
CHAPTER-5

ANALYTICAL FORMULATION

5.1 General

Analytical prediction of increased load carrying capacity of concrete deep beams and 

moderate deep beams due to addition of steel fibres requires a clear understanding of the 

behaviour of members in compression, splitting, direct tension and flexure. Hence, before 

attempting to evolve a procedure for analysis of such beams, the basic behaviour of steel fibre 

reinforced concrete in compression, splitting, direct tension and flexure. • is —- highlighted in (7)

this chapter using the experimental results of the present and earlier investigators.

In present investigations, the possibility of identifying appropriate engineering parameters 

of steel fibre reinforced concrete which can be incorporated in the analysis of structural 

response of deep beams and moderate deep beams has been explored. The possible 

increase in moment capacity corresponding to various depths of fibrous concrete is 

investigated.

5.2 Behaviour in Compression

The behaviour of fibre reinforced concrete in compression is analysed using
with fibre

experimental results of the fibrous concrete in compression. Cubes^casted along with beams (:J 

were tested in compression. Their results are presented in Table-3.2. The general trend is 

that the inclusion of steel fibres cause lowering of the compressive strength of concrete 

marginally. The above conclusion agrees with that of most of the earlier investigators 

[3,7,70,80,95,168]. The reason that can be attributed for the little reduction in the compressive 

strength is due to the decrease of degree of compaction because of addition of fibres in
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concrete. Final strength of steel fibre reinforced concrete is marginally lower or higher than that 

of plain concrete.

From the results of the present investigations, the ratio of the cylinder compressive 

strength to the cube compressive strength shows a mean value of 0.789. The above results 

clearly indicate that the ratio of cylinder compressive strength to cube strength of concrete 

does not get altered due to the presence of steel fibres in concrete. There is no significant 

difference between the initial tangent modulus of elasticity of steel fibre reinforced concrete 

and plain concrete. This agrees with the conclusions arrived by earlier investigators

The present test indicates that splitting tensile strength of fibre reinforced'concrete is 

greatly enhanced due to addition of steel fibres. The rate of increase of tensile strength was 

more than 160%, when the fibre content was about 1% by volume. This agrees with 

conclusions arrived by earlier investigators [23,66,67,95,163,1793. Rate of strength increase 

due to fibre addition is greatest in splitting tensile strength. This means that steel fibres greatly 

improve the resistance to cracking.

5.4 Behaviour in Flexure

In the pre-cracking stage, flexural behaviour of fibre reinforced concrete does not differ
C~—

significantly from that of plain concrete. For post-cracking behaviour of fibre reinforced 

concrete, it is totally different than that of plain concrete. The results show that for addition of 

1% fibre by volume, increase in flexural strength is about 95 percent. The addition of 1.5% of 

fibres by volume increases the flexural strength by about 125 percent over plain concrete. This 

is for plain round steel fibres. The above conclusion agrees with that of most of the previous 

investigators [3,23,66,67,161,163].

[70,80,95,179],

5.3 Behavior in Splitting Tensile Strength
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5.5 Behaviour in Direct Tension

The knowledge of the direct tension test shows that the fibres at the cracked section 

will undergo the process of pulling out The amount of pullout undergone by any fibre depends 

on the magnitude of the strain in the cross section at the location of fibre.

It is evident from direct tension test results that due to the presence of fibres, brittle 

matrix transforms into a ductile one which shows significant enhancement in the tensile strain 

capacity. See Fig.5.1 and Table-5.1. From the above fact it is logical that for any analytical 

formulation pertaining to the full fibrous concrete or partial fibrous concrete section the strain 

enhancement need to be established along with other parameters. (54,55)

The concept of strain enhancement is used for predicting the flexural behaviour of fibre 

reinforced concrete. Over the entire post-cracking range, it has not been attempted so far in 

deep beams and moderate deep beams. Based on this strain enhancement concept, a 

flexural theory for steel fibre reinforced concrete member has been proposed.

For steel fibre reinforced concrete deep beams and moderate deep beams, the ultimate 

flexural capacity of such beams depends on L/D ratio, compressive strength of concrete, 

percentage of steel fibres, tensile strength of fibre reinforced concrete, areas of tension and 

compression reinforcement, the yield strength of reinforcement alongwith the strain 

enhancement factor and moment capacity enhancement factor. - 

5.6 ; c,. Moment Capacity Enhancment Factor

Analytical investigations pertaining to the structural response of partially steel fibre

arereinforced concrete beams as well as for fully steel fibre reinforced sections presented in the 

following.

