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2.1. Properties of Electromagnetic Radiation and Nucleus

2.1.1. Multipolarity of Electromagnetic Radiation

Static (i.e., constant in time) distributions of charges and currents give static electric and 

magnetic fields. If the charge and current distributions vary with time, a radiation field is 

produced and electromagnetic radiation is emitted. A classical description of the 

electromagnetic radiation can give a simple understanding of its basic properties. Any 

distribution of electric charge and currents produces electric and magnetic fields vary 

with distance in a characteristic fashion. It is customary to assign to the charge and 

current distribution a multipole moment associated with each characteristic spatial 
dependence - the 1/r2 electric field arises from the net charge {monopole moment), the 

1/r3 electric filed arises from the electric dipole {dipole moment, d=ql), the 1/r4 electric 

field arises from an ellipsoid charge distribution {quadrupole moment), and so on. The 

change of the value of a particular moment creates radiation of tire same type as this 

moment. For instance oscillation in the value of the electric dipole moment (for instance 

by changing die distance between the positive and negative charges, l) creates electric 

dipole radiation, while changing the magnetic dipole moment (p = iA, for instance by 

changing the current, i, in the circular loop area A) creates magnetic dipole radiation.

2.1.1.1. Electric Quadrupole Moment

The electric quadrupole operator is defined in terms of the nuclear charge density 

distribution p(r):

where, r is the radius vector and 9 if the angle it subtends. The integral vanishes 

for spherically symmetric charge distributions and thus only a deformed nucleus will have 

a static quadrupole moment. The intrinsic quadrupole moment is defined [1] in terms of 

the deformation parameter $f.

where, R is approximated by R = 1.23A1/3fin. For a nucleus with prolate (oblate) 

deformation, Qo is positive (negative). The reduced transition strength R(E2) for a 

quadrupole transition linking states of spins / and 1-2 is given by the expression

eQ(r) = fp(r)r(3Cos20 - 1 )dr, (2.1)

(2.2)

B(E2) =^-Ql(IK20\I - 2K)2(ebf, (2.3)

25



Nuclear Properties ...

this in turn is related to the transition probability by

rr« = 55H£)V2), (2.4)

The measurement of reduced E2 transition strengths thus lead to information 

about the overall deformation of the nucleus.

2.I.I.2. Magnetic Dipole Moment

Classically, the nuclear magnetic field is the product of two phenomena: the orbital 

motion of the protons which constitutes a current, and the intrinsic spin of the nucleons. 

Even for the neutron, there is an intrinsic magnetic dipole moment associated with its 

internal quark structure. Measured Ml strengths thus provide a probe into nuclear 

currents and hence the single-particle structure.

The reduced transition strength B(M7) for stretched magnetic dipole (Mi) 

transitions linking states with spins I and I- 1 is defined in terms of the nuclear g-factors:

B(M1) = ^ <jjK - gs)2K2(IK10U - 1 K)2fl2N, (2.5)

where, fiN = is the nuclear magneton. The rotational g-factor gR describes the current 

arising from the collective rotation of the core:

9 = 9rR9n, , (2-6)

and can be approximated by gR =Z/A although in practice this represents an 

upper limit for gR. On the other hand the intrinsic g-factor gk describes the currents 

which arise from die orbital motion of the valance nucleons:

9k = Qi + £ (9s ~ gi)(&\sz\Q,), (2.7)

The total magnetic dipole moment p for total angular momentum I = R + j is 

given by

9 = {jJr! + (9k ~ 9r) ^-) 9n> (2-8)

The reduced transition strength B (Ml) is related to the transition probability Tft as 

follows:

26



Nuclear Properties ...

2.1.2. Nuclear shape parameterization

Nuclear shape determines to a large extent the possible nuclear motion modes. Therefore, 

a convenient shape parameterization for the nucleus is necessary and can be based on the 

surface, expressed by tire radius vector, R;

R=*(M). (2.io)

= «o(i + S.0Si-A“^ (2.11)

Figure 2.1: Diagrammatic illustration of the multipole deformation for X = 1,2, 3, and 4.

