine and pharmaceutical materials are mainly responsible for triggering the explosive growth of liquid chromatography,

as many of the substances falling under these heads are nonvolatile.

In liquid chromatography, the stationary phase may be solid or liquid. Liquid chromatography using solid as the stationary phase is potentially more useful branch, since it possesses certain advantages such as greater speed and separation efficiency, ease of automation and uncontrolled operation, easier quantitation and possibility of achieving preparative separations. Liquid-solid chromatography can be classified, based on the way in which the solid stationary phase is used, as column chromatography, thin layer chromatography and paper chromatography.

Liquid-solid chromatography in columns was the first form of chromatography. It was introduced by the Kussian botanist Tswett (1905) during the investigation of plant pigments. However, the technique remained practically ignored for a number of years and it is only when Kuhn, Winterstein and Lederer (1931) reported the separation of carotenes and xanthophylls on the columns of alumina and calcium carbonate, that it has attracted attention of investigators who have shown that the chromatographic analysis can render greater service in many areas of enquiry.

Soon after this "rediscovery of chromatography", Adams and Holmes found that ion exchange could be performed on finely ground gramaphone records. This led to the development of synthetic ion exchange resins. An enormous development of different applications of ion exchange emerged, the most important among these being, ion exchange chromatography.

Systematic study of the phenomena of ion exchange revealed the great potential of ion exchangers in quantitative analysis and the real breakthrough of ion exchange was the release of information about the separation of rare earths demonstrating the possibilities of ion exchange chromatography in the separation of species with almost identical properties.

١

Ion exclusion, reported by Wheaton and Bauman (1953)^{21,22}, is one of the several new developments involving ion exchange resins. It is a molecular process whereby a nonionic solute is removed from the solution into the resin phase by sorption and the ionic solutes are excluded by the Donnan effect, the nonionic solutes are then can be physically displaced from the resin by washing with the proper developing agent. This process appears to have its utility in the deionization of aqueous solutions of nonpolar or slightly polar solutes such as alcohols, glycols, weak organic acids, ketones and amino acids.

The technique of ion exclusion has been extended to the separation of two or more nonionic compounds. Most ion exchange resins show pronounced differences in their affinities for various nonelectrolytes and can then be used as stationary phase for the separation of many organic compounds.²¹⁻⁶⁹ The scope of this separation method can be broadened by altering conditions in one of the phases. The replacement of water with concentrated electrolyte solution as developer has the effect of salting different solutes into the internal phase to various degrees and thus offering separations that are not possible in water. This technique is known as 'salting out chromatography! Similarly, the relative distribution of some pairs of compounds can be altered by using a mixture of water and organic solvent as the developer, and the technique is called 'solubilization chromatography!

Thus the term 'ion exchange chromatography', in a broader sense, covers all chromatographic separations, ionic as well as nonionic substances carried on with ion exchange resins.

4,1-1 Techniques :

There are essentially three methods of performing column liquid chromatography. These are :

(i) Frontal analysis : In this technique the solution of the mixture of substances is introduced continuously into the column. Only a part of the least sorbed component is obtained in the pure form. The method is not attractive for preparative requirements as well as for analytical purposes.

(ii) <u>Displacement analysis</u>: In this technique the components of the mixture, initially sorbed in the column, are successively displaced (depending on the affinity for the stationary phase) by continuously passing the solution of a substance which is more strongly sorbed than the components present in the mixture. In this case also the separation of the components is not complete.

(iii) <u>Elution analysis</u>: In this technique the sample, initially sorbed on the top of the column, is washed down with an appropriate developer (eluent or solvent). The components often leave the column in pure form. One of its disadvantages

is much smaller capacity of the column and much higher consumption of the solvent. Simple elution (using a single solvent), stepwise elution (using several solvents successively with increasing elution capacity) and gradient elution (varying the nature of the solvent gradually and continuously, but not in steps, so that a mixture of uniformly changing composition is introduced into the column) are the three methods of carrying out the elution analysis. 4.1-2 Theory of Chromatography1-100:

The ultimate goal of theories of chromatography is to provide means for predicting from known, or independently measurable fundamental properties, performance of columns under given conditions and optimum conditions for given separations. However, the general theories of column performance are too complex to be solved by mathematical analysis unless very drastic simplifications are introduced and numerous simplifying assumptions are made. Inspite of these limitations, fundamental data can be used to derive simple useful relationships which serve as helpful guides in obtaining optimum operating conditions.

In general, three quantities of the chromatogram are of interest, the time necessary to elute a given component from the column, the width of the peak and the completeness of the separation (resolution).

The elution curve in chromatography represents the distribution of concentration with time and is therefore a probability density curve. Although these curves are generally asymmetric for ease of interpretation they are usually

considered symmetric and described mathematically by a Gaussian curve. Under these conditions it is possible to relate the rate of movement of the zone expressed in terms of the volume of eluent, from the start to the emergence from the column of the midpoint of the peak, to the distribution coefficient (Section 4.4-1).

Two parameters can be used to describe peak widths, the variance σ^{-2} and the number of theoretical plates, No or the plate height, H. σ is the half of the width measured at the ordinate of Cm/Vē, where Cm is the peak height of the elution curve. In the literature equations are given correlating σ^{-2} with the distribution coefficient and the column parameters, 70-96

The theoretical plate concept was introduced by Martin and Synge, who recognized the similarity in the chromatographic process to that taking place in distillation columns. The concept was applied to ion exchange columns by Mayer and Tompkins and later modified by Glueckauf, who based his analysis on a continuous flow model. The theory brings out effects arising from the operating parameters, such as flow rate, feed concentration, particle size etc.. It also includes the distribution coefficient of a component being separated and all possible diffusion effects. Despite the value of this approach in characterizing the efficiency of distillation columns and extractors, its physical significance in chromatography is questionable. Nevertheless the measured quantities N and H are useful for characterizing band spreading and the efficiency of a chromatographic system. Other factors being equal, for a given size of the column, its efficiency will be greater, the larger the number of theoretical plates or smaller the plate height. Also, in using it to compare the performance of different columns, one finds that their ability to separate substances does not increase in parallel with a decrease in plate height. This is obviously a practical disadvantage.

Thus it can be seen that the size, shape and position of the peaks on the chromatogram can be calculated with some success from fundamental data and the various compromises necessary in striving for optimal column performance.

Another important parameter used as a quantitative measure of the ability of a column to separate two given components is resolution. In mathematical terms it is a measure of the degree of separation of zones, represented as

$$R_n = \Delta Z/n(\sigma_1 + \sigma_2)$$

where ΔZ is the gap between the centres of the peaks of the two neighbouring zones, σ_1 and σ_2 , the standard deviations of the two zones, n is an intiger greater than zero. The magnitude of n indicates the degree to which the gap between the two zones is filled and the crosscontamination by zone spreading. The value of n depends on the type of problem and chromatography and the degree of separation required. In liquid chromatography the generally accepted criterion of minimum resolution is to select the value of n as 3. This means that after having devided the effluent into fraction at a point Ve = Vm; + 3 σ_1 at least 99.86% of each of the components is in its appropriate fraction and the impurity amounts to at the most 0.14% of the peak of the contagious component.

Thus resolution can act as one bridge between theory and practice. However, it does not describe the physical and chemical factors which are the causes of the separation. It must also be emphasized that the resolution is not a complete measure of practical success. It provides no inkling of the time which may be consumed in achieving the separation nor does it guarantee that the zones are readily detectable. Nonetheless, it is a practical measure of some worth, if its limitations are kept in mind.

4.2 EXPERIMENTAL

For preparing a resin column, definite quantity of the air dried resin, Dowex 50W-X4 (100/200), hydrogen form (Chapter 3), was weighed, soaked in distilled water in a beaker and then transferred carefully into a pyrex glass column. The length (L), bed volume (Vb), void volume (Vi), and disc volume (Vd) were measured. The column capacity (C) was calculated from the amount of air dried resin taken in the column and its air dried capacity (c) per gram of the resin. All these quantities are reported in Table 4.2-1 for various columns L_1, L_2 and L_3 used in this study.

The solutions of benzoic acids and the solvents were prepared as described in Section 3.2.

The resin column was conditioned prior to performing the elution run by washing it with several bed volumes of the

solvent to be used as eluent, back washed by passing the solvent upwards with sufficient speed to loosen the resin and to remove air bubbles. The resin was then allowed to settle under gravity to achieve a size classification within the column.

For carrying out the elution run, the liquid level was brought to the resin bed level. Then 25 ml of benzoic acid solution to be analyzed were added carefully from the top of the resin bed so that the surface layer of the resin was disturbed as little as possible. The solution was allowed to sink into the resin by opening the pinch cock at the lower end of the column. The effluent was collected in a 25 ml measuring flask and it was marked as sample number 1. When the liquid level was again at the resin bed level, 5 ml of the eluent were added to rinse the inside of the column above the resin bed, and it was allowed to sink into the resin. Then the column was connected to an overhead reservoir of the eluent and the continuous elution was carried out at the rate of 2 ml per minute. The effluent was collected in 25 ml measuring flasks and numbered as 2, 3 and so on.

The solute content in each sample was estimated by the ultraviolet absorption. W and Ws denote the solute content in millimoles in the feed solution (25 ml) initially sorbed on the resin bed and in the effluent sample (25 ml) respectively.

After the run was completed the column was washed with distilled water and conditioned with the solvent to be used for the next run.

The same procedure was followed for the column elution of the mixtures of benzoic acids.

وبد وبدو من الله الله الله الله الله الله الله الل		ومعرفية أرود فالأرد فيود أوادك	ويستر حدول بالمؤسوق متعلة المناز مح	a mail a mai	، میں میں اور	وي والدي وحد وحد وحد وحد وحد		وببه ويبد ويحد وعبد ويبد ويبد		
Column	ı L	1030	103Vb	103V1	10 ³ Vd	10 ³ Vf	10 ³ Vo	10 ² √C	10 ² a,	10 ³ a2
The state and the state and the	cm	eq	liter	liter	liter	liter	liter	والمرد والمردو والمردو والمردو والمردو والمردو والمردو والمردو	استا خواجه بدخ معاودها	
L,	56	170	140	55	15	25	95	41	2.06	1.0
L_2	28	88	70	30	15	25	70	30	1.50	08
L3	15	46	40	15	15	25	55	22	1.10	0.6
ani ani ani ani an	(****C) ****(************	an an air an	5 1940 1940 1940 1940 1943 1944 1944 1944 1944 1944 1944 1944	Q anayo wataka mata anala anala ana	월 14일을 수 있을 수	nanti anti antianti mati antiana	g - 1999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997	الملاك والمتلك مستلك بالمتكل معالم المتكر	(مەلۇماتى <u>مە</u> لەر مەلەر مەل	and al find , <mark>alfind</mark> , alfind
L	± (Column	length							
C	= (olumn	capacit	y				1		
٧b	= Bed volume									
Vi	= Void volume									
Vd	= I	isc vo	lume (D	ead vol	ume)	-				
Vf	= Feed volume									
Vo	= V	vi + Va	+ Vf							
						1		·		

Table	4.2-1	:	Column	Parameters	:
-------	-------	---	--------	------------	---

a: = Column constant

 $a_2 = Column constant$

•

۰,

4.3 RESULTS

e

Table 4.3-1 : Column elution of p-OH benzoic acid on column L, and benzoic acid, p-OH and 2,3-diOH benzoic acids on column L₂ with water as solvent and eluent.