The main aim of this investigation is to explore the possibility and potential use of fibres 

in the zones of concrete structural members where tensile stresses are likely to be induced, in



a manner just similar to that of conventionally reinforced concrete members. Here, the 

appropriate engineering parameter of steel fibre reinforced concrete which can be incorporated 

in the analysis of structural response of deep beams and moderate deep beams is obtained. 

The possible increase in moment capacities corresponding to different depth condition has 

been analytically computed using suitable parameter such as aspect ratio of fibres, volume 

fraction of fibres, grade of concrete which can be arrtibuted towards the enhancement in 

moment capacity of such sections. It has already been established that incorporation of steel 

fibres in concrete matrices results in substained increase in post-cracking ductility in addition to 

the increase in its tensile strength.

Figure 5.3 shows the longitudinal section as well as cross section with possible strain 

distribution behaviour of a partially fibrous concrete section subjected to two point loading. As 

per assumptions, the fibrous zone will attain a stress level equal to the modulus of rupture of 

the plain concrete at the extreme tension layer. As load increases gradually, there is 

progressive development of microcracks on tension side of beam. At ultimate load, entire 

fibrous zone is in the ductile stress condition. After this stage, load begins to decrease 

gradually with fibres being pulled out across the crack. Due to increase in tensile strains, the 

netural axis begins to shift more and more towards compression side. When the pull out of the 

fibres from matrix is complete, the composite is considered to have failed.

5.7 Possible Modes of Failure

The partially fibre reinforced concrete members undergoing flexural behaviour have 

three possible modes of failures.

(1) Failure may take place at the interface when plain concrete reaches its ultimate strain 

in compression before the fibrous reinforced zone reaches its ultimate strain in tension. 

This mode of failure is undesirable since the failure is of brittle nature.
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(2) The second mode of failure is considered when the depth of fibre reinforced concrete 

is too large than that required for compatibility of ultimate strains and the associated 

parameters. Here,fibre reinforced section reaches its flexural tensile strain before the 

plain concrete fails at the interface. This mode of failure is preceded by cracking 

showing good ductile behaviour similar to the fully fibrous section. Although this mode 

of failure satisfies the performance of fibres in the entire depth of the section, it 

becomes an uneconomical proposition.

(3) The third mode of failure is considered when fibre reinforced concrete reaches its 

ultimate strain at the tensile extremity simultaneously when the plain concrete reaches 

its limiting strain at the interface. This mode of failure satisfies the structural 

performance and also ensures optimum use of steel fibres.

The distribution of compressive stress in concrete may be taken as any suitable shape 

that results in a reliable prediction of the flextural strength of the members. Several 

relationships were proposed to characterise this stress-strain behaviour. They are usually in 

the form of linear, bilinear, parabolic and combination of the previous various curves. The often 

used stress-strain curve consisting of a second degree parabola upto the maximum stress at 

the strain of 0.002 and then a linearly falling branch upto an assumed limit of useful concrete 

strain is used in the following derivation.

5.8 Derivation of Flexural Formula 

Assumptions:

1. Strain distribution is linear throughout the depth of the section at all stages of loading.

2. The fibres are uniformly distributed and randomly oriented in the concrete matrix.
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3. Before crack is developed, contribution of the fibres to the internal moment of 

resistance is negligible.

4. For the quantity of fibers used in the investigation, Young's Modulus for fibrous 

concrete is not significantly different from that of plain concrete. Modulus of elasticity 

is identical in both compression and tension.

5. Cracking stresses and strains for plain concrete and for fibrous concretes upto first 

cracking are the same and equal to those of plain concrete.

6. The contribution of the fibres dispersed in a concrete matrix can be represented in the 

form of a triangular block of suitable stress intensity.

7. A functional form of stress-strain relationship of second degree polynomial upto the 

point of maximum stress(au) is considered and beyond that point of ultimate load this 

stress-strain relationship is neglected.

8. The shape of the stress-block in compression has been assumed to be the same as 

the shape of stress-strain curve of concrete upto ultimate load.

9. A fibre becomes ineffective when the strain in the beam section at the fibre location is 

"tf" times the strain in the fibre at its maximum stress.
stress

10. It is assumed that the„tension steelAis at or above yield stress at ultimate load as most
i

of the moderate fibre reinforced concrete deep beams are reinforced with only a little 

amount of tension steel.

The above assumptions proposed are valid for the prediction of ultimate post-cracking

flexural strength only. It is not useful to obtain the contribution of fibres at any intermediate
. ,( ,stage.