R is defines in spherical coordinates to point from the centre of a nucleus to its 

surface and Ypx(Q, <f>) are the spherical harmonics. The coefficients, describe the 

changes of the nuclear volume with % defining the deformation type. Examples 

illustrating the: (X = 1) dipole, (A, = 2) quadrupole, (X = 3) octupole and (X = 4) 

hexadecapole deformation are shown in Fig. 2,1. p is an integer varying from -X to +X. 

For the axially symmetric nucleus with quadrupole deformation the five coefficients 

namely,

&2m : a2h a22, a20, a2-l, <*2-2,

reduce to only two (0120 and a.22 - OC2.2). The other (0C21 = 0(2-1) terms vanish. The 

coefficients, OC20 and 0(22 are related to the P2 and y parameters according to:

«20 = P2 cosy, (2.12)

and a22 = ~p2siny, (2.13)

The parameters, $2 and y define the extent of quadrupole deformation and 

deviation from an axially symmetric shape respectively.

The equation for the nuclear surface which involves the P2 and y parameters is 

given by:
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R(.Q,<P,Y) = Ro (cosyi 3cos29 — 1) + ^f3slnysin2Qcos2d) (2.14)

Figure 2.2: Diagrammatic illustration of the Lund convention [2] for various shapes (X = 

2) of the rotating nucleus in the (Jh,l) plane.

The nuclear shapes which correspond to various (fh,i) co-ordinates for X=2 are 

diagrammatically illustrated in Fig. 2.2. The prolate shape corresponds to y = 0° and - 

120°, while am oblate shape correspond to y = 60° and -60°. The maximum collectivity is 

observed for -60° < y < 0° while non-collectivity occurs for shapes with y = -120° and y = 

60°. In accordance with the Lund convention [2] rotation occurs around the smallest, the 

intermediate and the largest axis which correspond to the three 0° < y < 60°, -60° < y <0° 

and -120° < y < -60° sectors respectively.

2.1.3. Rotational Behaviour of a Nucleus - Rotational Band

The most collective behaviour known in nuclei is the collective rotation, that occur when 

the nuclear shape becomes appreciably non spherical. Non spherical shapes are due to 

shell effects in nuclei. For nuclei with proton and/or neutron numbers equal or close to the 

magic numbers (closed shell) the spherical shape is the most stable. For nucleon numbers
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between the magic numbers, the nucleus deforms in order to find a more favourable (i.e., 

lower) energy. Such deformed shapes allow collective rotations of the nuclei.

A rotational band reflects a collective motion of the nucleus, which changes the 

orientation of the system, without essentially affecting its shape or intrinsic structure. The 

energy associated with the motion is kinetic and as follows:

Eexc( 0 = Jj-JO + 1). (2-15)

where, ECTC(I) is the excitation energy of the level with angular momentum I from 

the rotational band. Jo is the moment of inertia and depends on the shape and internal 

structure of the nucleus. The energy relationship expresses one of the most characteristic 

features of a rotational motion and applies for a rotation of any rigid body (Fig. 2.3). 

Rigid body - when all particles of the body take part in the rotation and have the same 

angular velocity oo, The angular momentum is then I = coJ0.

2.1.3.1. Types of Rotational Bands

Depending on the intrinsic configuration, different types of rotational bands are known:

a. Ground State Bands of Even-Even Nuclei

They consist of stretched E2 transitions, and are built above the 0+ ground state. All the 

nucleons are paired and the nucleus rotates as a whole around the rotational axis - the 

axis perpendicular to the symmetry axis of the nucleus (Fig. 2.4).

