CHAPTER IT

EFFECTIVE INTERACTIONS

1T.0 Introduction

In this chapter we shall review and discuss properties and
some appiications of Skyrme interaction and briefly discuss the
Sussex interaction. These are the effective interactions employed
to study intrinsic as well as spectroscopic properties of nucleil

in this thesis.

Two nucleons interact differently in the presence of other
nucleons than in free space. Therefore the calculation of the
effective interaction between two nucleons in the nucleus in
terms of the interaction between to nucleons in free space is
required, It turns out that this interaction is density dependent.

It can be shown that this is a natural consequence of Pauli's

7). 8,9)

exclusion principle After defining the Skyrme interaction ’" 7,

we shall review the efforts to show its close connection with

16,17)

the realistic forces . We shall very briefly discuss the

several variants of the Skyruwe interaction recently obtained by
18)

Beiner et al 7’ and inter-relationship of the various interaction

parameters, We shall see why a two~body density dependent force

which simulates a three-body contact force in Skyrme inter.

20,21)

action is preferred. We shall then discuss pairing in



Skyrme interaction and its suitability for spec troscopic cal-
culations. We shall show there that a proper choice of the value
of oscillator parameter éb) leads to proper pairing treﬂd. Finally,
we shall briefly discuss the salient features of Sussex inter-~

action23’2u>.

IT.1 The origin of density dependence in efgective interaction
in nuclei.

The effective interaction between two nucleons in the
presence of other nucleons in terms of free nucleon-nucleon
interaction is derived by Brueckner-Goldstone theory1'7). From
this theory, it is quite straightforward to see that the
density dependence of the effective interaction is a natural

consequence of the Pauli's exclusion principle,

The basic quantity of Bethe-Brueckner-Goldstone theory
is the reaction matrix G which defines the effective interaction
between two nucleons in the presence of others. It satisfies

the matrix (integral) equationg »6,7)

ok

G=V-V=2G i II(1)

where V is the free nucleon-nucleon interaction. More expli-

citly this can be written,

< KL|G1ijy =(kL| VI 1j>

-z<kl‘men>E—(§%%w<m‘G\ij> II(2)
T™TM



In II(1) and II(2), Q is the Pauli operator. Since in a'
nucleus, two nucleons can not scatter into orbits already
occupied by other nucleons, it is egual to 1 if both the inter-
wediate states| my and |n) are unoccupied, otherwise zero. In

the energy denominator,

e = B(m) + B(n) - W II(3)

E(m) and E(n) are the energies of the intermediate unoccupied
states | m) and In) and W is the starting energy. If both the

states | 1) and | J yare occupied,
W= E(i) + B(j) II(W)

For given W, G matrix is Hermitian. G always operates on

twoeparticle wave function, i.e. on

L¢3y = 1Pt ade 4 2d) 11(5)
where>94 is the antisymmetrization operator. This is ¢alled
the two-body "unperturbed" wave function. Because of the presence
of other nucleons, there are correlations introduced in it and

we have the '"correlated" two-body wave function.\A*~jj Yy given

by the eguation,

\ﬂhp:WLp-—%a)bgg)' I1(6)



It is then easy to show that,

VIivigy =G 1 &3> 11(6a)

The operator G can thus be considered as the "effective

interaction". Eqn.II(6) can be written as,

I3y = 1 digy - %V"“Y‘ial? II(6b)

From egn.II(1) and II(2), it is evident that the effective
interaction G between two nucleons depends very much on the
Presence of other nucleons angd thus on their density through the
Pauli exclusion operator Q because the other nucleons prevent
them from scattering into the states which they occupy. This
makes G a very complicated function, The simplifying assumption
made for G is that the effect of other nucleons is accounted for
by representing G as a density dependent function of the two

nucleon co-ordinates, We may have,

> =
G Vopr (ry, 5, § )

- - - =
=7, + 7,0 FL8RY] I1(7)
—I? _:t‘:a - -I? + f >
where = '~ 2 and R = 152 and § (B is the

-y
density of nuclear matter at the point R, In a finite nucleus,

we assume that two nucleons interact as in nuclear matter whose
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density equals the density at the mean position of the two
nucleons. This approximation is known as the local density

approximation.

