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CHAPTER IV

DENSITY DEPENDENT SKYRME INTERACTION IN THE

" HARTREE-FOCK_FORMALISM

Bl

Iv.0o Introduction

The usual phenomenclogical interactionsused often in the
Hartree~Fock calculations require a strong exchange component
to ensure saturation, The effective interactions derived from

1-5)

Brueckner's calculations in nuclear matter acquire in addition
to a strong exchange component a strong density dependence. In
addition to the strong density dependence, the interactions of

Y 2) also give a starting energy

Negelé and Baﬁerjee and Sprung
dependence, Their saturation pfoperties would be lost withouﬁ
the density dependence. In such calewlations, the effective
intergction is first derived in lowestlofder from a relative
two-body fofce and the higher order correctioné to it are
parametrized, since the Brueckner's theory of nuclear matter
leads to a defect of the order of 4 MeV for the binding eﬁergy
per particle. Rather than calculating higher order terms in
Brueckner!s thedry, a phenomgnological correction is added to
compensate for this defect iﬁ binding energy. In any case, all
these interactions lead té é significant density depéndenoe of
the interaction, Most of these iﬁterac?ions give a satisfactory
description of thekradii, binding energieé and single particle

energies of doubly-closed shell nuclei, From these calculations
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it is seen that to describe saturating properties of nuclear

forces (especially arising from tensor force and the repulsive
core) the effective potential must b? made to depend on‘density6 7).
In fact, this is the way in which the saturation is achieved,

The attraction between two nucleons decreases as the density

increases,

Another class of calculations leaves out any consideration
qf the realistic force and the effective interaction is parame-
trized as a whole, In any case a parametrization is required
to improve upon the realistic interaction. Such phenomenological
interactions can give a good insight into the study of wvarious
properties of nuclei, Density independent effective interaction58"1j)
usually do not explain either the nuclear radii or the binding
energies or the spectroscopic properties. Density  dependent
forces on the other hand, generally provide a good description

of nuclear radii and binding energies.

As was shown in the Chapter II, the density dependence of
the G-matrix arises naturally due to the exclusion principle.
The effective interaction depends very much on the presence of
the other nucleons because the other nucleons prevent them from
scattering into the states which they occupy. This makes G a
complicated function., Therefore a simplifying assumption made for
G is that the effect of other nucleons is accounted for by

representing G as a density dependent function of the two nucleon
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co-ordinates. In a finite nucleus where the dgnsity is not
constant, the local density approximation is used. In this

approximation the interaction between two nucleonsat the positions
T

rq and rs is assumed to take place in a medium the density of
which is egqual to the density of matter at the centre-of-mass

A I, T . . :
Position R = 5 (r1 + r2) of the two interacting nucleons.

;

Among the various density dependent effective interactions

2)

and the interaction

13)

are Moszkowski's modified é; --interactior;l
which has become gquite popular of lafe the Skyrme interaction
advocated by Vautherin and'Brink1u).There have ben numerous

calculations using Skyrme interaction now available in litera-

1h-16) for the bulk properties of the nuclei. The Hamiltonian

ture
density for nuclear system described by a Slater determinant

can be expressed as an algebraic function of the nuclear and
kinetic energy densities. This is possible because of the simple
structure of the Skyrme interaction. In this energy densitj
formalism, the Hartree-Fock equations reduce to ordinary differen-

tial equations which can be solved numerically by usual iter-

atiorn ' procedure,

The Skyrme interaction is described in detail in Chapter II.
The three-body contact force in it is equivalent to a two-body
density dependent interaction for HF calculations of even-~even
nuclei and is partly responsible for the saturation property

of the force,
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The Skyrme interaction is characterized by only a few
parameters: s t11ll many different sets of these parameters1h’16)
ha%e been obtained which more or less fit the binding energies
and r.m,s. radii for nuclei all over periodic table, In spite
of this bPhenomenal success achieved with Skyrme interactions in
reproducing the bulk properties of the nuclel, there has been
little effort in calculating spectroscopic properties such as

energy spectra17’18)

; transition rates, etc.using such interact-
ions. This could be due to the difficulties posed by the three-
body contact interaction simulating a density dependent two-body
interaction. The three-body interaction in Skyrme -force as stated
in Chapter 1II, overbinds odd-mass and odd-odd nuclei and produces
unstable spin-aligned HF ground states in nuclear matter and

even-gven nuclei. Hence the two-body density dependent inter-

action is preferred to three-body contact interaction.