The spins of the levels of the band are:

I+ = 0+, 2+, 4+, 6+, etc 

The energies of the levels of the band are:
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EexcO) = —JO + 1), (2.16)

Figure 2.4: Diagrammatic representation of the ground state rotational band in even-even 

nuclei.

b. Strongly Coupled bands

They reflect the rotation of a nucleus with one or more odd nucleons, when the single 

particle angular momentum / is coupled to the collective rotation of the nucleus R, i.e., 

the odd particle(s) rotate together (with the same phase) with the nucleus, as shown in 

Fig. 2.5. Then the projection / on the symmetry axis of die nucleus, K, is a good quantum 

number. These bands are observable for relatively large nuclear deformation with not 

very high rotational frequencies. The bands contain stretched Ml and E2 transitions. The 

angular momenta of the levels are: I = K, K+l, K+2, K+3, etc 

And the excitation energies are:

E,„(D + 1) -K2l ifK*'/.. (2.17)

X

Figure 2.5: Strongly coupled bands
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c. Decoupled Bands

They reflect the rotation of a nucleus with one or more odd nucleons, for which the odd 

particles are decoupled from the nuclear rotation, i.e. their angular momentum / is aligned 

along the rotation axis, and their motion is independent from the rotation of the nucleus 

(Fig. 2.6). The band consists of/ along the rotation axis, I, is a good quantum number and 

is called alignment. The projection of/ along the rotation axis Ix is called aligned angular 

momentum. The spins of the levels of the band are:

I = i, i+2, i+4, etc

The energies of the states (relative to the energy of the bandhead level with spin I 

= i) are:

EmV) = £ [(/ - 00 - i + 1)], (2.18)

Figure 2.6: Decoupled band

d. Backbending

At high rotational frequencies the Coriolis force become strong enough to break nucleon 

pair. Let us consider for example the rotation in even-even nucleus.

The excitation energy and spin in the ground state band (g), (see Fig.2.7) are 

gained from fester rotation. At spins 8-12h the ground band is crossed by an excited 

band (e). The Corriolis force at spins 8 - 12h is able to break a pair of nucleons, thus the 

excited band is associated with different intrinsic configuration. One can see on the plot 

of the excitation energy as a function of spin (Fig. 2.8) that for low spins die g band is 

yrast (yrast means that the excitation energy is lowest for that particular spin). At high 

spins (I > 12h in this case) the band is yrast. At I ~ lOh the two bands cross each other.
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Figure 2.7,2.8: Figure illustrating backbending phenomenon

The aligned angular momentum Ix for these bands is shown in Fig. 2.19. One can 

see that Ix for the g band increases with rotational frequency. At the region of the 

bandcrossing (for Pia> ~ fo»jc) a pair of nucleons breaks, the nucleons’ spins align along 

the rotation axis contributing aligned angular momentum of io to the /* of the excited 

band, io is called alignment. It is the aligned angular momentum Ix of the excited pair at 

hm = 0. Thus, in the region of the bandcrossing (be) the nuclear rotation slows down from 

ho)2 to frcoi. Then, angular momentum is gained again by increasing the rotational 

frequency (along the excited band). The alignment i0 and the bandcrossing frequency 

hojtc (approximate value for it can be obtained by hcabcz=l/2(h(a2+ha)i) are very important 

quantities, because they can indicate the configuration of the excited band. If for instance 

two ii3/2 nucleons get aligned, they will have maximum projections of / along the rotation 

axis of 13/2ft and ll/2h (because they cannot have all quantum numbers the same, thus 

one will have smaller alignment than the other), thus the alignment will be i0 = 13/2 +

n/2 = m.

The bandcrossing frequency has also characteristic values depending on the 

configuration of the excited nucleons, and also on other parameters, such as nuclear 

deformation, pairing gap, etc. Since the plot of Ix against die rotational frequency (Fig. 

2.9) shows a turn backwards (corresponding to the slowing down of the nuclear rotation) 
the phenomenon is called a backbending. The moments of inertia and in particular./2* are 

very sensitive even to small changes in the intrinsic structure and show sharp changes in 

the bandcrossing region. Thus, successful nuclear model describing nuclear rotation
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should be able to predict such quantities as nuclear configurations, alignments, 

bandcrossing frequencies, moments of inertia, etc.

