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CHAPTER II

EFFECTIVE INTERACTIONS

II.0 Introduction

In this chapter we shall review and discuss properties and 

some applications of Skyrme interaction and briefly discuss the 
Sussex interaction. These are the effective interactions employed 

to study intrinsic as well as spectroscopic properties of nuclei 

in this thesis.

Two nucleons interact differently in the presence of other 

nucleons than in free space. Therefore the calculation of the 
effective interaction between two nucleons in the nucleus in 
terms of the interaction between to nucleons in free space is 
required. It turns out that this interaction is density dependent.
It can be shown that this is a natural consequence of Pauli’s

7) 8 9)exclusion principle . After defining the Skyrme interaction ’ ,
we shall review the efforts to show its close connection with
the realistic forces 5 . We shall very briefly discuss the

several variants of the Skyrme interaction recently obtained by 
18)Beiner et al ,, and inter-relationship of the various interaction 

parameters. We shall see why a two-body density dependent force 

which simulates a three-body contact force in Skyrme inter- 
action 9 J is preferred. We shall then.discuss pairing in
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Skyrme interaction and its suitability for spectroscopic cal­

culations. We shall show there that a proper choice of the value 
of oscillator parameter (b) leads to proper pairing trend. Finally,

we shall briefly discuss the salient features of Sussex inter-
23,21+) action 5

II.1 The origin of density dependence in effective interaction
in nuclei.

The effective interaction between two nucleons in the
presence of other nucleons in terms of free nucleon-nucleon

1-7)interaction is derived by Brueckner-Goldstone theory . From 
this theory, it is quite straightforward to see that the 

density dependence of the effective interaction is a natural 

consequence of the Pauli's exclusion principle.

The basic quantity of Bethe-Brueckner-Goldstone theory 

is the reaction matrix G which defines the effective interaction 

between two nucleons in the presence of others. It satisfies
c? fs n \the matrix (integral) equation,5 J

G = V - V | G ' 11(1 )

where Y is the free nucleon-nucleon interaction. More expli­
citly this can be written,

< kl | G I ±j;> =(U| T | ij >

" 51< kl 1 V I mn> E(m^n)-W < I G I iO >
vn t\
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In 11(1) and 11(2), Q is the Pauli operator. Since in a 
nucleus, two nucleons can not scatter into orbits already 
occupied by other nucleons, it is equal to 1 if both the inter­
mediate states / my and jn^are unoccupied, otherwise zero. In 
the energy denominator,

e = E(m) + E(n) - W 11(3)

E(m) and E(n) are the energies of the intermediate unoccupied 

states I m> and ln)> and W is the starting energy. If both the 
states | iy and I j >are occupied,

W = E(i) + E(j) IlOO

For given W, G matrix is Hermitian. G always operates on 
two«-particle wave function, i.e. on

l 4>i3' > - «5)

where $4 the antisymmetrization operator. This is called 

the two-body "unperturbed" wave function. Because of the presence 
of other nucleons, there are correlations introduced in it and 
we have the "correlated" two-body wave function ^ y given 
by the equation,

Ij > = I - Sr Sf ) Pi jy 11(6)
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It is then easy to show that,

V r $ i <k3'> II(6a)
The operator G can thus be considered as the "effective 

interaction". Eqn.II(6) can' be written as,

!■+;*> - 1 > - % v \~y-i j>
From eqn.II(1) and 11(2), it is evident that the effective 

interaction G between two nucleons depends very much on the 

presence of other nucleons and thus on their density through the 

Pauli exclusion operator Q because the other nucleons prevent 

them from scattering into the states which they occupy. This 

makes G a very complicated function. The simplifying assumption 

made for G is that the effect of other nucleons is accounted for 

by representing G as a density dependent function of the two 

nucleon co-ordinates. We may have,

G Veff

= v1 (?) + v2(?) IK7)

where r = “ and B = ■ 2----- and j (R) is the

density of nuclear matter at the point R. In a finite nucleus,

we assume that two nucleons interact as in nuclear matter whose
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density equals the density at the mean position of the two 

nucleons. This approximation is known as the local density 

approximation.