Since the 'equivalent! two-body density dependent force
is rotationally non-invariant for deformed nuclei, for density
is no more a scalar function of position in space, it is
unsuitable for a rigorous spectroscopic calculation requiring
good angular momentum eigenstates which is the object of the
present study. We shall propose in this chapter a modification,
of the Skyrme interaction that enables us to perform spectroscopilc
19)

calculations by employing a scalar density dependence averaged

over the whole band of states contained in the variational
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3

intrinsic state. Such an interaction will be eguivalent to the
usual Skyrme force in spherically symmetric nuclei, thus mainta-
ining the agreement for bulk properties obtained all over the

periodic table,

In the following sections we shall define the scalar band
averaged density to be used in the calculations and outline the
procedure to perform density dependent HF calculations. We shall
restrict ourselves to the intrinsic properties of some even-even,
N=Z tiﬁ@-reversal invariant nuclear systems only. The problem
of projecting out good angular momentum states from the HF solu-
tions will be taken up in the next chapter. We shall also éompare

our results with other available calculations.

Iv.1 Definition of Band Averaged Density.

In the Skyrme interaction, the density appearing in the
two-body density dependent part needs to be evaluated at the centre-
of-mass of two interacting nucleons. The interaction between two

- . - .
nucleons at the positions r, and r., is assumed to take place in a

1 2
medium the density of which is ecqual to the density of mattor at
- -
the centre-of-mass position R = (r1 + rz)/2. However, for a contact
force such as Skyrme interaction this coincides with density at

the position of either of the two interacting nucleons.
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For time-reversal invariant HF calculations of even-even
nuclei, the two-body density dependent force in Skyrme inter-

action is given by, :
—> -

r,+r
Typ = (43/6) (1+2g) § -9 2 2) V(1)

2
The density f (r) is defined as,

A - -

- - . \

¢ (BY=5 <Al PO HIIAD ()
L=y

The density g for an axially deformed, time reversal

invariant even-even nucleus can be expanded in terms of its

multipole components as follows:

=
¢ (3= 3 8 (=
-

)

L=0,2%...... IV(3)

It is easily seen that the scalar part of density ( go)
can be expressed as the average of scalar densities of the

states projected onto the space of good angular momentum:

——

—> 2 N >
€, (5> = 2, lazl™ ¢, 4)
J

IV(ka)
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where § Y(r) = o 3T | § | m) IV (4b)
™
A _ >
Cop = > S (& -2) IV (%)

In IV(¥a), | a; | © is the probability of the state with

angular momentum J contained in the deformed intrinsic state.

1
We suggest a modification in the int‘;eraction9 eq.IV(1))
such that the deformed densityif’(;b is replaced by the "band
—-—
averaged" scalar density f’o(r) (eq.IV(ka)) . We replace Vi,

by V;Z and write

Vi, =t 4B ) (R Ra) € (?‘ ““’?’J
12 - %/(>>,( )+ &) ! 2) © Z

v(5)

The interaction V{g would retain the rotational invariance
and at the same time woqld nct disturb the agreement for the
bulk properties for spherical nuclei. It is straightforward
to obtain the expression for § o{?) to be used in the HF

calculations.

— A N
¢ (X>= 5. <A diy <DiIT
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where < = M ’20( Qag
Eqn.IV(6) could be written as:
A L ‘ Jo =T
- t X L
QA= ;;. > <: C:i% 1)
=l P _

——

. C(Q‘* ap I <t‘:(~k7(o(;{%)"£i > >

- AN, ©

J
Iv(7)
where i
~1
- 7 °L o 33 T <H\P U
A C BT -1) ( ’Z‘ P —
A \Y o(, 5 >~m°(‘rﬂ;§ ‘M’m ) <A L\%?

Zeroth multipole of density can be obtalned by setting J=0.
It is then trivial to show that IV(7) reduces to

A \*
?e(‘ﬁ') =3 2. C C L

1v(8)

IV(8) is then the expression to be used in the HF calculations
for the "band averaged scalar density". Introduction of this
band averaged scalar density now maxkes the Hamiltonian rotati-
onally invariant and spectroscopic calculations are made

completely feasible. Employing the scalar density defined in IV(8)
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we shall briefly review the density dependent Hartree-Fock forma-

lism in the following section.