Figure 2.9: Schematic description of Backbending phenomenon

2.2. Theoretical Nuclear Models

Many models have been proposed to describe the structure of the nucleus. The nucleus 

itself is a system of particles where the number of particles is too large to derive a direct 

solution analytically and too small to use statistical methods to any degree of accuracy 

[3]. The modem era of nuclear physics began with the surprising revelation that, despite 

the violent forces that are present in the nucleus, the nucleons can for the most part be 

considered to be moving independently in a single, smoothly varying force field. This is 

the conceptual basis of the many nuclear models, which is the foundation for much of our 

quantitative understanding of nuclear energy levels and their properties. In the models 

such as shell model and liquid drop model, individual nucleons are considered to fill 

energy states successively, forming a series of nuclear shells that are analogous to the 

shells formed by electrons in the atom. At the simplest level, the shell model predicts that 

the nuclei have closed (completely occupied) shells of protons or neutrons should be 

unusually stable. If a nucleus has one nucleon beyond the closed shell, many of the 

properties of the nucleus can be attributed to that one nucleon. The models have been 

developed to incorporate the residual forces among the nucleons that are not included in 

the smooth field. This has evolved to a valuable tool for understanding and predicting 

many of the energy levels and their properties such as electromagnetic interactions and 

decay rates. In this section, a brief outline of the key models used in the interpretation of 

this work is given.
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2.2.1. The Spherical Shell Model

The atomic shell model for electrons has been very successful in explaining the patterns 

observed in the periodic table. Evidence for a similar type of shell structure has also been 

observed in nuclei. Large discontinuities occur in the neutron binding energies as a 

function of the nuclear mass, A, and also in the 2p separation energy; that is the energy 

required to separate two protons from the nucleus. Anomalies are also seen in the 

abundance of elements as a function of either proton or neutron number [4, 5]. These 

discontinuities occur at the so-called ‘magic numbers’ of 2, 8,20,28, 50, 82 and 126. The 

first excited states of nuclei with a magic number of either protons or neutrons are also 

anomalously high (> 1.5 MeV). All of this suggests that a shell model approach similar to 

that used in atomic physics can be taken to model the nucleus.

It is assumed that no detailed interactions occur between the nucleons and that 

each particle moves independently of the other nucleons. Each nucleon experiences the 

mean field force, which is the average of the interactions of the nucleon with all the other 

particles. For two nucleons, i and j, the potential F,as a function of radii rt is described by,

Vi(ri) = (ZjV(rij)), (2.19)

where, ry is the distance between the two interacting nucleons and V is the 

potential of the interaction. This gives a Hamiltonian of the form,

H^ltTi + ZiiVinj). (2.20)

where, Tt is the kinetic energy associated with each of the nucleons.

It can be assumed that the central interaction is much greater than the residual 

interactions. The most important part of this model is the choice of the central potential, 

V(ry). The central potential depends only on the distance between interacting nucleons 

and is a superposition of all the short-range inter-nucleon potentials. Several potentials 

have been tried, such as the simple square and the harmonic oscillator. However, without 

a non-central component being included, the correct magic numbers cannot be 

reproduced. The harmonic oscillator potential gives a good approximation and is useful to 

consider, as it can be solved analytically. It takes the form of,

F(r) = —V + ~Mmzr2, (2.21)

where, V is the well depth, which can be varied, and ca is the frequency of the 

simple harmonic motion. M and r are the mass and radii of the oscillator, respectively.
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Solving the Schrodinger equation for the harmonic oscillator gives the energy of the Nth 

shell to be,

where, N is the principal quantum number. States of the harmonic oscillator are 

labelled by N, the total angular momentum, j and the intrinsic orbital angular momentum 

of the nucleons, momentum of the nucleons, l. It should be noted that / is normally 

written in spectroscopic notation where letters replace numbers such that s, p, d, f, g, h, i 

refer to |/j-values of 0,1,2,3,4, 5, 6, respectively.

The first magic numbers, 2, 8 and 20, are successfully reproduced by this method, 

but the higher magic numbers are not. Each energy level has a degeneracy of (2j+l). In 

atomic physics, this degeneracy is lifted by the spin-orbit interaction caused by the 

interaction of the atomic electron's magnetic moment with the magnetic field generated 

by the electron's movement about the nucleus. In nuclei, the intrinsic angular momentum 

of the nucleon, s, couples with the orbital angular momentum, 1, to give the total angular 

momentum,/ Such a coupling introduces a spin-orbit effect for the nucleus, modifying 