Benzoic acid	p=OH	H	p-0H	2,3-d10H
Column	L	L2	L ₂	L2
10 ² W	1.68	1.08	1.48	1.03
Sample No.		1(0 ² Ws	
1	· · · · · · · · · · · · · · · · · · ·	-	-	
2		-	-	0.02
3 /	-		-	0.17
) +	-	-	-	0,40
5	-	-	-	0.44
6	-	0,02	0.01	0.01
7	-	0.07	0.03	
8	-	0.17	0,11	-
9	-	0.35	0.26	~
10	*** .	0 •1+1+	0,60	
11	-	0.05	0,46	
12	-	-	0.01	
13	0.01	-	-	
14	0,02	-	-	
15	0.04	-		-
16	0_08	-	-	-
17	0.14	-	-	-
18	0,28	-	-	-
19	0,47	-	-	
20	0.47		-	-
21	0.13	-	-	-
22	0.01	-	-	-
23	-			-

Benzoic acid	o-OH	m-OH	р-ОН
10 ² W	2.15	7.15	3.64
Sample No.	발생님 소문 소문 수립 수업 ⁶ 수업 수 있는 사용 수업 수업 ⁴ 사용 수 명 수 명 수 명 수 명 수 명 수 명 수 명 수 명 수 명 수	10 ² Ws	Destination (Section
1-15	-	-	-
16	-	0.04	-
17	-	0.27	-
18	-	1.34	-
19		2,55	0,02
20	-	1.96	0,12
21	, , –	0.82	0,56
22	**	0.21	1.11
23	-	0 .02	0,99
24	0.03	-	0.51
25	0.09	—	0,19
26	0.27	-	0.06
27	0.51		0,02
28	0,56	-	0.01
29	0_1+0	-	-
30	0,20	-	
31	0.07	~	-
32	0.02	-	
33	•••	-	-

Table 4.3-2 : Column elution of monohydroxybenzoic acids on column L; with 0.01N aqueous hydrochloric acid as solvent and eluent.

- -

_ __

Benzoic acid	o-0Me	m-OMe	p-OMe
10 ² W	8 "20	4.65	1.09
Sample No.		10 ² Ws	n - 110 and - 110 - 110 - 110 - 110 - 110 - 110 - 110
1-25	-400		
26	0.03	-	
27	0.09	-	-
2 8	0_28	•	-
29	0,76		
30	1.53	-	-
31	1.98		-
32	1.69	-	-
33	0.99	-	-
34	0.49	-	-
35	0.19	-	-
36	0.07	-	-
37	0_02	-	-
38	-	-	
39	-	0.03	-
40		0.07	
41	-	0.16	-
42	,	0.32	0.01
43	-	0.52	0.03
2424	-	0.69	0.06
45	-	0 .7 4	0.09
46	-	0.66	0.14
47	-	0.54	0.17
48	- , -	0.38	0.17
49		0.25	0.14
50	, in the second	0.16	0.11
51	-	0.09	0.07
52	-	0.05	0.04
53	-	#	0.02
514	-		0.01
55	-		-

Table 4.3-3 : Column elution of monomethoxybenzoic acids on column L; with 0.01N aqueous hydrochloric acid as solvent and eluent.

Benzoic acid	2,3-d10H	2,4-diOH	2,5-di(
10 ² W	10,20	6,21	1,81
Sample No.		10 ² Ws	
1-16	-	-	-
17	0.01	-	-
18	0.22	·	- 0.01
19	1.52	-	0.14
20	3.22	-	0.47
21	2,90	-	0.58
22	1.53	· .	0.38
23	0,58	-	0.17
24	0.15	هزي	0.10
25	0.04	-	0.02
26	-	0.05	
27	-	0,28	-
. 28	-	0,83	-
29	-	1.34	-
30	-	1.34	-
31	-	1,02	
32	-	0,66	-
33	-	0.39	-
314	-	0.21	-
35	-	0,10	-
36		0.05	-
37	-	-	

Table 4.3-4 : Column elution of 2,3-, 2,4- and 2,5-diOH benzoic acids on column L, with 0.01N aqueous hydrochloric acid as solvent and eluent.

Table 4.3-5 :	Column elution of 2,6-, 3,4- and 3,5-d10H
	benzoic acids on column L; with 0.01N aqueous
	hydrochloric acid as solvent and eluent.

Benzoic acid 10 ² W Sample No.	2,6-d10H 2.35	3,4-d10H 2.01 10 ² Ws	3,5-d10H 2.56
1_4	ĸĸġĸĸġŧĸĸġŀĸĸġŀĸĸġŀĸĸġŀĸĸġŀĸĸġŀĸĸġŀĸĸġŀĸ	45	
5	0.01	-	-
6	0.27	-	-
7	1,20	-	-
. 8	0,80	-	-
9	0,08	-	-
10	0.02		-
11	0.01	` —	-
12		-	-
13	-	-	0.01
14	-	0.02	0.06
15	· •••	0.21	0.51
16	***	0.68	1.14
17	-	0.71	0.61
18	-	0,30	0.21
19	-	0.06	0.04
20	• 🕳	0.01	-
21	-	- .	-

.

.

Table 4.3-6 :	Column elution of monohydroxybenzoic acids on
	column L, with 10% dioxan in 0.01N aqueous
	hydrochloric acid as solvent and eluent.

Benzoic acid	OH OH	m-OH	p-OH
10 ² W	11,10	8,62	4.28
Sample No.		10 ² Ws	
1-9		· · · · · · · · · · · · · · · · · · ·	•
10	*	0.36	0,02
11	-	3.22	0.32
12	- 444 - 1	3.92	1.70
13	-	0.96	1.79
14	0.08	0.07	0.45
15	1.05	-	0.03
16	3.82	-	
17	4.05	-	-
18	1.61		
19	0.29	· •	
20	-	-	

,

Table 4.3-7 : Column elution of monomethoxybenzoic acids on column L, with 10% dioxan in 0.01N aqueous

m-OMe p-OMe Benzoic acid o-OMe $10^2 W$ 9.85 2.35 10,93 $10^2 Ws$ Sample No. 1-13 14 0.15 15 1.37 4.07 16 3.74 17 0.03 0.01 1.27 18 0,20 0.18 0.07 19 0,25 0.88 20 0.55 2.19 21 0.70 2.95 22 2.11 0,50 23 24 1.09 0.20 0.06 25 0.39 0.01 26 0.12 27 -

hydrochloric acid as solvent and eluent,

	as solvent	and eluent	t.	
Benzoic acid	l p-C1	p-OEt	p-n-OFr	2-0H-4-0Et
10 ² W	1.49	2,29	0_88	2_44
Sample No.		-	10 ² Ws	
1-19	-			-
20	0.02	-	~	-
21	0.09	-	-	-
22	0.27	-	-	-
23	0.47	-	-	-
24	0,41	0.01	-	-
25	0.19	0.06		1 449
26	0_06	0.17		
27	0.01	0.37		-
28	=	0,52	-	-
29		0,52	-	-
30	-	0.37		-
31	-	0,20		~
32	et	0,08	0.01	0.01
33	-	0.02	0,02	0.03
34	-	-	0.03	0.07
35	-	-	0.06	0,14
36	-		0,10	0.23
37	-		0.13	0,32
38	`	-	0.14	0,38
39	-		0.14	0,38
40	-	-	0.12	0,32
41	-	-	0.08	0.25
42		-	0.05	0.17
43	-	-	0.02	0.11
<u>]+</u>]+	· 🖛		0.01	0.06
45		-	-	0,03
46	-			

Table 4.3-8 : Column elution of p-Cl, p-OEt, p-n-OFr and 2-OH-4-OEt benzoic acids on column L; with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent. Table 4.3-9 : Column elution of dihydroxybenzoic acids on column L_1 with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

Benzoic acid	2,3-diOH	2,4-d10H	2,5-d10H	2,6-d10H	3,4-d10H	3,5-d10H
10 ² W	1,18	3.51	³ +.00	3.04	1,00	1.99
Sample N		500	102			
1-3	2012 - 2013 - 2014 - 201	2.4 Br Bar Bar Strategier (Brief and Strateg	ann Le dù 270 m 270 m 2 ann			
<u>т</u> _ј ц	-		-	0,14		-
5	-			1.72	-	int
6	**		-	0.95	-	-
7		·	-	0.08	**	**
8	~	-	-	0.05	0=07	0,12
9	-	a t	-	0.03	0.54	1,07
10	-	a t	0.19	0,02	0.36	0.73
11	0.07	-	2.72	-	0.05	0.08
12	0.47	0.01	0.98	-	-	-
13	0.51	0,04	0.12	-	-	*
14	0.12	0,48	-	-	-	
15	0.01	1,44	-	-	-	**
16	46	1.16		-	~	1. 6878
17	· •••	0.36			-	
18	-	0.01+		-	2	-
19	-	-		-	-	

Table 4.3-10	:	Column elution of dimethoxybenzoic acids on
		column L, with 10% dioxan in 0.01N aqueous
		hydrochloric acid as solvent and eluent.
	-	al wat mat wat wat wat wat wat wat wat wat wat w

,

-

Benzoic acid	2.3-d10Me	2.4-d10Me	2.5-d10Me	2.6-d10Me	3.4-d10Me
10 ² W	2.86	1,48	0.63	1.73	1,72
Sample No.			$10^2 Ws$		
1-10		, 	~	. 	
11	-			0.11	-
12	-		r •••••	0,62	-
13	0.07	,		0.73	
14	0,49			0.23	-
15 .	1.18			0.02	
16	0_84	-	***	-	-
17	0.25		with	-	-
18	0.03	-	-		-
19	-	-	-	-	-
20	-	-		-	-
21		-	-	anges	0.02
22	-	-	-		0,09
23			0.01	-	0,23
24	-	0,02	0,04		0.36
25	-	0.07	0.09	-	0,39
26	-	0.18	0.14	-	0.31
27	·	0,29	0.15	-	0.19
28	-	0.33	.0.11		0.08
29	-	0.27	0.06	· •	0,03
30	-	0.17	0,02	-	-
31	mat	80.0	-	-	-
32	-	0.03	-	***	-
33	-	0.01	-	***	
34		-	-	-	-