Considering the assumed stress-strain relation in a functional form as a parabolic
Ji

relationvcrs- s:hnw>rr i n -_Ftg . 5. 4 *----------------
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(5.1)a = A e +B g2

where A and B are constants. The constants are determined by considering different boundary 

conditions, see Fig 5.4

Initial tangent modulus of concrete does not vary significatly due to the inclusion of 

steel fibres. Hence, the initial stage of the ascending portion of stress-strain curve of steel fibre 

reinforced concrete remains nearly the same as that of an identical plain concrete. The strain 

at maximum stress increases with the inclusion of steel fibres. This increase is more for higher 

value of aspect ratio and volume fraction of fibres. The stress strain curve generally becomes 

flatter in descending part with the increase in aspect ratio and volume fraction.

It is reasonable to expect certain upper limits for aspect ratio and volume of fibres upto 

which the ductility of concrete could increase. After such a limit, there will be problems in 

mixing, workability, compaction, etc., due to bunching or balling of fibres in concrete.

The analytical formulations involve several ratios, and coefficients related to the tensile 

stress-strain relationship of reinforcing steel bars and compressive stress-strain curves of 

fibrous concrete. These parameters and ratios are now defined with repect to the idealized 

stres-strain curve of steel and concrete and the contribution of the fibres.

The functional form of stress-strain relationship for fibrous concrete in compression is 

expressed as

<3= A e +B e2

where A and B are constants.
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At origin

e=0;£ = Ea

A = E0

At ultimate

€ € y ,
. ab 
de 0

2gj

The resulting equation for stress-strain for fibrous concrete in compression is

G — En 6
Eq€.‘
2e«

At ultimate stage e=e„ and <5 = <ju ;

Hence, Gu =
En&l

_ 2Gu

u ~ E0

Substituting in Eq. (5.2), the resulting equation is

Tpg-Eo e 4a „

..(5.2)

(5.3)
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On integrating the curve between the limits zero and ultimate, the total compressive

force C is obtained for various conditions.

(a) Derivation for Lower Half Depth Fibrous Concrete Section

For lower half depth fibrous concrete (see Fig.5.6 (b)) total compressive force C can 

be written as

c=c\ + cl —
/ /

+ AJS .......(5.4)

Total tensile force T can be written as

T= Ti + T2

c=
E0k2bef 

2R
ElPbcP 
12 auR2

T=AJs + \bd{\ - kyr (5.5)

Defining a = rotational factor = E0d
auR and equating C = T,

E0k2bd2 _ Elk?b<P _
2R ~ \lauR2 ~ 2^

Reaaranging the above expression

fy-frbd+AJs-AJs

_ Ok? C„ _ J/"| _ Jr. _ X _ P f 
2 12 J P 2^ ' ‘ P ~JS pJs

where p = As/bd 
p = A's/bd
fs - stress in tensile reinforcement 

/fs - stress in compression reinforcement 
fr - modulus of rupture of fibrous concrete
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At ultimate,

cJu
E0e U

2

Defining a« as a rotation factor at ultimate load

(Xu
2d

euR

eu
kud
~R

au Ou
P

Assuming au 3 0.85fc, and substituting in the Eq.(5.6) and simplifying

f, = 0.67| x 0.85/c - 0.5f (1 - ku) 4- £ ■/' .... (5.7) D

i __ fsP+O-Sfr-fsp'
Ku 0.57fc+0.5fr

Assuming/r=0.15/efor plain concrete

JrtVu
i1.55 4-0 + 0.12-1.55 4-/

Jc Jo

(5.8)

Taking moment of all the forces about the centre of gravity of compressive force due to 

partial fibrous concrete, the following expression is obtained.
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Mhfl AJS -aJs d(l - §&„) +A/Sd +\frb[\{d-kud) + | kud

(5.9)

Rearranging the above Eq. (5.9)

Mhfl AJ,-aJM 1 - ft) +A/J ^frb(P( 1 - £«)(16 - ku)

(5.10)

Let hfD be the depth of fibrous'tensile zone to achieve a balance section condition for 

optimising the use of material to its desirable possible values of ecu and em„

i.e. ultimate.strain of plain concrete = ultimate strain of matrix

ec„ =emu and Ot — &mu

From the strain distribution diagram of Fig. 5.3

[1 -ku~hf] _emu __l 
[1 -ku] €“ tf

Let

e cu = tf emu

where tf is tensile strain capacity enhancement factor..
It depends on aspect ratio of fibre, volume fraction of fibres and grade of concrete. This tf can

be obtained from direct tension test of the plain and fibrous concrete.

From the stress distribution diagram of Fig.5.3, flexural tensile stress of concrete is 

equal to the ultimate flexural tensile stress of matrix.