One thus sees that the density dependence of the G-matrix
or the effective interaction is a feature that naturally arises
because of the Pauli's exclusion principle. Calculations with
such realistic forces are gquite complicated and thus a simpler
G-matrix is desirable, Skyrme proposed a simple parametrization
of G-matrixg). It is purely a phenomenological fit to the
G-gatrix with zero range forces and a three-body force simulating
a two-body density dependent force. Due to its simplicity, the
Skyrme force has proved to be quite attraoctive and pqular. There
are several versions of Skyrme force which we shall briefly

review in the next section.

I1.1.1 The Skyrme Interaction
8)

The Skyrme interaction has a two~body part V12 and a

three~body part V123,
Vo=V +Vypy - I1(8)

Skyrame used a short range expansion of two-body interaction.
For Hartree-Fock calculations only low-momentum matrix elements
- -
(k, k' £ 2 k) are required where k and k' are relative wave-

vectors of the two nucleons. In momentum space, the matrix



N

—> -
€lements of the two-body term between k and k' are given by

- -
Kl IV |k = ¢, ¢ |+ X6 Py)
++t, (k% 4+Kk7) ,

> =
+ t, .k’

. - - =
+ IW(D 4y ) (kxk )
11(9)

This can be shown to correspond to a short range expansion

8,9)

of two-body interaction . In the configuration space, V12

can be written as,

.—>
Viz = to (1% XoPsr) 5(3) = %2 )

>
+- éﬁt\ L ég(fi\"’tz)"l-+ F}' S-(’is“TZ?z )]
.-%
+ 1,1;7:’ ] S;(-:Z\ ";?2 > K
- ;T
4+ W (2?2%—5%2}).1i';< Sk-ﬁg —7?L <

I1(10)
— -
- X, -7
The operator k = _l._7~§l acts on the right while
- <. .9 26
k'= —~ V7" V2 a0ts on the left.

23
By considering the matrix elements of II(10) in'a gtate of

> -
relative motion~~ (r) = R(r) Yyw (&, f), it is easy to see

that the matrix elements of the first two terms are proportional
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to)»ﬁ/‘(o)) 2 and ~+’(O) <72~P'(O) respectively and hence these
two terms correspond to s-wave interactions. The matrix elements
of the remaining two terms are proportional to | ‘;;¥(O)l 2 and
hence they correspond to P-wave interactions. The last term ig

1)

the zero range limit of a two-body spin-orbit force1 .

For the three-body force, Skyrme assumed a contact force,

- > - -y
V123 = t3 ér (r1 - r2) Sﬁ(rg - r3) II(11)
It was shown by Vautherin and Brink9’1o) that in Hartree-Fock
calculations of even-even nuclei such a term is egquivalent to

a two-body density dependent interaction
t r, + 1
= 3 - =2 1 2
0‘12 “Z (1+P6-) 5~(r1-r2)9(-—§-~) II(12)

This is the form of interaction we shall use in this work.

The density dependent two-body force in Sk&rme interaction
describes how the interaction between two nucleons is modified
due to the presence of other nucleons. Skyrmé interaction is a
phenomenological representation of G-matrix &hich includes the
effects of short range correlations particularly through the
density dependent term.

There are several versions of Skyrme interaction. For example

12,13)

Moszkowski used the form:
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= — o S ( zzi - j%?:.J)
7’ —
+ 3 \’325(:{?-*57,2,)

n - —3>
+7 G () S (k=% )

I1(12a)

This interaction differs from that given by eq.II(8) by the

absence of prwave interactions. The index n is taken to be 2/3

or 1, The value n=2/3 was suggested by Bethe1u). Thus there are

only three interaction parameters for a fixed n, viz. X ,{%

and Y .
Another form of Skyrme interaction was used by Krewald

et al, and Liu26)

25)

. They have terms in addition to the terms of
Skyrme interaction (eq.II(10) and II(12)) which have density
dependence along with momentum dependence., We shall not consider

these forms of Skyrme interaction.