,

Table 4.3-11 : Column elution of hydroxy-methoxybenzoic acids on column L; with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

•		·		
Benzoic acid 10 ² W	2-0H-3-0Me	2-0H-4-0Me	2-0H-5-0Me	4-0H-3-0Me
	6.12	2,06	6.28 ² Ws	3•93
Sample No.		national material contractions with a grant with a g		
1-11	445	-	-	-
12		-	-	0.05
13	. 	-	-	0.31
14	-	-	-	1.17
15	-	-	-	1,42
16	-	-	-	0.76
17	-		-	0.21
18	0.06	-	43	0,02
19	0.35	-	-	-
20	1.08	-		
21	1.71	.	0.10	~
22	1.54	-	0,48	-
23	0,92	-	1.13	-
24	0.38	-	1.62	-
25	0.11	0,02	1,52	
26	0.02	0.07	0.95	-
27		0,18	0,41	-
28	-	0.33	0,11	.
29	-	0,42		
30	-	0,42		-
31	-	0.30	-	
32	-	0,20	-	-
33	-	0.10	-	-
34	-	0.05	- .	
35		0.01	-	
36			-	-

Table 4.3-12 :	Column elution of benzoic acid and monohydroxy
	benzoic acids on column L_2 with 0.01N aqueous
	hydrochloric acid as solvent and eluent.

,

Benzoic acid	H	o-OH	m-OH	р-ОН
10 ² W	0.39	0,92	3.55	1,28
Sample No.	regionspray and and and and and and	10	² Ws	
1-8	. 🖛	-	~	-
9			0.50	
10	-	-	1.6+	0.01
11	0.01	-	1.12	0.10
12	0.13	-	0.25	0.41
13	0.18	0.07	0.03	0.50
14	0.08	0.25		0.21
15	0.01	0.35	-	0,04
16	-	0,21	-	
17	-	0.07	-	-
18	-	-	-	-

.

94 .

.

. .

`

Table 4.3-13 : Column elution of dihydroxybenzoic acids on column L_2 with 0.01N aqueous hydrochloric acid as solvent and eluent.

,

Benzoic acid	2,3-d10H	2,4-d10H	2,5-d10H	2,6-d10H	3,4-d10H	3,5-diOH
10 ² W	2,44	2,48	3.01	1.75	1,21	2,12
Sample N	0.	-	+	² _{Ws}	·	
1-2			96) 		1997) - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	-199 Aug ang ang ang ang ang ang ang ang ang an
3	-	۰ •)	0,25	. 🛋	-
ե	-		4 3	1,28	-	-
5	-	-	***	0.23		-
6			#\$	0,02	-	~
7	-		w3	-	0.01	0.01
8	-		0_04	-	0.15	0.34
9	0,03	-	0.33	-	0.59	1.04
10	0.21	-	1,25	-	0.39	0.61
11	0.81	-	1.02	-	0.07	0.10
12	0.87	, -	0.30	-		-
13	0.38	0.05	0.03	-	-	-
14	0.10	0.26	1 4	-	-	-
15	0.04	0.72	. 	-		-
16	0.02	0.78	-	-	-	-
17	-	0.47	-	-	-	-
18		0.19	-	-		-
19		0.05	-	-	-	-
20	-	t 480	-		-	-

,

Table 4.3-14 : Column elution of benzoic acid and 2,3-, 2,6and 3,5-dimethoxybenzoic acids on column L₂ with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

Benzoic acid	, H .	2,3-d10Me	2,6-d10Me	3,5-d10Me
10 ² W	0,94	1.67	1,56	0.58
Sample No.	and a state of the	10 ² W	ls	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1_1+	-	, . , .	-	-
5		-	0.03	-
6		0 _• 02	0.35	-
7	0.07	0.36	0,92	-
8	0.50	0.91	0.24	-
9	0.35	0.36	0.03	a t
10	0,03	0,02	-	-
11-17	-	-	-	-
18		-	-	0.03
19			-	0.07
20	~	-	-	0.11
21		-	-	0.13
22		-	-	0,11
23	-	-	-	0.07
24	-479		-	0.05
25		-	-	0.03
26	-	-	-	0.01
27	· •		-	-

.

-

Table 4.3-15: Column elution of dihydroxybenzoic acids on column L₃ with 0.01N aqueous hydrochloric acid as solvent and eluent.

-.

,

`

		a na an	<mark>₩₩₩₩₩</mark> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	``````````````````````````````````````		
Benzoic acid	2,3-d10H	2, 4-d1 0H	2,5-d10H	2,6-d10H	3,4-d10H	3,5-diOH
10 ² W	3.10	3.56	1.73	2.66	2,28	2,44
Sample N	0.	8 48°048 48°048 48°028 48°028°	10 ²	Ws	같아요 같은 네가 아이가 안 가는 가지? 가지?	#~#~#~#~#~#~#~#~#
1	-	-	-	-	-	
2	-	-	-	0.72		-
3	-			1.85		-
ե	cii)	-	-	0,10	0.19	0.21
5	0.12	~	0.13	-	1,13	1.26
6	1.14	0.02	0.88	-	0.82	0.87
7	1.36	0.35	0.63	-	0.15	0,11
8	0,42	1,,48	0.09	-	-	- ,
9	0.05	1,23	-	-	-	-
10	-	0.39	-	-	-	-
11		0.07	-		-	-
12	-	0.01	-	-	-	-
13		-	-	-	-	-

Table 4.3-	16 :	Column elution of benzoic acid, m-OH, 2-OH-3-OMe
		and 4-OH-3-OMe on column L_3 with 0.01N aqueous
		hydrochloric acid as solvent and eluent,

Benzoic acid	H	m-OH	2-0H-3-0Me	4-0H-3-0Me
10 ² W	0_60	3.38	0,57	0.82
Sample No.		10	² Ws	
1-4		***	~	
5		0,50		-
6	0.05	1.81	· •	-
7	0_29	0.94		0.02
8	0.23	0,14	-	0.15
9	0.03		-	0.31
10	-	-	0,02	0.25
11	44	-	0,10	0.09
12		-	0.17	0,02
13		-	0.17	-
14	-	-	0.09	
15	-		0.03	
16	-	-	-	-

,

98

:

Table 4.3-17 :	Column elution of benzoic acid, 3,4-diOH,
	3,5-diOH and 2,3-diOMe benzoic acids on
	column L_3 with 10% dioxan in 0.01N aqueous
	hydrochloric_acid as solvent and eluent.

Benzoic acid 10 ² W	, Н 4_45	3,4-d10H , 0.92	3,5-d10H 0,55	2,3-diOMe 0.53	
Sample No.	• • •	10*			
1		ann an hann ann ann ann ann ann ann ann			
2	.	0_02	0,02	-	
3	0.12	0.38	0.25	0.03	
ե	1.26	0.47	0.24	0.17	
5	2.68	0_04	0.03	0.30	
6	0.36	0.01	-	0,05	
7	0.07	-	-	-	
8	-	-	-00	-	

Benzoic acid	p-OMe	p-OEt	p-n-OPr	p-n-0Bu
10 ² W	0.64	0,90	0,60	0.31
Sample No.		1	0 ² Ws	a a a a a a a a a a a a a a a a a a a
1-5	 ,	-	-	-
6	0.13	-		-
7	0.33	0,07	***	
8	0.16	0.30	-	-
9	0,02	0.34	0.03	-
10	-	0.15	0.11	-
11	-	0.03	0.18	-
12	-	-	0,17	0.01
13	-		0.09	0.02
14	-	-	0.01	0.05
15	•••• ,		-	0.07
16	-	-		0.07
.17	-		****	0.05
18				0.03
19		***	-	0.02
20				-

Table 4.3-18 : Column elution of p-alkoxybenzoic acids on column L_3 with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

,

100

ï

Benzoic acid	p=C1	p-Br	p-I
10 ² W	0,83	0.68	0,62
Sample No.		10 ² Ws	
1 ,, 14			
5	0.01	-	-
6	0.15	-	
7	0,40	0_04	-
8	0.23	0.17	-
9	0.03	0,30	-
10	- Cline	0.18	0.01
11	48 0	0.03	0.05
12			0.12
13		-	0.17
14		-	0.15
15	. (D)	-	0.09
16		-	0.04
17		-	0.01
18		-	-

Table 4.3-19 : Column elution of p-halobenzoic acids on column L_3 with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

Table 4.3-20 : Column elution of mixtures of (A) m-OH and o-OH and (B) 2,3-diOH and 2,4-diOH benzoic acids on column L; with 0.01N aqueous hydrochloric acid as solvent and eluent.

~ '

۰.

~

_

Benzoic acid	m-OH	+ o- 0H	2,3-d10H	-	
10 ² W	3.77	9•98	0,72	1.70	
Sample No.	10 ² Ws				
1-16	-				
17	0.06	-	· ••	-	
18	0.45	-	0.01	- 	
19	1.23	-	0,08	-	
20	1.23	-	0,21	-	
21	0.63	-	0,24	-	
22	0.17	· •	0.15	-	
23	0,01	-	0.05	-	
24	-	0.01	0.01	-	
25	-	0,22	· ••••	-	
26	-	`0 . 86	-	0.04	
27	-	2.08	· •	0.14	
28	-	2.73		0,30	
29	-	-2,26	· •	0,43	
30	-	1,20	,	0,41	
31	-	0.49		0.25	
32	-	0.16	-	0,10	
33		0.05		0.04	
34	~			0,01	
35	-	-	-	-	

Table 4.3-21 : Column elution of mixtures of (A) m-OH and m-OMe and (B) 4-OH-3-OMe and 2-OH-5-OMe benzoic acids on column L; with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

.