IV.2 Density dependent Hartree-Fock theory

We shall closely follow the treatment given in section III.1
to discuss the HF formalism with density dependent Skyrme forces.
We shall denote by”\3’12 all the ters of Skyrme interactien which
‘are independent of density. V{g, as defined in the eqn.IV(5),
denotes the two-body density dependent term in which the deformed

_9
density S’ (r) has been replaced by the band averaged scalar
—
density f’o(fB. In the 'deformed! basis defined by eqn,III(3),
the Hamiltonian can be written as, \
> M "r 1}
H4= > <alt 13> & \Fia
id
Vo "( o /’ y ﬂ. + .
+ L L Kik |V, Vi gl A aay &g
igkl
d IV(9)
Because of axial symmetry, the deformed orbital \j.> can
be expréssed in terms of the basis states as,
iy = > | Mo Lo do, TN T
ot
| = S . |, miTy
- O{ ) 1 L 7
d v

where C is the unitary transformation on the basis states

Ny Lo Jol, ]
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defined in the eqn.III(3), When it does not cause confusion
we shall drop the guantum numbers w, anditg. Denoting by'g¢)>

the A particle state,
A -;-

‘d; ’“T L oy
we have, the total energy for the nucleus with A nucleons

E=x < $ild)

¢f

—.A ‘ ' A , ~ il v
2_)< LIy «%—..‘i > <, Vi 11] D
L= P!

Iv(10)

where tilde denotes the antisymmetrized matrix element defined

in eqn.III(8a).

As given in eqn.III(9), the HF approximation requires

!
for all o S

’a ﬁ LK i _
iy <Py -T e3¢ =0
. X,
a( X
e,
B ﬁ A ""\/ ~~ ]
"""y[ STy A5 gVt Vie |t
’BCOZ’\ y = 'é)

Iv(11)
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This leads to the following equation
_ A
[t P> + 5 <o<9 |, Vi mm
&

A , o o
\ L<{a‘3\/‘q (€o ) DAY (1 6“9"{)'13>

)

b

Q.:.

4=
2 . 9 L ¥
\ DSo C
J y =
1
T €, C« IV(12)
where (1-P Pn ) is' the antlsymmetrlzatlon operator. The

M o
diffrentiation with respect to C°( of the density dependent

term gives rise to the two terms shown in IV(12), This is
§
due to the density dependence of the interaction V12. It is

snown in appendix B, that after some algebra, one has

, /
{{812\/11'3?9 (‘ Pp,@’ﬂ*) *xa>
2% DC

M>

{
2. 4
i

Sd -

——

N i
= 4_(; f CF <O(£ (?‘pg'r\)olr’)

' O Iv(13)

for an even-even time-reversal invariant nucleus,

? p(n) is the density of the protons (neutrons) and ( ?pen)o
is the zeroth multipole of the product (ng‘h). It is to be
noted that the term in IV(12) which arises purely out of density
dependence reduces to a one~body' terms as given in IV(13), If

we start with a spherical density ?0 , only the zeroth multipole
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of the product (?p?n) contributes. This is shown in the

appendix C. The expression for the m.e. £\ (§pSn)o \V-"}

is given in appendix D.

Following the treatment given in chapter III, one can easily
see that the Hartree-Fock equations now can be written from eaqn.

IV(12) as,

- S -
2‘; <K VR BY C\’B = Co( €y Iv(1ka)

¢ 1hipy = <« | B 1>

22N . ,
~ ~ L
’ -+ §~ 2<°‘\'7m5‘/19.+\/\’;]f%5)c‘y C:S
Lote ”Yg
(T2 )< ) €)1 B >

The solution of eqns.IV(1ka) and IV(14b) involves the problem

IV(14b)

of double self-consistency between the interaction matrix elements
and the HF wave function. One starts with a trial wave function
and calculates two-body scalar density matrix elements

<°§"/‘:7l:z. “’55> and the one-body density matrix elements

< (?P?'h)o“?O and sets up the Hamiltonian matrix ¢ ,)1”3))
eqn.IV(1h4b). Its diagonalization gives a new set of eigenvalues
and eigenfunctions., With this new wave function, sgain new
two-body scalar density matrix elements are evaluated and the

Hamiltonian matrix set up and diagonalized., This procedure

is continued until two successive wave functions and the sets of
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two-body matrix elements calculated are the same, i.e, when

both interaction matrix elements and the HF solution are mutually
self-consistent. It is clear from this procedure that the

density dependent HF calculations are an order of maggnitude

more difficult than the density independent ones.