IT.1.2 Significance of various parameters of Skyrme

Interaction

The gignificance of various parameters in the Skyrme
interaction can be best visualized in the energy density forma-

lism for the variational calculations of finite nuclei, as given
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by Vautherin and Brinkg). From their expressions for the Hamilto-
nian density H(g) (the expectation value of total energy

E :ij(?) d3r ) , one can see that the parameter (9t1—5t2) is
important for surface effects, since it determines the importance
of the tefm (_;;‘? )2 in the energy density. Larger values of
(9t1-5t,) give larger surface thicknesses. They show that the
parameter (3t,* 5t2) is important for single particle energy
levels. Also for a given value of energy per nucleon E/A and

the Fermi momentum kp in nuclear matter, the coefficient t3
increasés linearly with the nuclear matter incompressibility K,

where

K = k: —al(E/Al

P F:;;

II(13)

The last term in II(9) and II(10) gives rise to the single-

particle spin-orbit force.

It may be mentioned that the parameter;{; o takes care of the
neutron-proton asymmetry properties, since )COPO—S = --X.O P‘T. g

while operating on antisymmetrized states.

I1.2 Relation between Skyrme force and realistic forces.

With only six parameters the Skyrme interaction is able

to reproduce binding energies, sizes and other intrinsic properties
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of nuclei all over the periodic table. Quality of Hartree-Fock
calculations performed with this interaction is guite high
compared with the simplicity of the force. The realistic G-matrices

15)

derived via the local density approximation are shown to describe
accurately the interaction between two nucleons in a nucleus,

while maintaining the contact with nuclear matter theory based on

a realistic interaction. Results obtained with these forces are
quite close to the predictions made with the Skyrme force. If

oﬁe tries to relate these two theories via a moment expansion,

one finds that this does not allow truncation of the reaction
matrix . Therefore a rearrangement of the expansion was

16,17) so that the effect

carried out by Negele and Vautherin
of the long range part of the force on the ruclear matter density
matrix could be included exaétly to lowest order. To perform such
a rearrangement,; it is not convenient to consider the Taylor series

for the interaction in momentum space, Hence one considers the

equivalent short-range series for the density matrix defined by

A — N
A ——h; [ 1Y N
0 (R, R2) = 2 SPLIRG R ¢y
: 1= II(1%)

and then this is expanded in powers of the relative co-ordinate

i e
S =Ry - R, and the coordinate R = Ry + R,, so that

2.
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It has been shown in Ref,.(16) that in the case of finite nucleli
the first two terms of the expansion give a very good approximation
to the density matrix both in the interior of the nucleus as well
as on the surface. Congidering the fact that the nucleons interact
via a G-matrix, this approximation can be used to derive expression
for the energy density of a nucleus which is formally identical
to that obtained with the Skyrme ﬂofce; From these density-matrix
expansion (DME) calculations, it is possible to e%tract the nume-
rical value of the Skyrme parameters (except W ). It is clear that
there is a close connection between the Skyrme interaction and
the DME considering the two nucleons interact via a G-matrix,

This is the(reason why the results obtained with either Skyrme

or realistic forces are quite close to each other.

IT.3 Variants of the Skyrme Interaction.

Skyrme adjusted the parameters in his force by fitting

the binding energy and density of nuclear matter and also binding



energy differences of Some\light nuclei calculéted with oscilia—
tor wave functions. These parameters gave too sﬁall radii for
heavy nuclei. To reproduce these properties as well Vautherin
and Brink @arried out a readgustment o; these parameter39>
They obtained two sets of parameters by fitting properties of 160

208

and Pb. Both these sets provide a good description of binding

energies and radii of doubly~closed-shell nuclei, Recently a
careful study of these parameters was made by Beiner et al.18).

By requiring that these parameters accurately reproduce the total
binding energies and charge radii of ﬁagic nuclei in spherical
self-consistent calculations, they showed that several parameter
sets or variants of Skyrme interaction can satisfy these requife-
ments. They report four sets of parameters SIII to SVI (besides
the set SII of Vautherin and Brink) corresponding to quite
different values of t3 and hence covering a wide range of density
dependence, These variants are shown in Table iI.1. The set SV

hés t3=0 and hence it is a simple two-body force with no density
dependence. These variants differ esseﬁtially by the“single par-
ticle spectra they give. It was also shown by Flocard and Quent1n9)
that simple Hartree-Fock calculations using the interactions SIII
and SIV are gble to give correctly some static properties like
total binding energies, radii and deformations of the ground

state of s-d shell nuclei. In fact, good overall agreeument is

obtained for various experimental data all over the periodic
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table with all the variants SII to SVI.