A ***		1			
2.78			2.72		
10 ² Ws					
-	-	-	-		
0.34	-	-	-		
1.25		-	-		
0.97		0.05	-		
0.21		0,26	-		
0.02		0.90	-		
-		1.08			
-	-	0.69	-		
-	-	0.25	-		
	-	0,05	-		
-	0.02	-			
	0,12	-	0.02		
-	0,40	-	0.23		
1 6 165	0.6+	-	0.62		
	0.59	#	0.78		
-		-	0.68		
			0.30		
-	0.01	-	0.08		
	-	-	0,01		
-		-			
	1.25 0.97 0.21	2.78 2.18 10 0.34 $-$ 1.25 0.97 $-$ 0.21 $-$ 0.02 $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Table 4.3-22 : Column elution of mixtures of (A) 3,5-diOH and 2,4-diOH and (B) 3,4-diOH and 4-OH-3-OMe benzoic acids on column L, with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

Benzoic acid 10 ² W Sample No.	3,5-d10H + 1.43	2,4-d10H 3.13 10 ² W	1.18	9-0H-3-0Ме 1.83
1-7	ani)		-	
8	0,12		0.07	-
9	0.79		0,62	-
10	0,49	-	0,42	-
11	0 •04	-	0.04	-
12	-	0.01	-	0,02
13	-	0,08		0.19
14	-	0.69	-	0.54
15	-	1.31	-	0.66
16		0.77		0.31+
17	-	0.20		0.09
18	-	0.03	-	-
19	-	-	-	— •

Table 4.3-23 : Column elution of mixtures of (A) 4-OH-3-OMe and 3,4-diOMe and (B) 2,3-diOMe and 3,4-diOMe benzoic acids on column L, with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

Benzoic acid	4-0H-3-0Me	+ 3,4-diOMe	2,3-di0Me +	3.4-diOMe
10 ² W	3,28	1.59	1,42	1,59
Sample No.		10 ²		
1-11	_	-		
12	0_04	-	0.01	-
13	0.38	-	0,04	-
14	0,99	-	0.25	
15	1.03		0.59	-
16	0.59	-	0,41	-
17	0.17		0,12	-
18	0_02		0.02	-
.19	` 		0.01	
20	-	~		-
21	-		-	~
22	-	0.01	-	0.01
23	-	0.07	-	0.08
2]4		0.21	-	0.21
25	-	0.37	-	0.38
26	-	0.39		0.39
27	-	0.29		0,29
28	-	0.17	7	0.16
29	-	0.03		0.04
30	-	0.01	- ,	0,01
31	-	-	-	-
المكاملة المتواصلة والمتركب والمستقل والمراجع والمراجع والمراجع والمراجع والمراجع	alle with such ralls a life case with with such such a still water and			***

-

.

2

, 1

Table	4.3-24	: Column elution of a mixture of 2,6-diOH,
		3,5-diOH and 2,4-diOH benzoic acids on column
		L_2 with 0.01N aqueous hydrochloric acid as
		solvent and eluent.

Benzoic acid 10 ² W Sample No,	2,6-d10H + 0,53	3,5-d10H + 1.02 10 ² Ws	+ 2,4-d10H 1,48
1-2			-
3	0.08	-	-
4	0.39	-	
5	0.08	-	-
6	0.01	-	
7	-	0,02	-
8	-	0,25	-
9	-	0,48	-
10		0,21	-
11	-	0.03	-
12		-	-
13	-	~ `	0.09
14	-	-	0.32
15	-	~	0.48
16	-	~	0,34
17	-	ø	0.16
18	-	-	0.05
19	•••	دته	0.01
20	-	-	

Table 4.3-25 : Column elution of mixtures of (A) 2,6-diOH and 2,4-diOH and (B) 2,3-diOH and 2-OH-3-OMe benzoic acids on column L_3 with 0.01N aqueous hydrochloric acid as solvent and eluent.

107

.

Benzoic acid	2,6-d10H	+ 2,4-d10H	2,3-d10H +	2-0Н-3-0Ме		
10 ² W	1.92	2,47	1,10	0,29		
Sample No.		10 ²	Ws			
1		# X	-	-		
2	0.55	_ «19	-	-		
3	1.27	a 10	-	-		
1 4	0_08	439	 ,	-		
5	-	478	0.04	-		
6	-	0.01	0.36	-		
7	-	0,22	0.49			
8	-	0_89	0.17	-		
9	-	0,91	0.02	-		
10	-	0.36	-	0.02		
11		0.08		0,06		
12		0.01		0,10		
13	-	comp	-	0,08		
14	~	c m	-	0,01+		
15		c 3 \$	-	0,01		
× 16	-	: 199	-	-		

Table 4.3-26 : Column elution of mixtures of (A) p-Cl and p-I and (B) p-OEt and p-n-OBu benzoic acids on column L_3 with 10% dioxan in 0.01N aqueous hydrochloric acid as solvent and eluent.

Benzoic acid	p-01	+ p-I	p-0Et +	p-n-0Bu
10 ² W	0.72	0 " ¹+3	0.70	0.19
Sample No.		10 ² Wg	; ;	والمحافظ المحافظ والمحافظ محتول محتول المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ
1-4		-	-	-
5	0.01	-		-
6	0.13	-		-
7	v . 36	-	0.05	-
8	0.21	-	0.24	-
9	0.04	-	v . 26	-
10	-	-	0.14	
11	500 F	0.02	0,02	
12	-	0.06	~~	0.01
13		0.12		0.01
14	enet	0.13		0,04
15		0.07		0.06
16	-	0.03	-	0.05
17	~	0.01	-	0.03
18	-	-		0.01
19	-	-	,4005	-

4.4 DISCUSSION

The uptake of the solute by the resin is characterized by the distribution coefficient which can be expressed in various ways such as volume distribution coefficient, Kv; weight distribution coefficient, Kw. In chromatography distribution coefficient is the important factor as it determines the rate of movement of the solute down the column. It is related to the peak elution volume, the width of the elution curve and the resolution.

In the present study the distribution coefficient is expressed in terms of the sorption coefficient, B (defined in Chapter 3). This is related to the volume distribution coefficient Kv (per ml of the resin) and weight distribution coefficient Kw (per gm of the resin) as,

$$B = Kv/c' = Kw/c$$

where c' denotes capacity of the resin in equivalents per ml of the resin and c, the capacity in equivalents per gm of the resin. Therefore, it follows that it would be possible to correlate the sorption coefficient, B, with

(i) the peak elution volume,

(ii) the width and peak height of the elution curve,

(iii) the number of theoretical plates and

(iv) the resolution

by simple equations and these equations may be compared with the equations given in the literature,70-96 where the above quantities are related to either volume distribution coefficient or weight distribution coefficient.

Generally the equations are based on the assumption that the elution curves are symmetric described mathematically by a Gaussian curve. However, when certain components are eluted from the chromatographic column they are seen as asymmetric peaks - customarily called bands with a diffuse or sharp trailing or leading front. In such cases calculations based on Gaussian distribution may lead to considerable errors.

Preliminary studies of the column behaviour of some benzoic acids using water as the solvent and the eluent have shown that these acids emerge out of the column as asymmetric bands with a smeared leading front and a sharp trailing front indicating that some parts of the zone move faster than the others (Table 4.3-1). This is due to the partial exclusion of these acids from the resin phase. Hence, for the acids with lower pK values the departure from the Gaussian distribution will be more. In separation studies this is undesirable because this leads to overlapping and therefore, to a smeared separation of adjacent bands. Further, the chromatographic equations become less valid and may give erroneous results, if applied.

However, this problem can be overcome by using 0.01N aqueous hydrochloric acid as solvent and eluent, in which the ion exclusion mechanism becomes less or inoperative and the elution curves become fairly symmetric. In consistence with this observation the column elution runs of all the benzoic acids were carried out in 0.01N aqueous hydrochloric acid and/or 10% dioxan in 0.01N aqueous hydrochloric acid, Even in acidic solvents, solutes with low sorption coefficients, e.g. 2,6dihydroxybenzoic acid, may show some tailing i.e. the bands with

a diffuse trailing front which may be due to the overloading of the column. Tailing becomes more apparent with longer columns.

4.4-1 : Peak Elution Volume :

The peak elution volume, Vm, denotes the volume of the eluent from the start of the elution run to the mid-point of the peak. It can be expressed in terms of B as:

$$Vm = B_*C \tag{1}$$

where C is the total capacity of the resin in equivalents in the given column. From equation (1) it follows that

- (i) Vm is directly proportional to B
- (ii) Vm is directly proportional to C and for the given column
 C is directly proportional to the length of the resin bed, L,
 hence, Vm is also directly proportional to L.

However, equation (1) is valid only if the void volume, Vi; disc volume (dead volume), Vd; and feed volume, Vf are negligible, and if they are not negligible we may express the peak elution volume as :

$$V_{mo} = B_{o}C + V_{o}$$
 (2)

where Vo is the sums of Vi and Vd, and in the present study, since Vf is sufficiently large it is also included in Vo. Thus

$$Vo = Vi + Vd + Vf$$
(3)

The values of Vmo are calculated for various benzoic acids from their B values (Chapter 3) for different values of C (i.e. for different values of L) and these are compared with the experimental values of Vmo obtained by carrying out the actual

column elution runs of these acids on different columns (Table 4.3-1 to 4.3-19). The calculated and experimental values of Vmo are reported in Table 4.4-5-1.

4.4-2 : Width and Peak Height of an Elution Curve :

As mentioned in Section 4.1, the width of an elution curve is a measure of column performance or column efficiency and is generally expressed in terms of σ or β . For a Gaussian curve these two quantities are related as :

$$\beta = 2\sqrt{2}, \sigma^{-} \qquad (4)$$

The width of an elution curve depends generally on the distribution coefficient of the solute and the column parameters such as resin particle size, area of cross section, flow rate, feed volume and temperature. In the literature equations are given correlating σ^2 (variance) with the distribution coefficient and the column parameters. By considering one variable at a time, holding other parameters constant, its effect on the width of elution curve can be studied.

In this work the effect of distribution coefficient and column length on σ have been studied, the other parameters were held constant. Under these conditions it would be possible to give an equation correlating σ with B and C as :

$$\sigma^{-} = \alpha_1 \sqrt{B} + \alpha_2 B \qquad (5)$$

where

$$a_1 = k_1 \sqrt{C} \tag{6}$$

and

$$a_2 = k_2 \sqrt{C} \tag{7}$$

k1 and k2 being constants.