the Hamiltonian such that,

This means that the force felt by the nucleons is dependent on the direction of 

their spin. Nucleons with aligned spin and orbital angular momenta will contribute an 

energy of +k, whereas a nucleon with anti-aligned angular momenta will contribute 

energy of -k. The existence of a strong nucleon-nucleon spin-orbit interaction has been 

established experimentally in proton-proton scattering experiments. The spin-orbit 

interaction does not violate the spherical symmetry and therefore leaves /, j and jz as good 

quantum numbers, where j2 is the projection of j onto the z-axis. The addition of such a 

spin-orbit effect splits the otherwise degenerate levels with j = l ± 1/2. By making the 

spin-orbit interaction attractive, it explains why j — l + 1/2 states lie lower in energy than j 

= 1-1/2 states. The inclusion of the spin-orbit interaction changes the levels of the 

harmonic oscillator, known as the Modified Harmonic Oscillator (MHO), and the shell 

gaps reproduce the magic numbers 2, 8, 20, 28, 50, 82 and 126. The splitting of the 

harmonic oscillator levels is proportional to /, which can create states with an “unnatural” 

parity, and alter the order of the levels. This gives rise to “intruder” states, where states 

with a higher value of / lie lower in energy than the lower-/ states. The differences

(2.22)

V(r) => V{r) + kl.s., (2.23)
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between the energy levels reproduced by different oscillator potentials are shown in Fig. 

2.10. where, an example of an intruder is at the hi m orbital.
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Figure 2.10: The evolution of the states from a simple harmonic oscillator model into a 

more realistic representation of the nucleus [6]. The ‘magic numbers’ are marked in the 

cicles.

The Modified Harmonic Oscillator (MHO) potential has some problems: as r 

tends to infinity, the potential becomes unphysical, and although the magic numbers are 

reproduced correctly, the ordering of the levels is not. A more realistic potential is the 

Woods-Saxon potential, which takes the form of,

-V0V(r) = ■ rr—Rqi» (2.24)
l+exp [- a ,

where, Ro is the average nuclear radius and a is the skin thickness of the diffuse 

nuclear surface. This potential closely matches the form of the nuclear charge
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distribution, which has been measured experimentally. A comparison of the shapes of the 

two potentials is shown in Fig. 2.11.

Figure 2.11: A comparison of the different potentials showing a simple square well, the 

harmonic-oscillator and the Woods-Saxon potentials.

The energy levels produced from solving the Schrodinger equation for the Woods- 

Saxon potential are very similar to those from the MHO potential, but the ordering of the 

energy levels is altered, giving a more realistic picture of the nucleus. A comparison 

between the harmonic oscillator energy levels and the Woods-Saxon energy levels is 

shown in Fig. 2.12. The spherical shell model describes die properties of closed-shell and 

light-mass nuclei very well. However, if there are several nucleons outside the closed 

shell, the shell model predictions cease to match the experimental data and a new 

description must be sought.

2.2.2. The Deformed Shell Model or Nilsson Model

Experimental evidence such as the existence of rotational bands and high values of 

electric quadrupole moments for certain nuclei suggests that away from closed shell; 

nuclei must adopt a stable ground state deformation. To construct a model of the nucleus 

which includes the possibility of deformation, a non-spherical potential must be used. The 

simplest potential is the Anisotropic Harmonic Oscillator (AHO) potential which forms 

the basis of the widely used deformed shell model, the Nilsson Model.
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Figure 2.12: A comparison between the energy levels of the harmonic oscillator and 

Woods-Saxon potentials.

Nuclei away from the closed shells have been found to have large quadrupole 

moments [7], which suggest a deviation away from the spherical shape [8]. The 

observation of numerous rotational bands also indicates the existence of non-spherical 

nuclear shapes as spheres cannot be observed to rotate quantum mechanically.

The projection of the single-particle angular momentum onto the symmetry axis is 

denoted by Q and the projection of the total angular momentum is denoted by K. For a 

nucleus with only one valence particle, the rotational angular momentum of axially 

symmetric nuclei is perpendicular to the symmetry axis, therefore, it does not contribute
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to K and hence, for this system, K = Q. For a prolate-deformed nucleus, orbits with a low 

Q will have lower energies and high- orbits will have higher energies; the converse is true 

for oblate nuclei. The angle of the orbital plane, 9, for such a nucleon can be 

approximated, as shown in Fig. 2.25, by

0 = sin-1(y), (2.25)

x

Figure 2.13: Diagram showing the definitions of K and 9 for a valance nucleon orbiting in 

a deformed potential.