Ctf = <5 mu

(5.11)

(5.12)

othfD +1atD(l -ku- hf) = |ackuD
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k
u

(1+fr/)
(ct,+cfc) <St

Taking
/

r
CTc

Of

kU

H*£

_ 1+/ _

$f = 2ll+hf-~ku] (5.13)

where j3/ is defined as moment capacity enhancement factor 

Assuming/r = 0.15/c for plain concrete Eq.(5.10) reduces to

Mhfl +A/J +Sft-p/./c4rfJ(l-t.)(16-*,)

(5.14)

(b) Derivation For Full Depth Fibrous Concrete Section

For full depth firbous concrete (see Fig.5.6 (a)) total compressive force C can be 

written as

c=c\+cl+cl .

c=
E0k2bcf Epk^bcP 

2R ~ 12 ouR2
/ /+ ^bkdfr +AJS .... (5.15)

Total tensile force T can be written as 

T=Ti + T2

T=Asfs + jbd(\ - k)fr (5.16)
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Eod
Equating C = T and substituting a = rotational factor

aku a2kl 
2 ~ 12

Sh. _ i
P 2

f. akj a2kl 
2 ~ 12

_ I
P 2

(\-2ku%-ryf,

Substituting in the above Eq. and assuming (5U = 0.85 fc

ku
fsP+0 Sfr-fsp' 

0 Slfc+fr

Assuming fr — 0.15/c for plain concrete

ku = \3S-fa + 0.10-lM-fcp
/

fsj

Taking moment of all the forces about the centre of gravity of compressive force,

Mfl — t r 
s s

it!1 - ft, J +A/,d

+3/r*[f(<i- kud)\ +1 kud

Rearranging the above Eq.

Mfl = Asfs—Atfg d^l — jk^+Asfsd

(5.17)
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Considering enhancement in moment capacity due to full depth fibrous concrete, the 

moment capacity enhancement factor p/ is utilised as a fibre parameter assuming

P/= 2(1 +hf-ku)

fr = 0.15/c for plain concrete

Mfl = AJ, -aJM} -f*„) +A/,d

(c) For without fibre condition

Eq.(5.1Q) of lower half depth fibre condition can be used with modification in p/ and ku
value.

Here P/ =1 as no enhacement in moment capacity

ku = l.56jrp- 1.56 ■yj? + 0.1 (5.18)

Substituting the value of ku from Eq.(5.18)

Mfl =

! / /

+Asfsd + 2.65 x 10 3/c • bd

°-9 “ /?(/«?159 ~ fifsP ~^P) (5.19)
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In Eqs.(5.10 and 5.17), all the quantities except the steel stresses/sand fs, are known 

for any given beam. These stresses are governed by the stress-strain characteristics of the
i

reinforcement. When considering low-carbon steel with a definite yield point, fs and fs are 

easily determined for under reinforced beams if the tensile reinforcement has not gone into

strain hardening, i.e.

fs =fy .........(5.20)

s _ n _ [*«—«c]

fs = 2m- au ku- etc 
ku ~ (5.21)

When strain hardening is reached or the steel exhibits a non-linear stress-strain curve, 

assuming plane sections remain plane the following is obtained.

fs = 0.625-ku A
' p 0.075 4 + 7'/.

A= 0.64- f- [^-0.075 k
‘ p

p_
' p ■fs (5.22)

The stress in steel can only be determined if the stress-strain curves for the tension and

compression reinforcement are known i.e.

fs =/• (e, ) .......(5.23)

/l=/'(eO .......(5-24)

/

By the simultaneous solution of Eqs.(5.23) and (5.24), the values of fsand fs can be 

determined. Due to the nature of most steels, Eq. (5.23) and Eq. (5.24) cannot be easily
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expressed as a single continuous function. Therefore, if a curve of fs is plotted for the
r /specified ultimate load parameters /c,eu , p and p on the stress-strain curve of tensile 

reinforcement, fs can be obtained from the intersection of the curves (37) as shown in Fig,5.9.

Equation (5.22) is valid for planer sections. However, it can be modified for non-planer 

sections by the introduction of the strain compatibility factor (SCF).

SCF = kdes 
ec (d-kd)

For ultimate conditions

(5.25)

SCF = Kud-es 
e„ (d-~kud) (5.26)

The expression for stress in steel for non-planer section becomes

/, = 0.64 • fc (SCF)eu 
_ (SCF)eu +e« _ 0.075 f±

p (5.27)

It is interesting to note that after consideration of strain compatibility factor, an 

equivalent strain or SCFxe„ for deep beams is identical to that for shallow beams. The 

increased limiting strain and the effect of non-planarity in deep beams have a compensating

net result.