The values of a_1 and a_2 could be calculated by plotting experimentally determined values of σ/\sqrt{B} versus \sqrt{B} for the elution runs on different columns (Table 4.2-1). Hence, from the values of a_1 , a_2 and C the constants k_1 and k_2 can be obtained from equations (6) and (7) respectively. The values of k_1 and k_2 thus computed are 0.05 and 0.0025 respectively and remain constant for all the values of C studied in this work. It may be suggested empirically that k_1 and k_2 may be expressed in terms of feed volume, Vf, by

$$k_{1} = \sqrt{Vf}/\pi \qquad (8)$$

and

$$k_2 = Vf/\pi^2 = k_1^2$$
 (9)

Now combination of equations (5), (6) and (7) gives σ in terms of B and C as :

$$\sigma = k_1 \sqrt{B_0C} + k_2 \cdot B \sqrt{C}$$

= $k_1 \sqrt{B_0C} (1 + \sqrt{B_0k_2/k_1})$ (10)

Since σ and β are related (equation 3) we can also express β in terms of B and C as :

$$\beta = 2k_1 \sqrt{2B_c} (1 + \sqrt{B_k}/k_1)$$
 (11)

Another important quantity of the elution curve is the peak height which refers to the concentration at the peak elution volume, denoted by Cm. This depends upon (1) the amount of the solute loaded (i.e. initially sorbed on the column), W, which refers to the area under the elution curve and (ii) the width of the elution curve. For a Gaussian curve these are related as:

$$C_{\rm m} = W / \sqrt{2\pi} \sigma^{-} \qquad (12)$$

From equations (10) and (12) it follows that

$$C_{\rm m} = \frac{W}{k_1 \sqrt{2\pi BC} (1 + \sqrt{B} k_2 / k_1)}$$
(13)

The illustrative calculations of σ and Cm for the given values of B, C and W and their experimental determination are shown in Section 4.4-5. The calculated and experimental values of σ and Cm are reported in Table 4.4-5-1.

4.4-3 Number of Theoretical Plates :

The number of theoretical plates N or the plate height H is an indirect measure of the width of an elution curve and hence the column performance. The experimental determination of the number of theoretical plates in the given column, for the particular compound, involves the experimental determination of peak elution volume and either the width ($-\sigma$ or β) or peak height of the elution curve. These are related to the number of theoretical plates by the following equations :

$$N_{1} = (V_{m}/\sigma^{-})^{2}$$
 (14)

$$= 8(Vm/\beta)^2$$
 (15)

$$N_2 = 2\pi \left[\frac{V_{m_0} C_m}{W} \right]^2$$
(16)

Theoretically $N_1 = N_2$

In the present study, the number of theoretical plates for the column elution runs of various benzoic acids on different columns have been calculated using the experimentally determined values of Vm, σ , Cm and W. These values are reported in Table 4.4-5-1. For a particular compound, N₁ and N₂ are comparable and hence the average of these is taken as N experimental denoted by N_{exp}.

Further from equations (1), (10) and (14) it follows that

$$N = \left[\frac{B_{C}}{k_{1}\sqrt{BC} (1 + \sqrt{B} k_{2}/k_{1})}\right]^{2}$$
(17)

on simplification, and putting $k_1^2 = k_2$, we get

$$N = \frac{B_{c}C}{k_{2} (1 + k_{1} \sqrt{B})^{2}}$$
(18)

The equation (18) expresses N in terms of B and C and the values of N calculated using this equation are reported in Table 4.4-5-1.

4.4-4 Resolution (Separation Study) :

The quantitative measure of separation is the Resolution given by the equation :

$$R_{n} = \frac{\Delta Z}{3(\sigma_{1} + \sigma_{2})} = \frac{V_{m_{2}} - V_{m_{1}}}{3(\sigma_{1} + \sigma_{2})}$$
(19)

where $\Delta Z = Vm_2 - Vm_1$, the gap between the neighbouring peaks. The subscripts 1 and 2 denote solutes 1 and 2.

Combining equations (1), (10) and (19) and on simplification, we get

$$R_{n} = \frac{\sqrt{C} (\sqrt{B_{2}} - \sqrt{B_{1}})}{3k_{1} \left[1 + \frac{k_{2}}{k_{1}} \times \frac{B_{2} + B_{1}}{\sqrt{B_{2}} + \sqrt{B_{1}}} \right]}$$
(20)

From equation (20) it follows that for the given pair of solutes having sorption coefficients B_1 and B_2 , the resolution, Hn for the particular column (i.e. particular value of C) can be calculated and thus the extent of separation can be predicted before carrying out the actual column runs,

An illustrative calculations of Rn for 3,5-dihydroxybenzoic acid (B = 1.68) and 2,4-dihydroxybenzoic acid (B = 3.70) on column L₂ is shown in Section 4.4-5. Rn is also calculated from the experimentally determined values of Vm and σ for these two acids from their individual column elution runs on the same column, using equation (19). The two values of Rn thus obtained are in fair agreement. Then the actual separation was tried by taking the mixture of these acids, the two components separated in accordance with the resolution computed from their B values and from their individual runs.

For some other pairs of benzoic acids of interest, the values of Rn (calculated from B values and also from the individual column elution runs) are reported in Table 4.4-5-2. The column elution runs of some mixtures of some illustrative pairs have been carried out (Table 4.3-20 to 4.3-26).

As seen earlier, Vm is proportional to C and σ is proportional to \sqrt{C} . Therefore, Rn increases with \sqrt{C} thus always reaching unity-indicating a satisfactory separation - if a sufficiently long column can be used. By setting Rn = 1 in equation (20), the minimum number of equivalents of the resin, Cmin required for the separation of the desired pairs of benzoic acids can be calculated. The equation of Cmin can be written as :

$$\operatorname{Cmin} = \left(\frac{1+A_2}{A_1}\right)^2 \tag{21}$$

where

$$A_1 = \frac{\sqrt{B_2} - \sqrt{B_1}}{3^{k_1}}$$
(21a)

and

$$A_{2} = \frac{k_{2}}{k_{1}} \times \frac{B_{2} + B_{1}}{\sqrt{B_{2} + \sqrt{B_{1}}}}$$
(21b)

Table 4.4-5-2 gives the calculated values of Cmin for some pairs of benzoic acids,

Depending on the value of Rn, separations may be classified as :

- Quantitative and efficient separations : These have Rn value as unity or almost unity. This in fact, is the object of any chromatographic separation.
- (2) Quantitative but inefficient separations : In these Rn value is considerably greater than unity, thus resulting in a waste of time and eluent.
- (3) Incomplete separations : These have Rn value less than unity and peaks overlap considerably. However, the peaks can be easily identified. Thus for identification purposes resolution need not always be unity.

4,4-5 : Calculations :

The calculation and experimental determination of various chromatographic quantities for the column elution runs reported in Tables 4.3-1 to 4.3-19 are illustrated in this Section by considering a pair of benzoic acids.

Calculation I

Benzoic acid : 3,5-diOHSolvent and eluent : 0.01N aqueous HCl Column : L₂ ; C = 0.088 equivalents W = 2.12×10^{-2} millimoles ; B = 1.68 The graph of the elution run is obtained by plotting 10^2 Ws versus sample number (Table 4.3-13), where, Wg denotes the amount of the solute in millimoles in 25 ml effluent sample. The circles represent the analyzed fraction of the eluent. The continuous graph is drawn through the circles and the resulting plot is the experimental elution curve, Fig. 1, Now

Vo	-	Vi + Vd + Vf
	=	0,030 + 0.015 + 0.025 = 0.070 liter (Table 4,2-1)
Vm(cal)	=	B _ρ C .
		1,68 x 01088 = 0,148 liter
Vmo(cal)	=	$V_{m(cal)} + V_{O}$
	=	0.148 + 0.070 = 0.218 liter
Vmo(exp)	1	OX = 9.2 samples (Fig.1)
	=	9.2 x 0.025 = 0.230 liter
Vm(exp)		Vmo(exp) - Vo
	=	$0_{230} - 0_{070} = 0_{160}$ liter
k ı	ente citor	$\sqrt{V_{f}}/\pi$
		$\sqrt{0,025/3.14} = 0.050$
k2	-	$Vf/\pi^2 = k_1^2 = 0.0025$
aı	=	k, JC
		$0,05 \sqrt{0.088} = 1.50 \times 10^{-2}$
a 2	=	$k_2 \sqrt{C}$
	=	$0.0025 \sqrt{0.088} = 0.8 \times 10^{-3}$
^{Cm} (cal)	=	$\frac{W}{k_{1}\sqrt{2\pi B^{2}(1+k_{1}\sqrt{B})}} = \frac{4.0 \times 10^{-1}}{10^{-1}}$

$$Cm' = XY = 1.06 \times 10^{-2} (Fig.1)$$

$$Cm(exp) = 40Cm''$$

$$= 40 \times 1.06 \times 10^{-2} = 4.2 \times 10^{-1}$$

$$C''(cal) = a_1 \sqrt{B} + a_2 B$$

$$= 1.50 \times 10^{-2} \sqrt{1.68} + 0.8 \times 10^{-3} \times 1.68$$

$$= 0.021 \text{ liter}$$

$$C''(exp) = 1/2 \times PZ (Fig.1)$$

$$= 1/2 \times 0.04 = 0.020 \text{ liter}$$

$$N_1 = [Vm(exp)/\sigma'(exp)]^2$$

$$= (0.160/0.020)^2 = 64$$

$$N_2 = 2\pi \left[\frac{Vm(exp) \cdot Cm(exp)}{W} \right]^2$$

$$= 2 \times 3.14 \left[\frac{0.160 \times 4.2 \times 10^{-1}}{2.12 \times 10^{-2}} \right]^2 = 63$$

$$N_{exp} = \frac{N_1 + N_2}{2} = \frac{64 + 63}{2} = 64$$

$$N_{cal} = \frac{B.C}{k_2(1 + k_1\sqrt{B})^2}$$

$$= \frac{1.68 \times 0.088}{2.5 \times 10^{-3}(1 + 0.05\sqrt{4.68})^2} = 50$$

Calculation II :

Benzoic acid : 2,4-diOH Solvent and eluent : 0.01N aqueous HCl Column : L₂; C = 0.088 equivalent $W = 2.48 \times 10^{-2}$ millimoles; B = 3.70 From Tables 4.2-1 and 4.3-13 and Fig.2, on calculation, the following results are obtained :

Vm(cal)		0.326 liter	Vm(exp)	=	<u>0,323</u> liter
Vmo(cal)	=	0.396 liter	Vmo(exp)	=	<u>0.393</u> liter
^{Cm} (cal)	-	3.1 x 10-1	Cm(exp)	-	3.2 x 10-1
∽(cal)		0.032 liter	√(exp)	=	<u>0.031</u> liter
Ncal	=	<u>104</u>	$^{ m N}$ exp	-	109

.

