List of Figures

-

•

1

		Page
1.1.	ε _{Nd} (T) versus initial ⁸⁷ Sr/ ⁸⁶ Sr for young (<200 Ma) carbonatites	
	compared with the fields of MORB and OIBs.	4
1.2.	206 Pb/ 204 Pb - 207 Pb/ 204 Pb correlation diagram for carbonatites with	
	ages less than 200 Ma from different continents compared with	
	fields of MORB and OIBs.	5
1.3.	Initial ⁸⁷ Sr/ ⁸⁶ Sr versus initial ²⁰⁶ Pb/ ²⁰⁷ Pb for carbonatites plotted with	
	different mantle-source end-members	6
1.4.	Map of India showing the approximate locations of carbonatite-alkaline	
	complexes and the extent of Deccan and Rajmahal Traps.	8
1.5.	Plot of minimum initial ⁸⁷ Sr/ ⁸⁶ Sr vs. age for Indian carbonatites.	13
2.1.	Geological map of Amba Dongar Complex.	18
2.2.	Geological map of Mundwara Complex.	23
2.3.	Geological map of Sarnu-Dandali Complex.	26
2.4.	Geological map of Sung Valley Complex.	29
2.5.	Schematic cross section of an idealized carbonatite-alkaline complex	
	showing estimated erosion levels from Indian complexes.	32
3.1.	Reaction rates of pure carbonate minerals with phosphoric acid.	42
3.2.	Calcite and dolomite contributions to CO ₂ extracted at different steps in	
	a step wise extraction procedure.	45
3.3.	Plot of cumulative CO ₂ yield vs. reaction time for different carbonate	
	mixtures.	49
3.4.	Plot of δ^{13} C vs. δ^{18} O of calcites, dolomites from Qaqarssuk carbonatites.	54
3.5.	Schematic flow diagram of the complete argon gas	
	extraction-purification system.	62
4.1.	Step heating apparent age spectrum and isotope correlation	
	diagrams of AD-16.	78
4.2.	Step heating apparent age spectrum and isotope correlation	

	diagrams of AD-45.	79
4.3.	Step heating apparent age spectrum and isotope correlation	
	diagrams of AD-46.	80
4.4.	Step heating apparent age spectrum and isotope correlation	
	diagrams of AD-47.	81
4.5.	Plot of initial ⁸⁷ Sr/ ⁸⁶ Sr vs. Sr content of Amba Dongar samples.	86
4.6.	Sr data from Amba Dongar alkaline rocks compared with binary	
	mixing and AFC model curves taking Bagh sandstone as a contaminant.	87 ,
4.7.	Sr isotopic data from Amba Dongar alkaline rocks compared with binary	
	mixing and AFC model curves taking Precambrian gneiss as a contaminant.	89
4.8.	⁸⁷ Sr/ ⁸⁶ Sr and Sr evolution curves for a carbonated silicate magma	
	affected by simultaneous wall-rock assimilation, fractional crystallization	
	of silicate rocks and separation of a carbonate magma.	93
4.9.	Sr isotopic data from Amba Dongar alkaline rocks compared with AFCLI	
	model curve taking Precambrian gneiss as an assimilant.	96
4.10.	Sr isotopic data from Amba Dongar carbonatites compared with binary	
	mixing and AFC model curves taking Bagh limestone as a contaminant.	98
4.11.	Chondrite normalized REE plot for Amba Dongar samples.	101
4.12.	Spidergram showing chondrite normalized trace element abundances in	
	Amba Dongar samples.	102
4.13.	Chondrite normalized REE diagram showing potential parent melts for	
	Amba Dongar carbonate melt.	105
4.14.	Plot of δ^{13} C and δ^{18} O showing different carbonatite and sedimentary	
	carbonate fields.	107
4.15.	Stable isotope data from Amba Dongar, Mundwara and Sarnu-Dandali	
	plotted in a δ^{13} C vs. δ^{18} O diagram.	115
4.16.	δ^{13} C vs. δ^{18} O of coexisting calcites and ankerites from ferrocarbonatites	
	of Amba Dongar.	116
4.17.	Oxygen isotopic evolution curves of a two component source (CO ₂ +H ₂ O)	
	from which calcite is crystallizing fractionally.	127
4.18.	Covariation of O and C isotopic compositions of a two component source	
	from which calcite is crystallizing fractionally.	127