I1.3.1 Interrelationship of Skyrme Parameters

The variants SII to SVI of the Skyrme interaction have
the strength parameter t, for the density dependence of the
interaction ranging from 0.0 to 17OQO MeV fmé. It would be
guite instructive to study if there is any functional relation-
ship among the parameters of various sets. 1If we plot the
various parameters for the sets SII to SVI (Figs.II(1) to II(3))
as a function of t3,we see that the parameters t,,t; and t, are
linearly related to t3 and hence to each other. Hence given
a value of t3, we can fix tbeée parameters. The parameters 2C o
and W ,however, would need to be adjusted since they do not
have a linear dependence on t3.(The"varian£ SI of Vautherin
and Brinkg) %938 not fall on the straight line since it gives
too small rad;A)J It would be interesting to carry out calcula-
tions with such an intermediate sef of parameters and compare
results with those of the variants SII tq‘SVI. This would
enable one to perform calculations with any value of t3 and

make a systematic study of the density dependence of the inter-

. action on various properties of nucleil.

k9) showed that this sort of linear

Vautherin and Brin
relationship among the parameters of the Skyrmé force exists

in the case of nuclear matter. The variants SII to SVI yield
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good agreement for nuclear matter as well as finite nuclei.

This is quite significant since in a finite nucleus, the surface
effects are quite important which tend to reduce the binding
energy per particle compared to the nuclear matter value., We can
thus have a variant of the Skyrme force for any desiréd value of
the strength parameter t3 though W and.;(.o will have to be
treated as free parameters. Although the several variants of
Skyrme interaction reproduce bulk propertiés of nuclei quite well,
. very few attenpts are directed towards the study of spectroscopic
properties. In fact, spectroscopic calculations would provide
best criteria to choose among the several vériants of Skyrme

interaction and therefore such calculations are quite essential.

II.4 Some limitations of the Skyrme interaction

Despite the success achieved in reproducing bulk properties
of nuclei all over periodic table with the Skyrme force, it has
its own limitations. We shall briefly discuss them in this

section,

IT.4%.1 Calculations for nuclear matter

Although the variants of Skyrme interaction give a wvalue
for binding energy per particle in nuclear matter close to the
accepted value of =16 MeV, the value for Fermi momentum at
saturation is always smaller than the usual value of kF:1.36 fm"1.

Also the incompressibility coefficient K is always found to be



" realistic forces

2l

larger than 300 MeV compared to the value of 200 MeV given by
18,26) - -

II.%.2 Density dependent two-body versus three-body
é;—interaction

When three-body version of Skyrme interaction is used (eq.
II(i1))insteéd of two-body density dependent one (eq.II(12)),
the variants with strong three-body terms (the variant SIII in
particular) can lead to spin-aligned Hartree-Fock solutions for

20)

odd and odd-~odd nuclei . It gives spin-adligned solutions also

for nuclear matter and even-even nuclei if‘the time-reversal in-
variance symmetry is not imposed20’21). The nuclei become overa
bound by some 100 M.eV, The reason for this catastrophe is the

use of three-body contact force in the Hamiltonian. It is shown
in the Refs.(20) and (21) that the con%ributior of the three-
body term to total energy vanishes if the nucleus is spin-aligned,
instead of contributing to saturation. This difficulty can be
overcome by using the two-body density dependent force (eq.II(12)
instead of three-body contact force. Both the versions are
equivalent in the Hartree-Fock calcuiations of even-even nuclei
with time-reversal invariance. The contribution to total energy
due to the two-body density dependent term does not vanish for
spin-aligned solutions and thus contributes to saturation. Two-

body density dependent force is therefore always preferred to

three-body cbntact force.
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I11.9 Pairing in Skyrme int&raction

Uptill now our discussion was mainly centred about theé
connection of Skyrme interaction with realistic interactions
and its success in reproducing the static ground state properties
of the nuclei without any reference to spectroscopic properties.
It is necessary to test the suitability of the interaction for
this purpose.’
22)

Sharp and Zamick calculated particle-particle two-~

body coupled péiring matgix elements using harmonic oscilla@or
wave functions for the state (Of7/2)2 for the configuration in
uQCa,important for thelground state energy spectrum. They report

. that this pairing matrix element for the Skyrme interaction
(eq.II(10)) gives a repulsive vaiue for the J=0, T=1 and higher
states. This would lead to an unphysical energy spectrum for
LF2Ca. This suggests that one should check such.pairing matrix
elements for Skyrme interaction before cdlculating spectroscopi

properties.