(SCF)xeu = 0.003 For Plain Concrete.

= 0.007 For Fibrous Concrete

Formulae proposed herein for flexure capacity of fibrous moderate deep beams can be

used directly provided the value of fc and moment capacity enhancement factor (3y according 
to the depth of fibres are known. There is no necessity of assuming values of constants, k\, 
kiand k-i as is usally done in various known formulae of other investigators.
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5.9 Derivation of Shear Strength Formulae

The analysis of the ultimate strength of a steel fibre reinforced concrete deep beam 

and moderate deep beam failing in shear is based on the following assumptions :

(1) The shear strength of deep beam is dependent on the splitting strength of fibrous 

concrete.

(2) The approximate direction of the diagonal crack is the line joining the load point with 

the support point.

(3) The main longitudinal bars are also considered as web bars in calculating the ultimate 

shear strength.

(4) Total shear capacity of steel fibre reinforced concrete deep beams and moderate deep 

beams is obtained by a superposition of two components namely shear capacity of 

fibrous concrete and shear capacity of the web reinforcement.

(5) Shear capacity of fibrous concrete is dependent on the splitting of an elliptical section 

whose major axis lies on the line of diagonal crack defined in (2) above.

(6) The effectiveness of a web bar increases with the depth at which it intersects the line of 

diagonal crack and is dependent on the yield stress of the web reinforcement.

In deep beams, failure is actually a diagonal splitting failure. This phenomenon is 

similar to that exhibited by specimens in the Brazilian splitting test failing under diametrical 0 

compression.

Brock (18) pointed out the possibility of predicting the ultimate shear strength of 

reinforced concrete beams on the basis of the splitting strength of concrete. This is 

substantiated by the work of Ramkrishnan and Anantnarayan (135), Prakash Desai (49), Patel 

S. N. (127) and others.
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Using a similar approach, a method is proposed for calculating shear capacity of steel 

fibre reinforced concrete deep beams and moderate deep beams using splitting analogy see 

Fig.5.7. With addition of fibres, shear capacity improves. Shear resistance is built up through 

fibres crossing a major diagonal crack or any such similar crack. The total shear capacity of a 

such beam is made up of the shear capacity of concrete, shear capacity of web reinforcement 

together with the resistance offered by the steel fibres (96,97) in the concrete.

Total Shear = Shear capacity of + Shear capacity of web + Shear capacity of 

Capacity Concrete Reinforcement Fibres

where,

kb - coefficient of bond stress variations.

Oft - interfacial bond stress between fibres and matrix.
If - length of steel fibres.

Vf - volume percentage of steel fibres.

If 0 is the inclination of the crack with the axis of the beam, the splitting component of ATTf ~^

the load will be y cosec 0 as shown in Fig. 5.Z. It is in the direction of the crack causing 

splitting. This component is resisted by fibrous concrete and reinforcing steel crossing the line

of splitting. At ultimate, the shear capacity of the concrete is assumed to be due to splitting of 

an elliptical section whose major axis is along the line joining the support and the nearest load 

point. Further, maximum tensile stress that develops in the elliptical section is assumed to be 

equal to the tensile strength of the matrix.

V„ — Vuc + vus + Vuf
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Thus
_ t ,Vuc-co sec 6

©RSI e S reng O concree (cons\mtXWidth‘Ofbeam)(lengtbofmajor‘axis-ofan’eniptical-section)

Hence,

Vufose9
(constant)(6)(240) .... (5.28)

where^40 is the semi-major axis of the elliptical section, From Appendix (B)

aI
£.
4 cfl

[024if2]

I] +[1^2]
0 < e < 1 (5.29) ©

By taking the value of e close to one it is readily noticed from the above expression that 

the ellipse tends to degenerate into an elliptical strip, while the value of e close to zero tend the 

ellipse very near to a circle. Hence for moderate ellipses, assuming the value of e to be 1/2

one gets.

2A0 ~ d
1

(5.30)

length o< length 0f
The constant in the equation depends on the ratio ofAmrrjoraxis toAm4aoraxis of an 

ellipse. Its value is 1.483 and is calculated as given in reference (12). Using values of 2A0 
from the above equation and simplifying by substituting above said values

1,483- ft-bd
/i+o75-(5)

(5.31)
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Shear capacity of web reinforcement can be obtained by considering the strain in web

steel placed at given level in the tested beams. This variation of strain in the web steel is

assumed to be given by a straight line.

3 = 7 .... (5.32)

where N\ and N2 are constants andes is the strain in the web steel at any level Y from the 

top surface of the beam. Using the method of least squares of all the average maximum strain

readings given in Table-5.3.