Iv.2.1 Rearrangement energy

For density independent forces, the total energy E of a
nucleus can be expressed as h

N
E:-’i-Z L<titingy 4+ €(]

1z III(13)

For Skyrme interaction, there is an additional term
arising out of the density dependence of the interaction. The
expression III(13) is replaced by

A
E = Z[(H"Cli)—%éi:j-'FER IV(15)

where ER is called the "rearrangement energy'" and is given by

- —T, *}:\ ' ‘ © IV(16a)
ErR="225 <i]9pSmiL1>
g iz ’
In our modified version of Skyrme interaction, only the

Zeroth multipole of the product fz)grlcontributes and the
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expression becomes ,

.,ﬂjg) - . ' ’
- ~ o 1>
Er= .,,..Z_<11(§}o%4’¥) ) IV(16b)
B L Sd .
o L=}

From the expression IV(16b) for the rearrangement energy
Ep, it can be seen that this quantity is always negative. In
fact, this would be the case for any form of density dependence
of interaction. Thus the total energy in density dependent HF
theory is always lower than the ordinary HF theory would lead

us to expect from the given single particle energy eigenvalues.

Due to the relation III(13) for total binding energy
for density independent forces in HF approximgtion, it is well-
known that it is not possible to fit the radius, single particle
energies and total binding energies using a single density

14,23)

independent force . For Skyrme force, however, the relation
III(13) is replaced by IV(15). The rearrangement energy term
ER which arises purely due to the density dependence of the
interaction is then responsible in obtaining good agreement for

binding energies of nuclel with experiment.

v.2,2 HF single particle energies and separabion energies.

We shall show in this section that when we consider the
two-body density dependent version of the force in Skyrme

interaction rather than the three-body contact force, the
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21)

Koopman's theorem no longer holds assuming that the single
particle wave functions of the A and A-1 gystems are identical.
Koopman's theorem strictly holds when the three-body contact

1)

interaction is used as shown by Vautherin and Brink .

Koopman's theorem is known to hold for density independent
two-body interaction only in the absence of centre-of-mass motion
(c.m.m.) as shown in chapter III. In this section, we shall not
congider c.m.m,to make the discussion simple arid concentrate

only on the density dependent part of the interaction.

We recall-that we are working in the band averaged density
hY

formalisum described in sections IV.1 and IV.2. Hence ?o(I/') )

? etc, denote the zZeroth multipoles.
(o]
(%% ) C3)
The contribution E¢ . )to the HF single particle energy é“_()

for the orbital K from egns. IV(1hka) and IV(14b) due to the

density dependent part is given by ,

A
(%) i - "'% LN ~. A
: T / " ‘9& +)‘ - \) —"’\ /0
€= 2 Rt ()8 ’9:—296(’(\”‘62)5“2)

g &

+ J.c_.]:‘ <K | C8psn)e <)
44
IV(17)

3

Since we consideér only even-even time-reversal invariant

nuclei, it can be shown that IV(17) reduces to,
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(2) Yix 4

€y DBkl (98) 28, ) IR

3

Iv(18)

where- (? g) denotes the band averaged density for the nucleus
with A particles. ‘3], ¢ denotes whether the orbital K is a
proton or a neutron orbital. Consider it to be a neutron

orbital, Then ,

C3)
(k)

A 2 ~ A4
%(H}(gc)“(go‘) 3“(
+ IV(19)

? 1§ is the zeroth multipole of density of neutrons. This
expression for HF single particle energies is identical with

%)

the one given by Vautherin and B:c'ink1

We shall now calculate the contribution to separation energy
due to the density dependent part o;f‘ Skyrme interaction,
é (3) (K) required to remove the nucleon from kP orbital.