We show in this section that this difficulty can be
overcome by a proper choice of the value of the oscilliator para-
) 2
meter b, We studied the pairing matrix elements (051/2) 3
2 2 2 : ) .
(Op3/2) , (Ods/a) and (Of7/2) for J=0, T=1 states as a function

of the oscillator parameter b for the Skyrme variant SIV,
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5
For the (051/2)2 and (Od5/2> matrix elements (m.e.), only
ty and t, terms contribute while for (Op3/2)2 and (Of7/2)2 m.e.,
the t, and W terms also contribute a little. In either case,
the most contribution to these matrix elements is due ﬁo to and

t1 terms., Only t. and t1 m.e. would decide whether the total m.e,

0
would be attractive or repulsive,

IWe have plotted the pairing maﬁrix elements (Jzo;T=1) for
(-to) and t1 terms for the (Osvg)2 and (Od5/2)2 states and also
the total m.e., (Fig.II(%) and TII(5)). The density dependent part
of the Skyrme interaction will not contribute to the matrix

elements for T=1 states due to antisymmetry requirements.

For the (031/2)2 J=0, T=1 m.e. (Fig.II(4)), one can see that
the tO m.e. aredways larger than the t1 m.e, for any value of b
and hence this m.e. shall always be attractive., Similar features

P

are exhibited by (0p3/2)2 m.e.

The situation is rather interesting for the (Od5/2)2 m.e,

(Fig.II(5)). For small values of b, the t, m.e., though attractive

0
is numerically smaller than t1 m.e. and the total m,e, is
therefore positive. After a critical value of b, the tO m.e,
becomes numerically larger than t1 m.e, for all values of b and
the total m.e. now becomes attractive., In the calculations of
nuclear properties, the value of b must be larger than the

critical b (b=1.7 fm in this case), otherwise the results would be

2
unphysical. Similar behaviour is exhibited by (0f, )" m.e.



*q Joqameaad JOJRTTIOSO o4y JO UoIzouny e se pegjord
— b
1=2°0=t £ (2/150) | 4 | ,(3/V50) ) quemTe xrazum ey t(n)II'FTA

i

Dios, |
]

< T2 2-2 e 02 &6 81 it 94 G .
i 1 Y T T I 1 1 T (0%-1)

f:i @
e { ADN ) B W

‘9w |pjof = (0¥

o

I
grw-ly=
o
posionds ubiS YM D W—0)= A 0z
KIS :uoijdpiajul
ve

.ﬁ.oi.ANAN\_mS LY mhm\.movvu ‘2w
82



. *q J9v9weged JojefIToso 8yjg jJo
votyomy ® se pesgord P L L (/%03 1 4 1,(P/ P00y qmemete xTazem sur 1(4)1T°5%s

— ml-
- (W}) G- i P
02 M 84 s1 |
v3I g2 e2 12 02 B8l & - : .
1 _ Y Y T T 4/~/ ] (0*%-)
“925 e w
'9°W |00} = 8 3
TR o
W~ = A s
% 21 =
posionas ubis yim d3W-0f = "A— M
KIS : UOIODId| o —
=1'0= 2/ 4 o

1240 _,ANR Spo) |A] (P01 > = 0w w

02




29

The source of this behaviouf is the severe b dependence of
the m.e. of various parts of the Skyrme force. The to m,e, fall

off as b"3 while others as b'5 except t3 m,e, which fall off

-6

as b -, There is a competition between the to and t1 m,e, which

leads to the pairing or the antipairing of the m.e, For b

value larger than the critical value, the m.e. of t, etec, fall

1
off much faster than to and the total m.e., becomes attractive.

We state that the difficulty raised by Shkarp and Zamick can}
!
be remedied by optimizing b for every nucleus in question. One i

can then proceed to the caioulation of nuclear properties.