Calculation III :

$$\operatorname{Kn}(\operatorname{cal}) = \frac{\sqrt{C} \left(\sqrt{B_2} - \sqrt{B_1}\right)}{3k_1 \left[1 + \frac{k_2}{k_1} \cdot \frac{B_2 + B_1}{\sqrt{B_2} + \sqrt{B_1}}\right]} \\
 = \frac{\operatorname{Vm}(\operatorname{cal})_2 - \operatorname{Vm}(\operatorname{cal})_1}{3\left[\sqrt{(\operatorname{cal})_2} + \sqrt{(\operatorname{cal})_1}\right]} \\
 = \frac{0.326 - 0.148}{3(0.032 + 0.021)} = 1.12$$

$$Rn_{(exp)} = \frac{Vm(exp)_2 - Vm(exp)_1}{3[\sigma(exp)_2 + \sigma(exp)_1]}$$
$$= \frac{0_{*}323 - 0.160}{3(0_{*}031 + 0.020)} = 1.07$$
$$C_{min} = \left[\frac{1 + A_2}{A_1}\right]^2$$

where

$$A_{1} = \frac{\sqrt{B_{2}} - \sqrt{B_{1}}}{3k_{1}} = \frac{\sqrt{3.70} - \sqrt{1.68}}{3 \times 0.05} = \frac{4.20}{4.20}$$

and

,

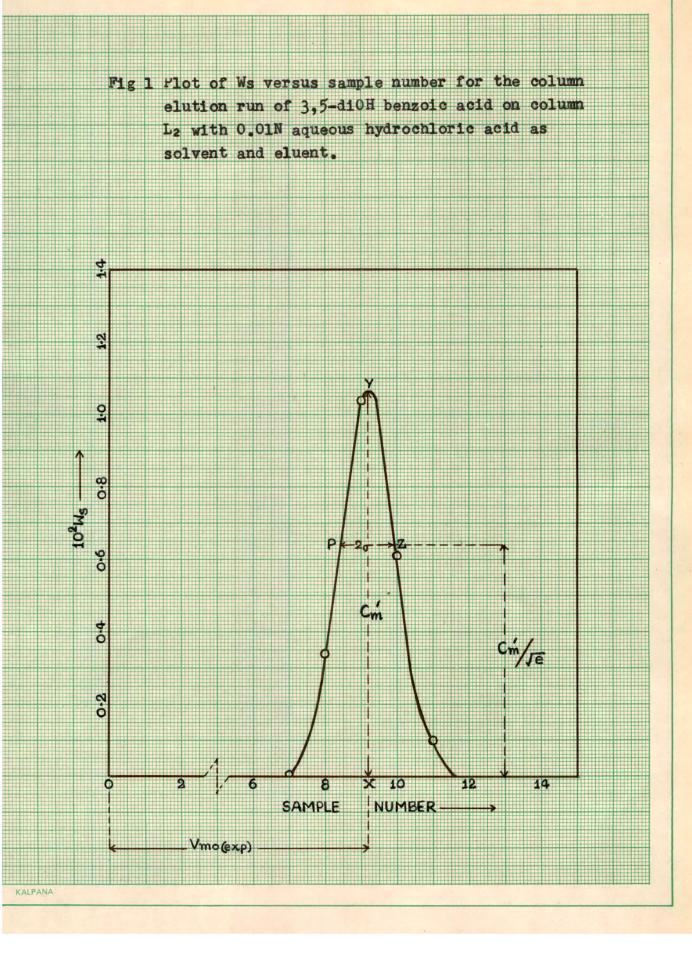
$$A_{2} = \frac{k_{2}}{k_{1}} \cdot \frac{B_{2} + B_{1}}{\sqrt{B_{2}} + \sqrt{B_{1}}}$$
$$= \frac{0.0025}{0.05} \cdot \frac{3.70 + 1.68}{\sqrt{3.70} + \sqrt{1.68}} = \frac{0.084}{0.084}$$

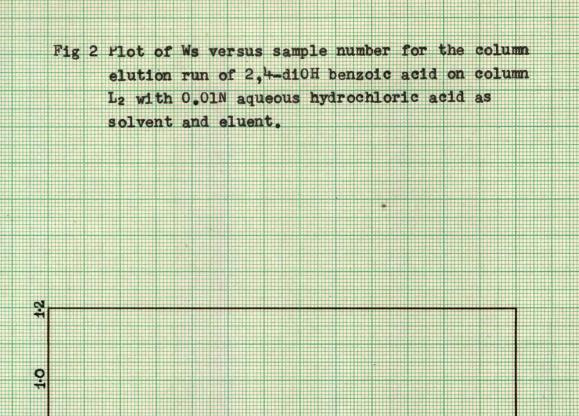
120

•

.

.


.


therefore,

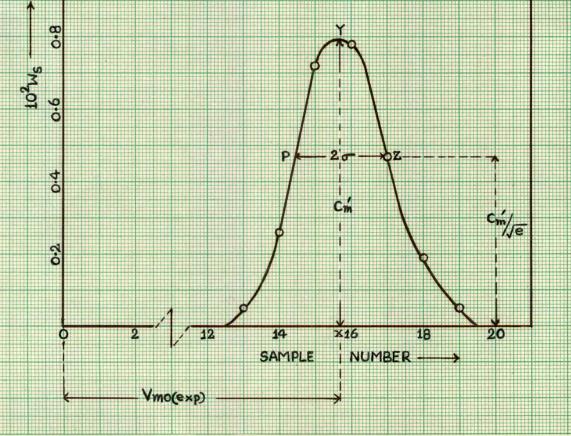
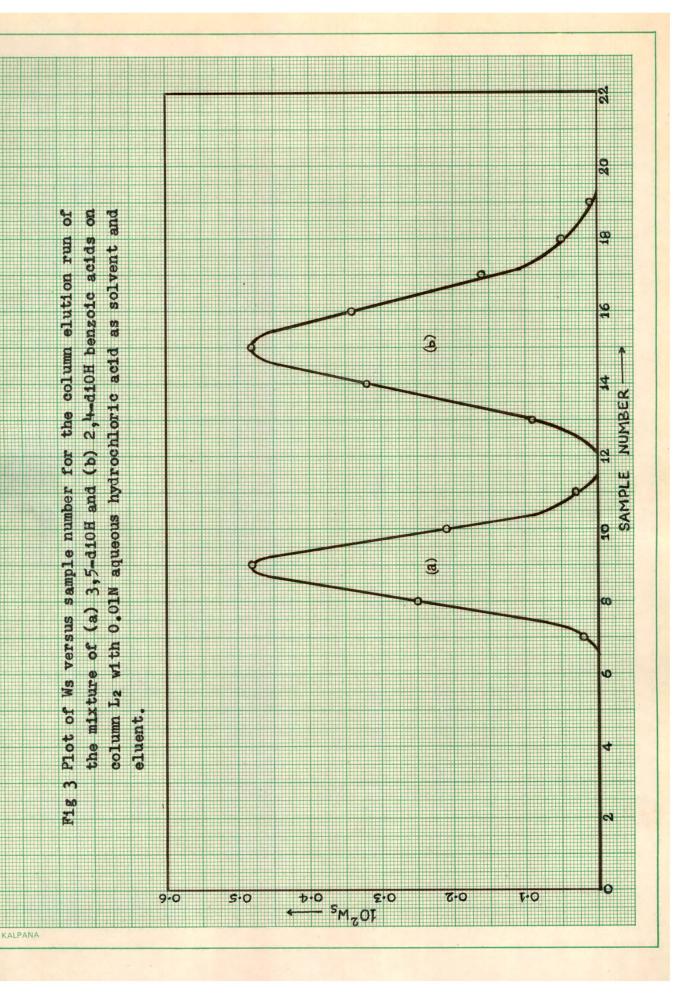

$$C_{\min} = \left[\frac{1+0.084}{4.20}\right]^2 = 0.067$$
 equivalents

Fig. 3 gives the experimental elution curve for the column elution of the mixture of 3,5-diOH and 2,4-diOH benzoic acids on column L_2 (C = 0.088 equivalents) with 0.01N aqueous hydrochloric acid as solvent and eluent (Table 4.3-24).


Tables 4.4-5-1 and 4.4-5-2 give the calculated and experimental values of the chromatographic quantities for the substituted benzoic acids of interest.

KALPANA

Benzoic acid	Sol- vent	рсц	Col- umn	10 ² W m111	10 ³ 11t	10 ³ Vmo liter	10 ³ ه 11 ter	er وا	10 ² Cm	Ē	N ,	N2	d XA N	Tean
				moles	cal,	ехр "	cal.	exp.	cal.	exp.			rya, tari Tiri Rina dina di	
, H	MH	2.82	L2	0,39	318	320	27	25	ŝ	2	100	125	113	78
				0,60	185	1 83	20	21	12	12	37	I4	39	42
	HMC	1.45	F2	46.0	198	208	19	20	20	20	48	54	ደ	45
				4.45	122	120	ΤZ	18	117	108	. 1 3	1 6	15	20.
0-0H	HM	3.40	Ъ.	2.15	673	693	04	38	22	23	247	257	252	209
				0,92	369	370	30	28	12	14	115	130	123	66
	DWH	1 . 75		11 " 10	393	4 1 8	29	28	152	164	133	143	138	106
HO-m	НМ	2,15		7.15	460	483	31	28	92	103	192	196	194	1 39
			L_2	3 . 55	259	260	54	23	59	66	68	78	73	62
			L3	3 • 38	154	155	18 1	19	75	ż	28	30	29	30
	HMQ	1,00		8,62	265	294	22	딩	156	160	90	86	88	60
p-0H	ΜН	2 ° 62	L L	3,64	5140	560	35	31	141	46	225	217	221	162
			\mathbf{L}_{2}	1,28	TOE	318	26	26	20	20	16	46	93	62
	DWH	1,28		\ 4 °58	313	315	52	24	68	73	4 8	89	87	
o-0Me	HM	h.00		8,20	775	780	45	Γł	76	62	279	274	277	2282
	DWH	1°.74		10 . 93	391	014	29	26	150	156	147	147	146	
	١			,									con	contd "

ontd "..