Ni y-n2

7-382
‘°E* d

fs Jk
5.8

7-382
(5.33)

Hence, stress in web steel at any depth Y, is given by

_ Es_ 
SI 5.8

7,-382
(5.34)

As the strain in web steel at y/d = 1.0 has an average maximum value of strain of about

70% of yield strain of the steel used, the stress in web steel at y/d =1-Q can be safely assumed CO 
to be equal to 0.7fy. Hence

7,-382
d

Rearranging we have | Eq.(5.33)

(5.35)
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5.8x0.76,
7,-382

Substituting the above value in Eq.(5.34)

fsi 5.8x0.7fy

5.8
7r382 X

7,-382'

d .....(5.36)

Now VusCOseQ = E/j^siii(a, + 0) see Fi g 5-8 (c ) 

Substituting the value ofJh\ in Eq.(5.37)

&
(5.37)

o -

Vvs
• A SJ • sin (a/ + 0) (5.38)

The total shear capacity of a steel fibre reinforced concrete deep beam and moderate

deep beam is given by

V.= 1 483frbd 0.7fy v Y,

1+0 75
■ +

1+ % 
Id2

Hj-Ast- sin(a, + 0) + fa<Jb • dJVflf

.... (5.39)

and ultimate load W for a steel fibre reinforced concrete deep beams in shear
can be approximated as

W=2VU = -7==^==- + -7==- E• ASi ■ sin(a, + 0)
1+0 75

a2

d2 J Hi
+2Kb • Ob' d^ Vf • If (5.40)
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(5.41)

W=2Vu = ai-ffbd+aL2 •fyL j ■ Asi ■ sin( a, + 0)
+2kb • at • dJVf lf

where

ai =
3.0

a i and a.2 are known from the loading and geometry of the sections.

The shear strength Eq.{5.39) is derived for the case of deep beams with two points

loads. Deep beams with only one point load are rarely met in the practice. Normally, these will

be subjected to uniformly distributed loads or a conbination of concentrated and distributed

loads. Hence, it is essential to derive methods for calculating the shear strength of these

beams. The theory developed previously is extended to the case of deep beams subjected to

Let dQ be the elemental splitting force in the direction of the potential crack and F be

uniformly distributed loads. See Fig.5.8.(d)

the resultant splitting force acting at an angle \j/ with the horizontal as shown in Fig.5.8. (d )

W-cosy-dx
.....(5.42)

Resolving dQ in the direction of potential crack and summing up one gets

F = j^[L • cosy + 3d • simj/] (5.43)

For F to be maximum



tani{/ = —

This fixes the direction of the diagonal crack which is inclined at an angle of tan'1(3d/L) to 

the horizontal. Thus shear span "a" in case of deep beams with uniformly distributed load is 

L/3. Substituting this value of shear span in Eq.(5.41) the following formula is obtained.

= a[ - ft-bd+a2 -fyL j -Asl • sin (a, + 0) + 2 fa • a* • djvf-lf

(5.44)

where

and

C4

i \2d'

/
a2 =

1.4

5.10 Computation of Maximum Crack Width Formula

In recent years the control of crack widths in reinforced concrete design has become 

an important design consideration. Cracks can be developed in a reinforced concrete structure

cue)as the internal stresses exceed permisible tensile strength of the concrete. See Fig.5.10. With 

the introduction of high tensile strength deformed bare, the problem of control of cracking has 

become more complex.

Assurance of strength adequacy of structural elements is no longer sufficient for 

aesthetic or safe performance acceptance. Serviceability conditions have to be met involving 

cracking performance at normal load conditions. In the limit state design of concrete structures, 

the limit state of cracking is one of the criteria which the design has to satisfy. This check is
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required not only for reinforced concrete members, but also for prestressed concrete members 

which come under Class-3 structures of the CEB-FIP classification^ 32)

Two approaches are available for estimation of maximum crack width viz. steel stress 

approach and fictitious tensile stress approach. Samarai and Elvery (149) compared reinforced 

tensile specimens with different fibre contents, and showed that the fibres reduced crack width 

and crack spacing with longer and thinner fibres being more effective. Swamy and Al Noori 

(166) studied the effect of fibres in beams and found that the addition of fibres reduced the 

crack widths and the provision of fibre concrete in the form of a tensile skin was just as 

benifical as providing fibre concrete in the whole tension zone.

In the present investigations, the variation of crack width with the load and the effect of 

quantum of fibres on crack width is studied. In order to comply with the design requirements of 

the present codes of practice the servicability limit state must be fulfilled.