We have by definition,

3) ) m/—\ __A"’
o,[w) - }: —'\':
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A ' ASs o> —~
S LS <ig it ) S (Tt ”)50«: D 1>
L 3
\ i"l L /"}"'“;
e <13‘E_?3(\—+—t%—)€’ Jﬁ“’")gle 52 >\12>
{)5,?_74"( ¢ Iv(2o)

g o and ¢ §’1 denote the band averaged densities for nuclei
with (4) and (A-1) nucleons respectively. We assume here that
the orbitals of the residual nucleus with (4-1) nucleons do not
change after sudden removal of the particle from the orbital K
With this assumption IV(20) can be written as

¢3) A
€ o (K) = ;_L 2.< ‘ZH'L‘(!-F%—)CP( J”?:,

b, L]

_____—___.—-—

P (’z+ )S(ﬂa el 37

}&{ - ~
, 5 = - '
+ 5 <<dIts \wg)?o(’éwﬁjﬁg(ir’zzﬂKZD
6
a

Iv(21)

Considering K to be neutron orbital, it is easy to show that
Iveat) }educes to,

(3) s A2 N2
€ () = %(K;(go§ €)1k

+, i P %% B
T2l g, ¢ Py 1K

Iv(22)



90

i.e.

(3) (3) P X
65‘\3(’\1) =S % <l S, Cbh— L

1v(23)

We thus see that the separation energies differ from HF
single particle energies by an awmount given by the second term

in IV(23) and so the Koopman's theorem no longer holds when a

two-body dengity dependent interaction is used.

It should be noted that our expression for HF single
particle energies is identicél with that of Vautherin and Brink
and so with their separation energies since they use three-body
contact force., Our expression for separation energies, however,
is different. Three-body contact force and two-body density
dependent force are equivalent only for the even-even time-

reversal invariant systems.

As we saw in chapter III, - -the Koopman's theorem is not valid
when c.m.m, is incorporated in HF calculations and the particle
nunber A is to be treated as a number operator. We see that
when the interaction itself depends on the particle number, the
Koopman's theorem will not be valid., The total density of a system
depends on the total number of particles A in the system and so
the Koopman's theorem will not be valid for density dependent

interactions. The effect of 2nd term in IV(23), however, is
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expected to be small, approximately by a factor (1/4) and so
& S;.(K) and € (3)(x) would be quite close especially when
the number of nucleons is quite large. Hence single particle’
energies would be guite close to the actual separation energies

when density dependent forces are used.

Iv.3 HF calculations with the band averaged Skyrme
interaction.

As remarked in the section IV.2, the solution of HF equa-
tions in the density dependent HF theory involves the problem
of double self-consistency between the interaction matrix
elements and the HF wave functions. Following the procedure
outlined there, the calculations were carried out for the nuclei

8 12, 16 20

Be, "C, 7“0 and ~“Ne using the scalar band averaged density

dependent Skyrme interaction. B

The interaction set chosen was the variant SIV of Beiner

et a116)

. This set will be denoted as BASIV in our band averaged
formalism. The set SIV has a rather weak-density dependence com-
pared to other sets, This set was chosen since because of its
weak density dependence, the convergence is very rapid. Other
sets because of their large density dependence, pose the problem
of numerical instability of the HF solution and hence that of
its convergence. The corrections arising due to the centre-of-

mass motion and Coulomb repulsion have not been included in

order to make the projection calculations simpler and also
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because it was found that the contribution of these corrections

to the energy spectrum is quite insignificantgo).

We display the results of the HF calculations with the
interaction BASIV in tables IV.1 through IV.§ for the nuclei 8Be,
120, 160 and 2ONe. Only the proton time-like orbitals are given,.
It is seen that thé interaction BASIV provides a much better
agreement for the binding energies of these nuclei compared to
the variant SV and the Sussex interaction (Tables III.34 and
II1.3B). It should be noted that the interaction BASIV 1lifts up
the deep lying orbitals as compared to 8V which is in accordance
with the calculations reported by Beiner et al16). The r.m.s.
radii given by BASIV compare well with those given by SV. It
can be seen that the HF gaps obtained with BASIV are consistently
larger than the ones obtained with SV. One can conclude that,

in general, the interaction BASIV provides a better description

of the intrinsic properties of nuclei.

IV, k Summary

In this chapter, we have proposed a modification of the
Skyrme interaction by replacing the intrinsic density by the
"band averaged" scalar density. This makes the Hamiltonian
rotationally invariant and projection of good amngular momentum
states from the intrinsic HF solution is made possible. We

derived HF equations using density dependent Skyrme interaction
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and saw that when density dependent interaction is used,
Koopman's theorem does not hold because the interaction depends
upon the total number of particles in the system. We saw that
the interaction BASIV provides a good description of the nuclei
studied compared to the interactions SV and Sussex. We shall
take up the topic of projecting good angular momentum states
from the HF intrinsic state in order to study the collective

properties of nuclei in the next chapter.
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