For high values of K, 9 changes rapidly, but it changes quite slowly for low values 

of K. This, in turn, means that for deformations where P > 9, the energy falls rapidly as p 

increases for low values of and rises for high values of Q. The separation of neighbouring 

Q values increases rapidly as K increases. Combining this Q splitting with the mixing of 

states with different / values creates a complex arrangement of the energy levels. Energy 

levels calculated are called Nilsson orbitals and are represented in a Nilsson diagram as 

shown in Fig. 2.14. One of the fundamental rules of quantum mechanics is that no two 

energy levels with the same quantum numbers can cross, so when a line approaches 

another line with the same KK, where n is the parity, they repel each other. Each line on 

the diagram represents a different Nilsson state and starts off straight, with either a 

downwards or upwards slope. When it approaches another level with the same K*, it starts 

to curve as seen in the Fig. 2.14. The Nilsson orbitals are normally labelled by,

Sln[Nnz A], (2.26)
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QK are the Q value and parity, as previously described. N is the principal 

qauantum number; in an oscillator mode it denotes the number of oscillator quanta, and it 

gives the number of the major shell. The projection of N onto the symmetry axis (the z- 

axis) is nz, which corresponds to the number of nodes in the wave function in the z 

direction and A is the projection of l on the symmetry axis The deformation of Q means 

that

0 = A + S

= A ± !4, (2.27)

as E is the projection of the intrinsic spin of the nucleon, s, onto the symmetry 

axis. The Nilsson orbits are shown in Fig. 2.14. as a function of deformation and energy. 

The deformation parameter s is defined as, 

a = R( 1 + s),
b = i?/( 1 + £)1/2, (2.28)

Where, a and b are the major and minor axes of an ellipsoid, respectively, ands is 

closely related to fi as,

/4n\t/2P = (y) £, (2.29)

2.2.3. Triaxial Nuclear Shapes 

The Nilsson deformed shell model provides an excellent single-particle description for 

well-deformed nuclei, around the mass 130-140 region of the nuclear chart. A variety of 

prolate and oblate nuclear shapes can be found, but the transitional nuclei between these 

two shapes need further consideration.

For triaxial nuclei, an anisotropic harmonic oscillator model can be employed to 

provide a single-particle description, as with axially symmetric nuclei [11]. The harmonic 

oscillator potential, V, takes the form,

VH0 = \M{a)lx2 + a)2y2 + 0)fz2), (2.30)

where ox, ^ a>y ojz. The relation between the oscillator frequencies can be described in 

terms of e and y, the deformation parameters introduced in section 2.2.3,
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Figure 2.14: Nilsson diagram for neutron orbitals for N=50-82 [9,10].
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where, a>o is the harmonic oscillator quantum and for volume conservation, 

coo = <ox(Oy(oz. Nilsson [9] employed a set of stretched co-ordinates to describe the 

nuclear shape, where each coordinate is a stretched transform of the Cartesian equivalent,

( = x

v = y

( = z

(2.32)

As with the previous description of a deformed potential, spherical harmonics 

Yxn(9t,(pt), can be used to describe the potential for triaxial shapes, where 9t and $tare 

the polar and azimuthal angles, respectively. In the stretched coordinates described in 

Eqn’s 2.31 and 2.32, the potential can be rewritten as

V,HO hd)0p: ]£(f)1/2(cos(yK20- = (W2_2 >)]•

where p2, is the nuclear radii in terms of the stretched coordinates, 

p2 = ^2+r]z+ ^

(2.33)

(2.34)

To give higher order deformations and a more realistic nuclear potential, /. s and 

f terms can be added to die above potential. The y-deformation still leaves each orbital 

filled by two particles moving in different directions in time-reversed orbits. This means 

that parity is conserved (as long as no X = 3 terms are included), leaving parity as a good 

quantum number. Consequently, odd-N and even-N shells remain uncoupled. However, 

for a triaxial nucleus, it is difficult to find a set of good quantum numbers. The asymptotic 

or Nilsson quantum numbers, K*[NnzA], are no longer conserved and hence are no longer 

useful for providing a unique label for a state.