One thus sees that the density dependence of the G-matrix 

or the effective interaction is a feature that naturally arises 

because of the Pauli’s exclusion principle. Calculations with 

such realistic forces are quite complicated and thus a simpler 

G-matrix is desirable. Skyrme proposed a simple parametrization
O \

of G-matrix0 . It is purely a phenomenological fit to the 

G-ipatrix with zero range forces and a three-body force simulating 

a two-body density dependent force. Due to its simplicity, the 

Skyrme force has proved to be quite attractive and popular. There 

are several versions of Skyrme force .which we shall briefly 

review in the next section.

II.1.1 The Skyrme Interaction
O \

The Skyrme interaction0' has a two-body part V12 and a 

three-body part V^2^,

v = v12 + v123 11(8)

Skyrme used a short range expansion of two-body interaction. 

For Hartree-Pock calculations only low-momentum matrix elements 

(k, k! <, 2 kj,) are required where k and k' are relative wave- 

vectors of the two nucleons. In momentum space, the matrix
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tlements of the two-body term between k and k' are given by

< l< f VTX I k '> d to ( \ + Xe P^)

■+■ -£ t*! ( k1 + kO
-4

■+■ t- 2. k » W '

■** i W j . (k x k ')
11(9)

This can be shown to correspond to a short range expansion 

of two-body interaction In the configuration space, V12

can be written as,

Vix~ to ^-2.)

4- — ^ i 0(^x- K-l) k 4 k' q(*s~^z)J-*> —»>

—*

+- iW

The operator k =
A —-^
' X7k» - - v'

^7,

11(10)

acts on the right while
2-1

_2 acts on the left.
X 2

By considering the matrix elements of 11(10) in'a stite of 

relative motion (r) = R(r) Nf"^wx (®t p), it is easy to see 
that the matrix elements of the first two terms are proportional



12

2 oto j'Np* (0)) and -^p"(0) ^ (0) respectively and hence these

two terms correspond to s-wave interactions. The matrix elements
..gof the remaining two terms are proportional to | V'-Ko) I and

hence they correspond to P-wave interactions. The last term is
11)the zero range limit of a two-body spin-orbit force

For the three-body force, Skyrme assumed a contact force,

V123 " *3
*0^. IIMI^ — .. i

b Cr, - r0) b C r2 - r3) 11(11)

Q -] 0 )It was shown by Vautherin and Brink71 ' that in Hartree-Fock

calculations of even-even nuclei such a term is equivalent to 

a two-body density dependent interaction

t-
^12= (1%)

ri +%) 

P / 11(12)

This is the form of interaction we shall use in this work.

The density dependent two-body force in Skyrme interaction 

describes how the interaction between two nucleons is modified 

due to the presence of other nucleons. Skyrme- interaction is a 

phenomenological representation of G-matrix which includes the 

effects of short range correlations particularly through the 

density dependent term.'

There are several versions of Skyrme interaction. For example 
Mo s zkowski^ ^ ^ ^ used the form:
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v - - s’ c?x-Z.
\\-Y -h 

2-

This interaction differs from that given by eq.Il(8) by the
absence of p*-wave interactions. The index n is taken to be 2/3

14-)or 1. The value n=2/3 was suggested by Bethe . Thus there are 
only three interaction parameters for a fixed n5 viz. } J3> 
and *y .

25)Another form of Skyrme interaction was used by Krewald
p s \et al. and Liu . They have terms in addition to the terms of 

Skyrme interaction (eq.11(10) and 11(12)) which have density 
dependence along with momentum dependence. We shall not consider 
these forms of Skyrme interaction.