Crack spacing as such whether minimum, mean or maximum is of little practical 

significance. Similalry minimum and mean crack widths are not of much importance from 

practical design considerations. Nawy (116) also reported similar opinion. Only the maximum 

crackwidth is limited to certain specified values at service load, depending on the exposed 

environment in the design codes.

It has been observed, in the present investigations, that the crackwidth at a point in a 

cracked section is proportional to the distance of the point from the neutral axis. The same 

observation was made by many of the earlier investigators (9,19,30,48). Also the variation in (£) 

the maximum spacing was not found to be significant due to inclusion of steel fibres in the 

present investigation, though the crackwidth was reported to very linearly with load as well as 

steel strain in general.
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IS:456-1978 (76) does not refer to any computations of crack widths. In section 5 under 

the clause 35,3.2, it is specified as a guide line that the surface width of the cracks should not 

exceed 0.3 mm. In the field, estimation of crack widths are usually done based on empirical 

formulae developed by ACI Committee 318-1989 (5), CP-110-1972 (36) and CEB-FIP (32). 

Out of these formulae, normally ACI formula gives very near solution for reinforced concrete 

structures. The ACI formula is based on the work of Gergeley and Lutz (63). They have 

suggested a formula to predict maximum crack width in inches at the extreme concrete tensile 

fibre at the bottom, based on computer statistical analysis of beam test results from Karr, 

Mattock, Clark, Rusch and Rahimi. (30,83,106,131 )

The formula for maximum crack width in reinforced concrete beams under flexure is 

given by Gergeley and Lutz (63) as below:

where h\,hi and Act are variables. All the other parameters in the equation are constants. 

A formula is proposed to obtain a functional representation of maximum crack width in fibre

reinforced concrete beams under flexure. Due to the presence of fibres and different L/D

ratios the above formula is modified using least square method of standard optimization,

(160). The existing formula is modified as under:

Wbmsx = 10.8 X 10 6 • (5.45)

Wimax — 10.8 X 10 - sl[l - aVf] (5.46)

where h \ - distance from neutral axis to the soffit of the beam
hj - distance from neutral axis to the centroid of steel reinforcement
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Act - area of concrete in tension zone 

dc - clear cover distance

where the term in the first square bracket gives the effect of L/D ratios and the term in 

the next bracket gives the effect of percentage of fibres in concrete. Expression for estimating 

maximum crack width Eq.(5.45) was modified using the results obtained in these investigation. 

A statistical analysis of data of L/D varying from 3.0 to 7.0 enabled the determination of

coefficients in the expression. From the experimental results, the constants A = 0.09 

and a = 0.176 are obtained.

In absence of fibres in the reinforced concrete sections, Vf = 0 and hence the

[1 - a V/] is reduced to 1.0.

When L/D = 7.0 or more, 

Hence, the formula will reduce to 

beams.

then the first factor A\ ~ ] -B is to be taken

the original formula which is applicable to normal

as 1.0. 

shallow
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TABLE - 5.1

DIRECT TENSION TEST RESULTS OF CONCRETE SPECIMENS

Vf = 0% Vf = 0.5%

Load Stress Average Load Stress Average
N N/mm2 Strain x10* N N/mm2 Strain x 10*

1000 0.300 13.80 1000 0.300 11.20
2000 0.601 26.40 2000 0.600 22.10
3000 0.913 29.92 3000 0.910 33.12
4000 1.220 54.78 4000 1.230 45.80
5000 1.529 59.40 5000 1.530 54.70
6000 1.830 67.32 6000 1.820 62.40
7000 2.080 78.16 7000 2.090 71.23
8000 2.290 88.00 8000 2.280 88.10
8900* 2.480 * 99.00 * 9000 2.450 112.16

9300* 2.580 * 120.60*

Vf = 0.75% Vf = 1.0%

Load Stress Average Load Stress Average
N N/mm2 Strain x N N/mm2 Strain x10*

10*
1000 0.27 10.10 1000 0.270 9.0
2000 0.58 20.30 2000 0.550 18.0
3000 0.88 32.20 3000 0.840 30.5
4000 1.18 41.30 4000 1.130 36.8
5000 1.47 52.40 5000 1.410 49.9
6000 1.68 60.00 6000 1.700 57.7
7000 1.94 65.16 7000 1.990 59.1
8000 2.24 83.05 8000 2.220 78.0
9000 2.55 98.50 9000 2.500 84.5
9500 2.68 103.00 9500 2.660 121.3
10000 2.81 123.00 10000 2.780 151.0
10600* 2.92 135.00* 10500 2.860 173.0

11300* 3.135* 206.6 *

* Average values
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TABLE - 5.1 (Contd.)