2.2.4. The Cranked Shell Model (CSM)

At very high spins, when the Coriolis and centrifugal forces strongly perturb the wave- 

functions of many nucleons, a better description of the single-particle energies is provided 

by the Cranked Shell Model. CSM is a full microscopic description of the rotating 

nucleus and was first proposed by Inglis [12,13] and later by Bengtsson and Frauendrof 

[14]. The principal assumptions of CSM are that the nuclear mean field in the intrinsic 

frame is static and unchanged by any rotation, and that the rotation affects only the
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energies of the single-particle (and quasiparticle) orbits. The nucleons are thought of as 

independent particles moving in a deformed potential well which is rotating with the 

intrinsic coordinate frame at fixed rotational frequency co. The nucleus is modelled as 

sitting in a potential that is rotating about a fixed axis, normally to the x-axis. The 

calculations are carried out in the rotating frame, making it necessary to convert the 

Hamiltonian to this frame by operating on to with the operator,

Rx = exp [~ilxa)t], (2.35)

where, Ix is the projection of the total angular momentum onto the rotation axis, x. 

This gives a Hamiltonian of the form,

H' = H0- 0)JX, (2.36)

where, Ho is the Hamiltonian of the oscillator potential in the laboratory frame and 

the 0)JX term is known as the cranking term. The cranking term includes die effects of the 

rotational forces acting on any orbiting nucleons that are the Coriolis and centrifugal 

forces. The Coriolis force acts to align the angular momentum of the nucleons with the 

rotation (x) axis. The Hamiltonian, // ’, is the Hamiltonian in a frame of reference rotating 

with an angular frequency co about the x-axis. The eigenvalues of this Hamiltonian are 

known as Routhians and the lowest eigenstate of // (co) correspond to an yrast state.

The inclusion of the cranking term -a)Jx, lifts the degeneracy seen in the Nilsson 

single-particle orbits and breaks the time-reversal symmetry. This means that the only 

symmetries conserved are parity, % and signature.

2.2.4.I. Nuclear Spin and Parity

The total angular momentum of a nucleon, j is defined as the coupled sum of the orbital 

angular momentum, i and spin, s: j - l + s. The total angular momentum (or nuclear 

spin), / of a nucleus is the vector sum of the total angular momenta of all the nucleons. 

The following rules [15] apply: / is a half integer and / is an integer for odd-A and even-A 

nuclei respectively. The parity quantum number n is defined as the eigenvalue of the 

reflection operator through the origin. If the parity operator ft acts on a wavefunetion 

T(x), such that:

£¥0) = ¥(-x) = +¥(x), (2.37)

and ?r¥(x) = ¥(~x) = -¥(x), (2.38)
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It implies that the wavefunction have even (unchanged) and odd (changed by 

inversion) parities respectively. Parity quantum number is expressed as ti = ±1, which are 

the eigenvalues of the parity operator, ft. The parity associated to a single-particle level is 

determined by its orbital angular momentum as 71 = (-l/. The total parity of the nucleus is 

determined by the product of the parities of all occupied levels. Therefore, knowing the 

nuclear spin and parity, nuclear states can then be labelled according to the notation: f.

2.2.4.2. Signature

Signature is a quantum number which is conserved in the rotational frame. It is associated 

with die rotational invariance of an axial system with respect to the plane perpendicular to 

the axis of symmetry. The eigenvalues of the rotation operator given in Eqn. 2.35 are 

given by,

rx = exp [-ina], (2.39)

where, rx= r is the signature quantum number. The phase factor associated with 

signature is,

r = (—l)7, (2.40)

and, therefore, for a AI = lrotational band, the odd and even numbered spins will 

have opposite signatures. For multi-quasiparticle configurations, die signature is 

constrained by the definition,

/ = arnodl (2.41)

The exponent of r, a is usually preferred over r as it is an additive quantity. The 

angular momenta and signatures or rotational bands are related as follows.