II.1.2 Significance of various parameters of Skyrme 
Interaction

The significance of various parameters in the Skyrme 
interaction can be best visualized in the energy density forma­
lism for the variational calculations of finite nuclei, as given

0
1 ~ )

)
II(12a)
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by Tautherin and Brink^. From their expressions' for the Hamilto-

nian density H(r) (the expectation value of total energy
/ —^ 3E =j H(r) dr ) , one can see that the parameter ^t-j-^tg) is 

important for surface effects, since it determines the importance 

of the term ( V ^ in the energy density. Larger values of 

(9t1-5t2) give larger surface thicknesses. They show that the 

parameter (3^+ is imPortan'b f°r single particle energy

levels. Also for a given value of energy per nucleon E/A and 

the Fermi momentum kj, in nuclear matter, the coefficient t^ 

increases linearly with the nuclear matter incompressibility K, 

where

"3
11(13)

The last term in 11(9) and 11(10) gives rise to the single­

particle spin-orbit force.

It may be mentioned that the parameter X 0 takes care of the neutron-proton asymmetry properties, since %0Pcr S ~ ^ 

while operating on antisymmetrized states.

II.2 Relation between Skyrme force and realistic forces.

With only six parameters the Skyrme interaction is able 

to reproduce binding energies, sizes and other intrinsic properties
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of nuclei all over the periodic table. Quality of Hartree-Fock 

calculations performed with this interaction is quite high 

compared with the simplicity of the force. The realistic G-matrices
1 *7 )derived via the local density approximation J are shown to describe 

accurately the interaction between two nucleons in a nucleus, 

while maintaining the contact with nuclear matter theory based on 

a realistic interaction. Results obtained with these forces are 

quite close to the predictions made with the Skyrme force. If 

one tries to relate these two theories via a moment expansion, 

one finds that this does not allow truncation of the reaction 

matrix . Therefore a rearrangement of the expansion was

carried out by Negele and Vautherin ? ' so that the effect 

of the long range part of the force on the nuclear matter density 

matrix could be included exactly to lowest order. To perform such 

a rearrangement, it is not convenient to consider the Taylor series 

for the interaction in momentum space. Hence one considers the 

equivalent short-range series for the density matrix defined by

—^ .

? ( R,, r2) 2. < <g*l «jh'>
' ~ 1 11(14)

and then this is expanded in powers of the relative co-ordinate
......^   ■—"■■y -""■'fo

S = Rj - Rg and the coordinate R = R^ + R^, so that
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$ C
—^ —-> —-> —-■>

) - ?(R+ S/z. ’ R ~ Wo. )

1105)

It has heen shown in Ref. (16) that in the case of finite nuclei 

the first two terms of the expansion give a very good approximation 

to the density matrix both in the interior of the nucleus as well 

as on the surface. Considering the fact that the nucleons interact 

via a G-matrix, this approximation can be used to derive expression 

for the energy density of a nucleus which is formally identical 

to that obtained with the Skyrme Jorce. From these density-matrix 

expansion (DME) calculations, it is possible to extract the nume­

rical value of the Skyrme parameters (except W ). It is clear that 

there is a close connection between the Skyrme interaction and 

the DME considering the two nucleons interact via a G-matrix.

This is the reason why the results obtained with either Skyrme 

or realistic forces are quite close to each other.

II.3 Variants of the Skyrme Interaction.

Skyrme adjusted the parameters in his force by fitting 

the binding energy and density of nuclear matter and also binding
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energy differences of some light nuclei calculated with oscilla­
tor wave functions. These parameters gave too small radii for
heavy nuclei. To reproduce these properties, as well, 1/s.utherin

9)and Brink carried out a readjustment of these parameters7 .
16They obtained two sets of parameters by fitting properties of u 

20Rand Pb. Both these sets provide a good description of binding
energies and radii of doubly-closed-shell nuclei. Recently a

18)careful study of these parameters was made by Beiner et al. .
By requiring that these parameters accurately reproduce the total 
binding energies and charge radii of magic nuclei in spherical 
self-consistent calculations, they showed that several parameter 
sets or Variants of Skyrme interaction can satisfy these require­
ments. They report four sets of(parameters Sill to SVI (besides 
the set SII of Vautherin and Brink) corresponding to quite 
different values of t^ and hence covering a wide range of density 
dependence. These variants are shown in Table II.1. The set SV 
has t^=0 and hence it is a simple two-body force with no density 
dependence. These variants differ essentially by the'single par-