313 144	382	157	T4	1 99	48	284	69	100	168	J <u>+</u> 2	55	62	150	69	36	73	717	104	55	66
281 178	313	180	T+1	205	10	213	53	1 9	231	047	54	58	169	69	25	46	215	109	tt3	133
277 179	312	183	39	202	140	218	59	65	243	37	57	62	178	66	25	96	209	109	- 1 3	142
285 177	313	177	1+2	207	39	207	146	57	219	£41	50	25	160	72	25	92	221	109	1+2	123
30	2	28	13	21	14	9	დ	'n	19	16	12	2	130	36	56	21	56	32	99	58
33 116-	c 0	26	13	22	16	2	6	4	16	, T7	TT	ထ	120	38	65	20	58	ЗI	ዄ	50
61 34	62	34	19	¹ +3	26	60	34	44	33	19	24	38	33	26	23	23	¹ +3	31	24	26
34 34	56	36	19	712	23	51	28	34	37	20	24	31	3 4	26	19	23	¹⁺³	32	23	28
1125 548	1193	548	178	713	218	958	285	388	583	180	225	333	513	290	165	315	735	393	210	383
1115 503	1190	546	177	687	215	954	287	395	574	185	233	331	512	286	168	291	724	396	225	374
4.65 9.85	1,09	2,35	0,64	2 .29	06*0	0 88	0,60	0.31	1.49	0,83	0.68	0.62	10,20	2 .44	3.10	1.18	6,21	2.48	3.56	3.51
- - -	Ľ,	L.	Г 3	L,	L3	1	Ľ3	L3	Ľ,	L3	L ₃	L3	L,	L2	г <u></u>	г.	L,	L2	г <mark>.</mark>	-
6,00 2,40	6"44	2.65		3.48		5.05		7.40	2,82		3.87	6.00	2 ,45			1,15	3.70			1.64
ИН DWH	HM	DWH		DWH		DWH		DWH	DWH		DWH	HMC	HM			DWH	ΗM			HMQ
<u>т-</u> 0Ме	p-0Me			p-0Et		n-n-opr		p-n-0Bu	₽-C1		p-Br	p≁I	2,3-d10H		\$		2,4-d10H			

.

•

contd...t

147	69	36	75	26	16	6	22	112	53	28	58	14	104	50	26	53	14	16	157	220	284	190		92 2 4	contd
182	67	28	135	23	2	н	4	132	60	17	53	<u>,</u> †	195	64	17	<u></u> Ы	m	1 9	158	180	194	179	1+5	93	con
179	65	29	163	5 3	ý	Ч	±,	134	62	16	58	, †	201	63	17	56	0	63	158	175	204	184	¹ +3	98	
184	68	26	106	22	ω	r-l	. †	130	58	17	48	ţ	188	64	17	53	'n	58	157	1 85	184	174	147	87	
23	51	36	011	50	5	75	70	29	24	46	22	19	7 1 6	h 2	52	43 £13	TO	2	20	17	16	66	12	57	
22	48	38	73	67	63	133	8 1	29	23	60	21	37	37	04	64	1+2	22	6	68	19	19	63	14	58	
31	23	20	18	19	11	13	17	28	21	19	20	20	23	20	19	19	21	34	35	2 Tr	64	39	26	26	
33	0 77	18	22	14	11	ω	15	28	21	15	19	10	28	21	15	19	10	32	36	h3	52	0+1	24	27	
515	260	158	280	185	100	20	130	415	230	133	233	93	01 1 10	230	133	233	88	313	533	735	963	610	233	365	
495	277	163	285	166 .	115	62	166	391	223	135	240	đμ	381	218	132	234	93	361	546	734	1 26	646	239	355	
1.81	3.01	1.73	h.00	2,35	1.75	2,66	3.04	2°01	1,21	2 "28	1,00	0.92	2,56	2,12	2,44	1*99	0.55	0 \$77	6.12	2,06	5.44	6.28	0,82	3 •93	
L.	L2	г <mark>.</mark>	L L	L,	$\mathbf{L_2}$	Cit.	н	ц,	L2	г Э	L,	\mathbf{L}_3	L,	L2	L3	L,	L3	<u>г</u>	L,	L,	I I	L,	L3	L,	
2,35			1,12	0.51			0,42	1.74			0.85		1.68			0,82		6,66	. 2,65	3.76	5.15	3,24	1+,00	1 . 53	
HM			DWH	HM			DWH	HM			HMD		HM			DWH		ΗМ	DWH	DWH	DWH	DWH	HM	HMQ	
2,5-d10H				2,6-d10H				3,4-dioH					3,5-d10H					2-0H-3-0Me		2-0H-1-0Me	2-0H-4-0Et	2-0H-5-0Me	4-0H-3-0Me		

-

107	51	27	194	190	78	04	178	145
140	47	15 15	178	189	4 0	37	145	66
147	52	ЪЧ	172	185	· 16	39	152	96
133	7+2	14	183	193	77	Зţ	138	102
1+8	37	12	13	9	30	37	16	ъ
F1	32	14	14	9	28	35	17	6
25	20	18	4	Γŧ	5 1 1	18	54	5-1-2
28	21	Ъĩ	141	1+0	25	18	04	39
383	200	123	069	665	315	175	623	525
384	220	133	666	646	316	184	629	539
2,86	1.67	0.53	1.48	0.63	1.73	1.56	1.72	0.58
L,	L2	L3	L,	L.	L J	L2	L,	Lz
1*70			3,36	3.24	1. 30		3.14	5 . 33
HMC			HMC .	HMC	DWH		DWH	НМС
2,3-d10Me			2,4-d10Me	2,5-d10Me	2,6-d10Me		3,4-d10Me	3,5-dioMe

	Solvent	C milli equiv	Elution range	Rn Cal.	Exp	C milli equiv	1
но-о + но-ш	HM	170		1,00	1 . 06	192	
•	DWH	170	10-14 / 14-16	0_84	0.84	246	
o-OMe + m-OMe	MH	170	~	1.12	1.13	137	
	HMC	170	1	0.59	0.77	489	
т-ОН + т-ОМе	HM	1,70	~	2.50	2.40	29	
	DWH	170	1	1.42	1.54	88	
p-0Me + p-0Et	HMD	170	1	0,60	0.71	462	
p-0Me + p-n-0Pr	HMC	170	~	1,56	1.45	77	
		46	1	0.78	0.67	12	
p-0Et + p-n-0Eu	DWH	46	>	1.05	0.81	38	
p-c1 + p-Br	DWH	46	1	0.36	0.35	279	
p-CI + p-I	НМС	1 1 6	>	0.95	06.0	1+5 5	
p-Br + p-I	HMC	46	>	0.59	0.58	126	
2,3-di0H + 2,4-di0H	НМ	170	~	0.92	0.97	205	
		88	1	0.63	0.60	205	
3,4-di0H + 2,3-di0H	HM	170	~	0.65	0.54	6414	1
3,5-dioH + 2,4-dioH	HM	88	~	1.12	1.07	67	.26
	DWH	170	>	66°0	1.11	174	3
					·	contd.	•

Table 4.4-5-2 : Calculated and experimental quantities for the column elution runs of some

2,3-di0H + 2-0H-3-0Me	HM	146	5-9 / 10-15	1.26	0.87	27
	DWH	170	11-15 / 18-26	1.44	1.25	82
3,4-di0H + 4-0H-3-0Me	НW	46	4-7 / 7-12	0,89	0.74	58
	DWH	170	8-11 / 12-18	0.83	0.96	2 60
4-0H-3-0Me + 2-0H-3-0Me	HMU	170	12-18 / 18-26	1.01	0.92	170
4-0H-3-0Me + 2-0H-5-0Me	HMO	170	12-18 / 21-28	1.45	1.26	88
2,3-di0Me + 2-0H-3-0Me	HMC	170	13-18 / 18-26	0,84	0.83	251
4-0H-3-0Me + 3,4-di0Me	HMC	170	12-18 / 21-29	1.36	1.18	06
2,3-di0Me + 3,4-di0Me	DWH	170	13-18 / 21-29	1,20	1.14	118
2,6-d10Me + 2,5-d10Me	DWH	170	11-15 / 23-30	1.69	1.77	60

 \succ

•

WH = 0.01N aqueous hydrochloric acid

DWH = 10% dioxan in 0.01N aqueous hydrochloric acid.

•

J

.

.

127

•

4.4-6 Conclusions :

The study of the sorption-elution behaviour of substituted benzoic acids indicates that : (i) Feed volume can affect elution volume - the larger feed volume results in an increase in the peak elution volume. The fair agreement between the values of Vmo calculated, which include the feed volume, with the experimental values of Vmo supports this.

(ii) Feed volume can also affect the column efficiency. This is evident from the dependance of σ on the feed volume. If the feed volume is large there will be appreciable band spreading at the time of introduction and the peak will be broadened and the deviations of the peak shape from Gaussian increases. Thus, in the case of benzoic acids having lower B values in a given solvent the experimental values of σ are considerably larger than the calculated values and this is more so with shorter columns. In the case of benzoic acids having higher B values when eluted from longer columns, the elution curves get flattened and the observed c values are thus higher than those calculated on the basis of Gaussian distribution. In the present study, the feed volume and the volume of the fractions collected are both 25 ml, in consistence with the solubility of the acids and the detectability of the components in the effluent, However, it should be possible to increase the column efficiency by taking smaller feed volume,

(iii) In liquid chromatography where the kinetics of sorption are controlled by particle diffusion, the theoretical plate height is not a characteristic of the column alone, but depends also on the partition coefficients and on the diffusion coefficients of the substances to be separated. Therefore, we must expect different theoretical plate heights and numbers for every substance almost. Calculations have shown that the trend is as expected.

The observed difference between N_{exp} and N_{cal} may be attributed to the fact that the square terms are involved and hence the experimental error gets magnified. (iv) Increase in length (L) and hence C would seem to provide a solution to any separation problem. This is true within some practical limits. If the column is too long, the flow rate will be very low and the process becomes time consuming. It may also happen that the zones, when separated, will be so dilute as to be undetectable.

(v) The separation of molecules that differ in the type of number of functional groups would be easier, e.g. separation of m-hydroxybenzoic acid and m-methoxybenzoic acid.

(vi) The separation of position isomers, at least partially, of the monosubstituted benzoic acids is possible, e.g. separation of o- and m-hydroxybenzoic acids.

(vii) The separation of the members of the homologous series can be achieved under suitable conditions. In the p-alkoxybenzoic acid series, it is observed that the elution curves of the adjacent members overlap to some extent. This can be overcome by decreasing the feed volume and it should be possible to achieve a complete separation.

(viii) The separation of the position isomers of the disubstituted benzoic acids is also possible. In general, sterically

hindered isomers can be separated from other isomers in which the steric effect is lesser or negligible, e.g. separation of 2,6-dihydroxybenzoic (γ -resorcylic), 3,5-dihydroxybenzoic (a-resorcylic) and 2,4-dihydroxybenzoic (β -resorcylic) acids.

Thus the technique provides a convinient and useful procedure for the separation of substituted benzoic acids and in general, should be applicable to the separation of other molecular families.

.