/ = 0,2,4 for a = 0,r = +1,

/ = 1,3,5 for a — l,r = —1, (2.42)

j _ 1 5 9 
_ 2'2'2

for a = +i,r = -i,

,3 7 11 
_ 2'2' 2 for a = —~,r = +i,

The values of signature restrict the allowed spin values in rotational bands. 

Signature remains a good quantum number even when K is not and hence is useful for 

describing axially asymmetric systems.
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The removal of the degeneracy by the —o)Jx term in the cranked Hamiltonian 

means that the two different signatures of a band can have different energies. This effect 

is known as signature splitting. This splitting is increased with rotational frequency and 

orbitals with a low-fi projection experience larger signature splitting. It is also observed 

in the rotation-aligned limit, as these bands also exhibit a large signature splitting.

2.2.5. Potential Energy Surface (PES) Calculations

PES type calculations minimise the potential energy of the nucleus as a function of a 

given nucleon configuration, rotational frequency and the nuclear deformation 

parameters. The evolution of nuclear shape may thus be predicted within the framework 

of PES calculations which employ the CSM. However the CSM carries with it the main 

deficiency of phenomenological shell model, namely the inability to reproduce nuclear 

bulk properties. It is thus unable to accurately predict the binding energy, and hence the 

nuclear potential energy. On the other hand the liquid drop model (LDM) [16, 17] 

successfully predicts bulk properties that depend smoothly on nuclear number, but cannot 

account for contributions to the binding energy that arise from shell effects.

2.2.6. Total Routhian Surface (TRS) Calculations

Although the cranked shell model tells us what happens to the energies of the single 

particle orbits under rotation using a fixed set of deformation parameters, it does not 

provide information about what this set of parameters if likely to be. Potential energy 

surface calculations are very useful, and are performed to find which deformations are 

energetically favourable at a given rotational frequency or angular momentum.

TRS calculations are based on the cranked shell model and involve calculating the 

total Routhain at a pre-determined rotational frequency. The surface is generated by 

performing the calculations at various points in the deformation plane 0%,y). As the 

rotating frame of reference increases in rotational frequency, the parameters defining the 

system may change. Total Routhian surface calculations [18] aim to find a minimum in 

the total nuclear energy at a particular rotational frequency. The lattice of points is known 

as a mesh, and the resultant surface shows peaks and troughs, the troughs corresponding 

to minima which are stable deformations.

The energy of the nucleus is dependent on the deformation parameters fh, A and 

y. The total energy of the nucleus is calculated using the Strutinsky method [19 - 21],
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combining the liquid-drop and single-particle energies. The Routhians are then plotted in 

a contour plot in deformation space, allowing the minima to be clearly seen. Often, more 

than one potential minimum is present, each one corresponding to a different nuclear 

shape. The deformation parameters corresponding to the shape changes can be 

determined from the contour plots. The deformation parameters determined for different 

rotational frequencies can then be used to carry out cranked shell model calculations to 

produce quasiparticle plots. From these quasiparticle plots the values of i and e' can be 

determined for a particular configuration.

The total routhian E?ot(Z, N, /?) of a nucleus (Z,N) at a frequency co and a 

deformed /? is obtained within the Woods-Saxon Bogolyubov - Struinsky approach. It 

expressed as the sum of the macroscopic liquid drop energy, the shell-correction energy 

and the pairing energy.

E0)(Z, N, P) = E^rnacr (Z, N, /?) + SE^ell(z, N,fi) + 8Emp™(Z, N, /?), (2.43)

This equation can be re-written as:

E«{Z,N,p-) = E^\Z,N,P) + [{^\H^{Z,N,p)\^) - (H<*=°(Z,N,P)) BCS]

(2.44)
Here Ea>=0(Z, N,p), represents the liquid drop energy, the single particle shell 

correction defines by the Strutinsky averaging procedure, and the Bardeen, Cooper, 

Schrieffer (BCS) pairing energy at zero frequency. The term in the bracket corresponds to 

the change in energy due to deformation.
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