19)tide spectra they give. It was also shown by Flocard and Quentin' 
that simple Hartree-Fock calculations using the interactions Sill 
and SIV are able to give correctly some static properties like 
total binding energies, radii and deformations of the ground 
state of s-d shell nuclei. In fact, good overall agreement is 
obtained for various experimental data all over the periodic
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table with all the variants SII to SVI,

II.3.1 Interrelationship of Skyrme Parameters

The variants SII to SVI of the Skyrme interaction have 
the strength parameter t^ for the density dependence of the 
interaction ranging from 0.0 to 17000 MeV fm^. It would be 

quite instructive to study if there is any functional relation­
ship among the parameters of various sets. If we plot the 
various parameters for the sets SII to SVI (Figs.11(1) to 11(3)) 
as a function of t^,we see that the parameters tQ,t^ and tg are 
linearly related to t^ and hence to each other. Hence given 
a value of t^, we can fix these parameters. The parameters PC0 
and W ,however, would need to be adjusted since they do not 
have a linear dependence on t^. (The" variant SI of Vautherin 
and Brink7 does not fall on the straight line since it gives

■2 5\>
too small radii). It would be interesting to carry out calcula­
tions with such an intermediate set of parameters and compare 
results with those of the variant^ SII to, SVI. This would 
enable one to perform calculations with any value of t^ and 
make a systematic study of the density dependence of, the inter­
action on various properties of nuclei.

9)Vautherin and Brink showed that this sort of linear 
relationship among the parameters of the Skyrme force exists 
in the case of nuclear matter. The variants SII to SVI yield
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good agreement for nuclear matter as well as finite nuclei.

This is quite significant since in a finite nucleus, the surface 

effects are quite important which tend to reduce the binding 

energy per particle compared to the nuclear matter value. We can 

thus have a variant of the Skyrme force for any desired value of 

the strength parameter t^ though W and Q will have to be 

treated as free parameters. Although the several variants of 

Skyrme interaction reproduce bulk properties of nuclei quite well, 

very few attempts are directed towards the study of spectroscopic 

properties. In fact, spectroscopic calculations would provide 

best criteria to choose among the several variants of Skyrme 

interaction and therefore such calculations are quite essential.

II.4 Some limitations of the Skyrme interaction

Despite the success achieved in reproducing bulk properties 

of nuclei all over periodic table with the Skyrme force, it has 

its own limitations. We shall briefly discuss them in this 

section.

II.4.1 Calculations for nuclear matter

Although the variants of Skyrme interaction give a value 

for binding energy per particle in nuclear matter close to the 

accepted value of -16 MeY, the value for Fermi momentum at
-1saturation is always smaller than the usual value of kj,=1.36 fm . 

Also the incompressibility coefficient K is always found to be
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larger than 300 Me? compared to the value of 200 Me? given by
... .. „ 18,26)- - realistic iorces ’

II.4-.2 Density dependent two-bod.y versus three-body 
& -interaction

When three-body varsion of Skyrme interaction is used (eq.

II(11)) instead of two-body density dependent one (eq.11(12)),

the variants with strong three-body,terms (the variant Sill in

particular) can lead to spin-aligned Hartree-Fock solutions for
20)odd and odd-odd nuclei . It gives spin-aligned solutions also

for nuclear matter and even-eyen nuclei if the time-reyersal in-
20 21 )variance symmetry is not imposed ’ . The nuclei become over­

bound by some 100 M.e?. The reason for this catastrophe is the 

use of three-body contact force in the Hamiltonian. It is shown 

in the Refs.(20) and (21) that the contributior of the three- 

body term to total energy vanishes if the nucleus is spin-aligned, 

instead of contributing to saturation. This difficulty can be 

overcome by using the two-body density dependent force (eq.II(12) 

instead of three-body contact force. Both the versions are 

equivalent in the Hartree-Fock calculations of even-even nuclei 

with time-reversal invariance. The contribution to total energy 

due to the two-body density dependent term does not vanish for 

spin-aligned solutions and thus contributes to saturation. Two- 

body density dependent" force is therefore always preferred to 

three-body contact force.
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II.5 Pairing In Skyrme Interaction