IT.6 A note on Sussex interaction

Another interaction that we have used in this.work for
comparison with the results of Skyrme interaction is the Sussex
interaction ﬁeduced-directly f;om the nucleon-nucleon phase
shifts ~ without specifying the potential 1n the harmonic osci-
llator basis. This method is essentially a dlstorted wave Born
approximation, The assumptions made were, (1) the potential
is non-singular and (ii) the information concerning scattering
at energies above 300 MeV is not required for an.understanding

of low-energy huclear properties and spectra.

Elliott et a123) derived the set of relative radial inte-
grals(lnl(S)g{'V]n' 1t (8) %> where l is the relative angular

momentum between two nucleons and 3 =1 +7? These radial
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integrals can be readily employed to calculate two-body coupled

matrix elements,
The potential is divided into two parts, viz,

vV = VO + V,] I1(16)

where VO is the auxiliary potential and V1 is supposed to be
small, If 5 is the experimentally observed phgse-shift and
go that calculated for the auxiliary potential Vo at the same
energy and if at this ‘energy V1 is small enough to be treated

in Born approximation, then 1t can be shown that,
o

S8 V(2,2 ) Wi () 22 don
Z > %

- ’Ejlf Tan (5*50)

- N 1I(17)

where qu(r) is the radial wave function for scattering by the
~¥
auxiliary potential., k is the relative wave vector. For an

auxiliary potential of the cut-off oscillator type,

2.

Vo = “""i_:\___ (A — 52(2’/Z+)al+>forr<a
Y

- O forr}a

I1(18)
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(where o{ is the depth, a the range and b = Mft/;“dthe oscillator

parameter), one can have under certain conditions for r¢ a,

Wi () = A Rmyp (&) I1(19)

where A is a constant. Then one can write,

jamw)vzmzﬂz))a EES
_~k* f;z.mw)(o( X/ 4) A dn

mo

=)
— < —
£k tam (3 80)
v AR
. I1(20)
The off-diagonal m,e. are calculated by differentiating the
diagonal m,e. (eq.II(20)) by b and obtaining a recurrence

relation. This, however, is not adequately reliable.

The errors arise in deducing this realistic bare G-matrix
essentially from the assumption that (V~VO) be small to be
treated in the Born approximation, and deducing off-diagonal

‘m.e. Another source of uncertainty is the experimental error
in determining the phase-shifts.

23)

Although the Sussex interaction gives reasonable

results for spectroscopic properties of nuclei, they are quite
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’ underbound, the r.m,s. radii are guite small and do not correspond
tq correct saturation densities. This interaction was therefore
modifiedzu) to include in relative s-states a central spin-
independent potential, V, which has an infinite hard core plus

an attractive outer region. The parameters of the attractive part
were chosen so that the two-nucleon phase-shift fit of the original
Sussex interaction was maintained while the core-radius, c, ‘
remained a free parameter which could be adjusted to give the
correct saturation densities for the nuclei. One is forced to

use Brueckner'!s theory so that a figixe G-mgtrix could be used

in the Hartree-Fock caléulationsq because of the presence of the
hard core, Energy spectfa for p-shell nuclei have been calculated
using this interaction by Dirim et al?7) using the value for
core~radius ' ¢c=0.3 fm. These calculations are rather cumbersome

23)

and so we have chosen to use the original Sussex interaction .

1I1.7 Sumaary g>

In this chapter we discussed the Skyrme interaction in detail
and made some brief comments about Sussex interaction. . We
remarked that the Skyrme interaction has been quite successful’
in reproducing bulk properties of nuclei all over the periodic
table only with six parameters. Ther® are several variants of the
Skyrme force all of which more or less reproduce ground state

binding energies, r.m.s. radii etc. quite well. We discussed the ‘
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inter-relationship of wvarious parameters of the Skyrme inter-
action. We showed that by optimizing the value of the oscillator
parameter b, one has desired property of pairing for (J=0,T=1)
m.e, We also discussed the relation of Skyrme interaction to

realistic interactions.

There are however very few attempts to calculaté spectroscopic
properties with the Skyrme interaction. In fact, spectroscopic
calculations will provide best criteria to choose among the
sets of parameters of the Skyfme interaction. We have therefore
undertaken to study this aspect in this work. Spectroscopic
calculations with Skyrme interaction forms the theme of this

thesis.
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