-

-

v

4.19.	Plot of δ^{13} C vs. δ^{18} O showing evolution of a calcite generated by	
	multicomponent Rayleigh fractionation model (Case-I).	128
4.20.	Plot of δ^{13} C vs. δ^{18} O showing evolution of a calcite generated by	
	multicomponent Rayleigh fractionation model (Case-II).	130
4.21.	Observed stable isotope data from Amba Dongar, Mundwara,	
	Sarnu-Dandali calcite carbonatite compared with multicomponent	
	Rayleigh fractionation model curves.	133
4.22.	Evolution of carbon and oxygen isotopic compositions of calcite	
	initial $\delta^{13}C = -6 \%$ and $\delta^{18}O = 6 \%$) which interacts with a	
	H ₂ O-CO ₂ fluid (initial δ^{13} C = -6 ‰ and δ^{18} O = 6 ‰) having	
	$CO_2/H_2O = 0.001.$	138
4.23.	Evolution of δ^{13} C and δ^{18} O of the same calcite as in 4.22 at varying	
	CO_2/H_2O of the fluid.	139
4.24.	Comparison of δ^{13} C and δ^{18} O of altered calcite carbonatites from Amba	
	Dongar with the fluid-rock model curves taking the fluid to be	
	hydrothermal.	141
4.25.	Comparison of δ^{13} C and δ^{18} O of altered calcite carbonatites from Amba	
	Dongar with the fluid-rock model curves taking the fluid to be meteoric.	142
4.26.	Comparison of δ^{13} C and $\dot{\delta}^{18}$ O of altered calcite carbonatites from Amba	
	Dongar with the fluid-rock model curves taking the fluid to be magmatic.	143
4.27.	Comparison of δ^{13} C and δ^{18} O of ferrocarbonatites and metasomatic rocks	
	from Amba Dongar with the fluid-rock model curves taking the fluid to be	
	hydrothermal.	144
4.28.	Comparison of δ^{13} C and δ^{18} O of ferrocarbonatites and metasomatic rocks	
	from Amba Dongar with the fluid-rock model curves taking the fluid to be	
	meteoric.	145
4.29.	Comparison of δ^{13} C and δ^{18} O of ferrocarbonatites and metasomatic rocks	
	from Amba Dongar with the fluid-rock model curves taking the fluid to be	
	magmatic.	145
4.30.	Comparison of δ^{13} C and δ^{18} O of altered calcite carbonatites from	
	Mundwara with the fluid-rock model curves taking the fluid to be	
	meteoric-hydrothermal.	146

vi

4.31.	Comparison of δ^{13} C and δ^{18} O of altered calcite carbonatites,	
	ferrocabonatites, metasomatic rocks from Sarnu-Dandali with	
	the fluid-rock model curves taking the fluid to be meteoric-hydrothermal.	147
4.32.	Step heating apparent age spectrum and isotope correlation	
	diagrams of SV-4.	156
4.33.	Step heating apparent age spectrum and isotope correlation	
	diagrams of SV-7.	157
4.34.	Step heating apparent age spectrum and isotope correlation	
	diagrams of SV-12.	158
4.35.	Rb-Sr conventional isochron diagram for Sung Valley Complex.	161
4.36.	Carbon and Oxygen isotopic compositions of calcites from calcite	
	carbonatites and dolomite bearing calcite carbonatites of all the three	
	complexes of Assam-Meghalaya Plateau.	164
4.37.	$\delta^{13}C$ vs. $\delta^{18}O$ of coexisting calcites and dolomites from dolomite bearing	
	calcite carbonatites of Sung Valley Complex.	164

.

,