Uptill now our discussion was mainly centred about the 
connection of Skyrme Interaction with realistic interactions 
and its success in reproducing the static ground state properties 
of the nuclei without any reference to spectroscopic properties. 
It is necessary to test the suitability of the interaction for 
this purpose.'

22)Sharp and Zamick calculated particle-particle two-
!

body coupled pairing matrix elements using harmonic oscillator
wave functions for the state (Of,-, ,£) for the configuration in
42Ca,important for the ground state energy spectrum. They report
that this pairing matrix element for the Skyrme interaction
(eq.II(10)) gives a repulsive value for the J=0, T=1 and higher
states. This would lead to an unphysical energy spectrum for
42Ca. This suggests that one should check such pairing matrix 
elements for Skyrme interaction before calculating spectroscopi 
properties.

Me show in this section that this difficulty can be
overcome by a proper choice of the value of the oscillator para-

2meter b. Me studied the pairing matrix elements (°s-|/2^ j 
(Op^y-g)2? (Od^/2^2 311(1 ^0f>7/2^2 for T=1 as a function

of the oscillator parameter b for the Skyrme variant SIV.
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2 "2_For the (0s^2^ and (0dj-,2) matrix elements (m.e.), only
2 2tQ and t^ terms contribute while for (0p^y2) md (0fry2) m*e*»

the t2 and W terms also' contribute a little. In either case? 
the most contribution to these matrix elements is due to tQ and 
t-j terms. Only tQ and t^ m.e. would decide whether the total m.e. 
would be attractive or repulsive.

We have plotted the pairing matrix elements (J=0,T=1) for
2 2(~t0) and t^ terms for the (0s^2) and (0d^y2) states and also 

the total m.e. (Fig.11(4) and 11(5))'. The density dependent part 
of the Skyrme interaction will not contribute to the matrix 
elements for T=1 states due to ahtisymmetry requirements.

For the (0s.,y2) J=0, T=1 m.e. (Fig.11(4)), one can see that 
the tQ m.e, are aLways larger than the t^ m.e. for any value of b
and hence this m.e. shall always be attractive. Similar features

2 ^ are exhibited by (Op^^^ m,e*
2The situation is rather interesting for the (0d^2) m.e. 

(Fig.II(5)Ju For small values of b, the tQ m.e., though attractive 
is numerically smaller than t^ m.e. and the total m.e. is 
therefore positive. After a critical value of b, the tQ m.e. 
becomes numerically larger than t^ m.e. for all values of b and 
the total m.e. now becomes attractive. In the calculations of 
nuclear properties, the value of b must be larger than the 
critical b (b=1.7 fm in this case), otherwise the results would be 
unphysical. Similar behaviour is exhibited by (0fry2) m.e.
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The source of this behaviour is the severe b dependence of

the m.e. of various parts of the Skyrme force. The tQ m.e. fall
eroff as b while others as b“' except t^ m.e. which fall off 

as b” . There is a competition between the tQ and t^ m.e. which 

leads to the pairing or the antipairing of the m.e. For b 

value larger than the critical value, the m.e. of t^ etc. fall 

off much faster than tQ and the total m.e. becomes attractive.

We state that the difficulty raised by Sharp 'and, Zamick can 

be remedied by optimizing b for every nucleus in question. One 

can then proceed to the calculation of nuclear properties.

II.6 A note on Sussex interaction

Another interaction that we have used in this work for 

comparison with the results of Skyrme interaction is the Sussex
• r

interaction deduced directly from the nucleon-nucleon phase 

shifts ~ without specifying the potential in the harmonic osci­

llator basis. This method is essentially a distorted wave Bom 

approximation. The assumptions made were, (i) the potential 

is non-singular and (ii) the information concerning scattering 

at energies above 300 MeY is not required for an-understanding 

of low-energy nuclear properties and spectra.