REFERENCES

- 1. Nachod, F.C., (Ed), Ion Exchange Theory and Application, Academic Press Inc., New York (1949).
- 2. Samuelson, 0., Ion Exchangers in Analytical Chemistry, John Wiley and Sons, Inc., New York (1953).
- 3. Nachod, F.C., Schubert, J., (Eds), Ion Exchange Technology, Academic Fress Inc., New York (1956).
- 4. Cassidy, H.G., Fundamentals of Chromatography, Interscience Publishers, Inc., New York (1957).
- 5. Kitchener, J.A., Ion Exchange Resins, John Wiley and Sons, Inc., New York (1957).
- 6. Calmon, C., Kressman, T.K.E., (Eds), Ion Exchangers in Organic and Biochemistry, Interscience Publishers, Inc., New York (1957).
- 7. Kunin, K., Ion Exchange Resins, John Wiley and Sons, Inc., New York (1958).
- 8. Dowex-Ion Exchange, The Dow Chemical Company, Midland, Michigan (1959).
- 9. Helfferich, F., Ion Exchange, McGraw Hill Book Company, Inc., New York (1962).
- 10. Giddings, J.C., Keller, K.A., (Eds), Dynamics of Chromatography, Part I, Principles and Theory, Marcel Dekker, Inc., New York (1965).
- 11. Giddings, J.C., Keller, K.A., (Eds), Advances in Chromatography, Vol. 1 to 7, Marcel Dekker Inc., New York (1965-73).
- 12. Marinsky, J.A., (Ed), Ion Exchange, a Series of Advances, Vol. I and II, Marcel Dekker, Inc., New York (1966).

- 13. Inczedy, J., Analytical Applications of Ion Exchangers, Pergamon Press, New York (1966).
- 14. Wolf, F.J., Separation Methods in Organic Chemistry and Biochemistry, Academic Press, Inc., New York (1969).
- 15. Duolite Ion Exchange Manual, Diamond Shamrock Chemical Company, California (1969).
- 16. Rieman, W., Walton, H.F., Ion Exchange in Analytical Chemistry, Pergamon Press, New York (1970).
- 17. Dorfner, K., Ion Exchangers Properties and Applications, Ann Arbor Science Publishers Inc., Michigan (1972).
- 18. Marinsky, J.A., Marcus, Y., (Eds), Ion Exchange and Solvent Extraction, Vol. 3 and 4, Marcel Dekker, Inc., New York (1973).
- 19. Karger, B.L., Snyder, L.K., Horvath, C., (Eds), An Introduction to Separation Science, John Wiley and Sons, Inc., New York (1973).
- 20. Kamanathan, P.S., Analytical Liquid Chromatography, No. 1-3, Technical News Service, Vol.VI, Sarabhai M.Chemicals, Baroda (1974).
- 21. Wheaton, R.M., Bauman, W.C., Ind.Eng. Chem., 45, 228 (1953).
- 22. Wheaton, R.M., Bauman, W.C., Ann. N.Y. Acad. Sci., <u>57</u>, 159 (1953).
- 23. Boardman, N.K., Partder, S.M., Nature, <u>171</u>, 208 (1953).
- 24. Simpson, D.W., Wheaton, K.M., Chem.Eng. Progr., 50, 45 (1954).
- 25. Simpson, D.W., Wheaton, K.M., Ind, Eng. Chem., 46, 1958 (1954).
- 26. Caroll, K.K., Nature, <u>176</u>, 398 (1955).
- 27. Wheaton, H., M., Chem. Eng. Progr., <u>52</u>, 428 (1956).
- 28. Sargent, A., Hieman, W., J.Org. Chem., 21, 594 (1956).
- 29. Asher, D.R., Simpson, D.W., J. Phy. Chem., <u>60</u>, 518 (1956).
- 30. Sargent, R., Rieman, W., J. Phy. Chem., 607 1370 (1956).

- 31. Sargent, K., Kieman, W., J. Phy. Chem., <u>61</u>, 354 (1957).
- 32. Sargent, K., Rieman, W., Anal, Chim, Acta., 16, 144 (1957).
- 33. Sherma, J., Rieman, W., Anal, Chim, Acta., 18, 214 (1958).
- 34. Sherma, J., Kieman, W., Anal. Chim. Acta., 19, 134 (1958).
- 35. Sherma, J., Rieman, W., Anal. Chim. Acta., 20, 357 (1959).
- 36. Manalo, G.D., Breyer, A., Sherma, J., Rieman, W., J. Phy. Chem., 63, 1511 (1959).
- 37. Seki, T., J. Biochem., 46, 1653 (1959).
- 38. Breyer, A., Rieman, W., Talanta, 45, 67 (1960).
- 39. Hamilton, P.B., Anal. Chem., <u>32</u>, 1779 (1960).
- 40. Hamilton, P.B., Bogue, D.C., Anderson, R.A., Anal. Chem., <u>32</u>, 1782 (1960).
- 41. Hough, L., Friddle, J.E., Theobald, R.S., Chem, Ind., 900 (1960).
- 42. Seki, T., J. Chromatogr., 3, 376 (1960).
- 43. Talley, E.A., Porter, W.L., J. Chromatogr., 3, 434 (1960).
- 44. Skelly, N.E., Anal. Chem., 33, 371 (1961).
- 45. Rieman, W., J. Chem. Edu., <u>38</u>, 338 (1961).
- 46. Seki, T., J. Chromatogr., 4, 6 (1961),
- 47. Sherma, J., Locke, D., Bassett, D., J. Chromatogr, 5, 273 (1962).
- 48. Varon, A., Jakob, F., Park.K.C., Ciric, J., Rieman, W., Talanta, 2, 573 (1962).
- 49. Sherma, J., Chemist Analyst., 52, 114 (1963).
- 50. Hatch, M.J., Dillon, J.A., Ind. Eng. Chem., Process Design Develop, 2, 253 (1963).
- 51. Johnson, H.A., Wheelock, T.D., Ind, Eng. Chem., Fund., 3, 201 (1964).
- 52. Harlow, G.A., Norman, D.H., Anal. Chem., 36, 2438 (1964).
- 53. Pelletier, G.E., Jolicoeur, C., Can. J. Chem., <u>43</u>, 3232 (1965).

- 55. Patel, D.J., Bafna, S.L., Nature, 211, 963 (1966).
- 56. Shah, R.S., Bafna, S.L., J.Indian Chem. Soc., <u>44</u>, 576 (1967).
- 57. Patel, D.J., Bhatt, R.A., Bafna, S.L., Chem. Ind., 2110 (1967).
- 58. Patel, D.J., Hegde, R.S., Bafna, S.L., Indian J.Appl.Chem., 33, 133 (1970).
- 59. Bafina, S.L., Patel, D.J., Mehta, J.D., J. Pharm. Sci., <u>61</u>, 1333 (1972).
- 60. Funasaka, W., Fujimura, K., Kushida, S., J. Chromatogr., <u>64</u>, 95 (1972).
- 61. Drahomovsky, J., Vacek, Z., Chem. Abstr., 76, 7011g (1972).
- 62. Larson, P., Murgia, E., Hsu, T., Walton, H.F., Anal. Chem., 45, 2306 (1973).
- 63. Jandera, P., Churacek, J., J. Chromatogr., <u>86</u>, 351 (1973).
- 64. Pifferi, P.G., Baldassari, L., Gandolfi, O., J. Chromatogr., 88, 381 (1974)_
- 65. Walton, H.F., J. Chromatogr., 102, 57 (1974).
- 66. Dore, M., Riffand, H., Lumbroso, R., Ion Exchange and Membranes, 2, 51 (1974).
- 67. Olle, R., Samuelson, O., Acta. Chem. Scand., B28, 955 (1974).
- 68. Goulding, R.W., J. Chromatogr., <u>103</u>, 229 (1975).
- 69. Lennart, 0., Samuelson, 0., J. Chromatogr., 106, 139 (1975).
- 70. Martin, H.J.P., Synge, K.L.M., Biochem.J., <u>35</u>, 1385 (1941).
- 71. Mayer, S.W., Tompkins, E.K., J.Amer.Chem.Soc., <u>69</u>, 2866 (1947).
- 72. Boyd, G.E., Myers, L.S., Adamson, A.W., J.Amer.Chem.Soc., 69, 2849 (1947).
- 73. Coates, J.I., Glueckauf, E., J. Chem. Soc., 1308 (1947).
- 74. Glueckauf, E., J. Chem. Soc., 1302, 1321 (1947).

- 75. Ketelle, B.H., Boyde, G.E., J.Amer.Chem.Soc., <u>69</u>, 2800 (1947).
- 76. Kunin, K., Myers, K.J., J. Amer. Chem. Soc., <u>69</u>, 2874 (1947).
- 77. Glueckauf, E., Trans. Faraday Soc., 51, 34 (1955).
- 78. Glueckauf, E., Ion Exchange and its Applications, London, Society of Chemical Industry, p.34 (1955).
- 79, Giddings, J.C., J. Phy. Chem., <u>59</u>, 416 (1958).
- 80. Brennan, D., Kemball, C., J.Inst.Petrol., 44, 4 (1958).
- 81. Kraus, K.A., Raridon, R.J., J. Phy. Chem., <u>63</u>, 1901 (1959).
- 82. Bonner, O.D., Pruett, R.R., J. Phy. Chem., <u>63</u>, 1417 (1959).
- 83. Kraus, K.A., Raridon, R.J., Holcomb, D.L., J. Chromatogr., 3, 178 (1960).
- 84. Minczewski, J., Dybczynski, K., J.Chromatogr., 7, 98 (1962).
- 85. Dybczynski, R., J. Chromatogr., <u>14</u>, 79 (1964).
- 86. Nelson, F., Michelson, D.C., J. Chromatogr., 25, 414 (1966).
- 87. Dybczynski, R., J. Chromatogr., 31, 155 (1967).
- 88. Karger, B.L., J. Chem. Edu. m 43, 47 (1966).
- 89. Giddings, J.C., J.Chem.Edu., 544, 704 (1967).
- 90. Kony, K.K., Separation Sci., 3, 239 (1968).
- 91. Rony, R.R., Separation Sci., 3, 357 (1968).
- 92. Knox, J.H., Saleem, H., J.Chromatogr.Sci., 7, 745 (1969).
- 93. Inczedy, J., J. Chromatogr., 50, 112 (1970).
- 94. Grubner, 0., Anal. Chem., 43, 1934 (1971).
- 95. Valkov, S.A., Sakodynski, K.I., Smirnova, G., Chem. Abstr., 74, 6758c (1971).
- 96. Rony, R. R., Separation Sci., <u>6</u>, 771 (1971).
- 97. Patel, D.J., Ph.D. Thesis, M.S. University, Baroda (1965).
- 98. Mehta, M.J., Ph.D. Thesis, M.S. University, Baroda (1965).
- 99. Mehta, J.D., Ph.D. Thesis, M.S. University, Baroda (1971).
- 100. Masrani,K.V., Ph.D.Thesis, M.S.University, Baroda (1975).