23)ELliott et al, derived the set of relative radial inte-
i —^

grals<^nl(S )j j V |nf 1* (S) 2/ <j> where 1 is the relative angular 

momentum between two nucleons and j = 1 + S. These radial
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integrals can be readily employed to calculate two-body coupled 

matrix elements.

The potential is divided into two parts, viz.

¥ = VQ + V1 11(16)

where VQ is the auxiliary potential and ¥^ is supposed to be 
small. If S is the experimentally observed phase-shift and 

£ o that calculated for the auxiliary potential ¥q at the same 

energy and if at this energy is small enough to be treated

in Bom approximation, then it can be shown thatoO
f v, (h ' sL ) u. k < ■’O &><-

-o

^ 1 tan ( S~ So)
vn 11(17)

where M^( r) is'the radial wave function for scattering by the 

auxiliary potential, k is the relative wave vector. For an 

auxiliary potential of the cut-off oscillator type,

Vo - (o^ —

z o

/u \J* ) for r < a

for r a

11(18)
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(where is the depth, a the range and b the oscillator

parameter), one can have under certain conditions for r< a,

k - A Rnl 11(19)

where A is a constant. Then one can write,
<=»o

/ V Rmi L\') Ah.

- ~ U ( r3i (a) (<*- t) -i2^

— US "ta vi ( 5 - So^
A ^

11(20)

The off-diagonal m.e. are calculated by differentiating the 

diagonal m.e. (eq.11(20)) by b and obtaining a recurrence 

relation. This, however, is not adequately reliable.

The errors arise in deducing this realistic bare G-matrix 

essentially from the assumption that (V-VQ) be small to be 

treated in the Born approximation, and deducing off-diagonal 

m.e. Another source of uncertainty is the experimental error 

in determining the phase-shifts.

23)Although the Sussex interaction gives reasonable 

results for spectroscopic properties of nuclei, they are quite
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underbound, the r.m.s. radii are quite small and do not correspond
to correct saturation densities. This interaction was therefore 

24)modified to include in relative s-states a central spin-
independent potential, VQ which has an infinite hard core plus
an attractive outer region. The parameters of the attractive part
were chosen so that the two-nucleon phase-shift fit of the original
Sussex interaction was maintained while the core-radius, c, '
remained a free parameter which could be adjusted to give the
correct saturation densities for the nuclei. One is forced to -
use Brueckner's theory so that a finite G-matrix could be used
in the Hartree-Fock calculations., because of the presence of the
hard core. Energy spectra for p-shell nuclei have been calculated

27)using this interaction by Dirim et al.' using the valu.e for
core-radius‘c=0.3 fm.. These calculations are rather cumbersome

23)and so we have chosen to use the original Sussex interaction .

SII.7 Summary

In this chapter we discussed the Skyrme interaction in detail 
and made some brief comments about Sussex interaction, . We 
remarked that the Skyrme interaction has been quite successful' 
in reproducing bulk properties of nuclei all over the periodic 
table only with six parameters. There are several variants of the 
Skyrme force all of which more or less reproduce ground state 
binding energies, r.m.s. radii etc. quite well. We discussed the
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inter-relationship of various parameters of the Skyrme inter­

action. We showed that by optimizing the value of the oscillator 

parameter b, one has desired property of pairing for (J=0,T=1 ) 

m.e. We also discussed the relation of Skyrme interaction to 

realistic interactions.

There are however very few attempts to calculate spectroscopic 

properties with the Skyrme interaction. In fact, spectroscopic 

calculations will provide best criteria to choose among the 

sets of parameters of the Skyrme interaction. We have therefore 

undertaken to study this aspect in this work. Spectroscopic 

calculations with Skyrme interaction forms the theme of this 

thesis.
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