DIRECT TENSION TEST RESULTS OF CONCRETE SPECIMENS

Vf = 1.6%

Load Stress Average
N N/mm2 Strain x 10'6

1000 0.28 9.0

2000 0.56 17.0

3000 0.83 24.0

4000 1.10 35.0

5000 1.40 44.0

6000 1.68 54.0

7000 1.94 62.4

8000 2.25 74.3

9000 2.54 81.1

10000 2.80 119.3

11000 2.98 160.4

11500 3.21 237.0

12100* 3.37* 276.0 *

* Average values

131



(A)

TABLE 5.2

COMPUTATION OF ENHANCEMENT FACTORS 

STRAIN ENHANCEMENT FACTOR "t,"

vf % Load N Maximum stress 
N/mm2

Maximum strain 
x 10*

«r

0.00 8900 2.48 99.0 1.00

0.50 9300 2.58 120.6 1.22

0.75 10600 2.92 135.0 1.37

1.00 11302 3.13 202.0 2.04

1.50 12100 3.37 296.0 2.98
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TABLE 5.2

COMPUTATION OF ENHANCEMENT FACTORS

(B) MOMENT CAPACITY ENHANCEMENT FACTOR %"

j ^ cut

f &mut

II 'b
S I

I—
* k - —Ku ~ trr

£.|J>
II P/=2[l +*/■-*„]

1.00 1.000 0.500 0.000 1.000
1.20 1.183 0.496 0.084 1.175
1.40 1.342 0.489 0.146 1.313
1.80 1.612 0.473 0.234 1.524
2.00 1.732 0.464 0.268 1.608
2.20 1.844 0.456 0.297 1.682
2.50 2.000 0.444 0.333 1.778
3.00 2.236 0.427 0.382 1.910
3.50 2.449 0.412 0.420 2.017
3.75 2.550 0.405 0.437 2.064
4.00 2.646 0.398 0.451 2.107
4.50 2.828 0.386 0.478 2.183
5.00 3.000 0.375 0.500 2.250
5.50 3.162 0.365 0.519 2.309
6.00 3.317 0,356 0.537 2.361
7.00 3.606 0.340 0.566 2.452
7.50 3.742 0.333 0.578 2.491
8.00 3.873 0.326 0.590 2.527
9.00 4.123 0.314 0.610 2.591
10.00 4.359 0.304 0.627 2.646
12.00 4.796 0.286 0,655 2.739
14.00 5.196 0.271 0.677 2.813
16.00 5.568 0.258 0.695 2.875
18.00 5.916 0.247 0.711 2.927
20.00 6.245 0.238 0.724 2.972
25.00 7.000 0.219 0.750 3.063
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TABLE- 5.3

MAXIMUM STRAIN IN WEB STEEL

Beam No. Dist. from top Effect depth y/d Maximum strain Max. average
y d strain

F1.0 D60 55 55 1 1500
F1.5 D60 55 55 1 1337 1970.0
H1.0 D60 55 55 1 2100
H1.5 D60 55 55 1 2943

F1.0 D50 45 45 1 2040
F1.5 D50 45 45 1 2591 2771.7
H1.0 D50 45 45 1 3529
H1.5 D50 45 45 1 2927

F1.0 D40 36 36 1 1344
F1.5 D40 36 36 1 1770 1538.5
H1.0 D40 36 36 1 1100
H.15 D40 36 36 1 1940

F1.0 D30 26 26 1 1204
F1.5 D30 26 26 1 2390 1942.55
H1.0 D30 26 26 1 2045
H1.5 D30 26 26 1 2130

F1.0 D20 16 16 1 2067
F1.5 D20 16 16 1 1434 1371.75
H1.0 D20 16 16 1 1280
H1.5 D20 16 16 1 0706

F1.0 D15 11 11 1 1610
F1.5 D15 11 11 1 1335 1910.5
H1.0 D15 11 11 1 2130
H1.5 D15 11 11 1 2567

F1.0 D12 08 08 1 1436
F1.5 D12 08 08 1 1356 1516.5
H1.0 D12 08 08 1 1628
H1.5 D12 08 08 1 1646

F1.0 D10 06 06 1 960
F1.5 D10 06 06 1 1445 1373.0
H1.0 D10 06 06 1 1470
H1.5 D10 06 06 1 1617
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LONGITUDINAL SECTION

(Tc 6C

CROSS SECTION STRESS DISTRIBUTION STRAIN DISTRIBUTION

ALL DIMENSIONS IN MM

Fig. 5.3 SECTIONAL VIEWS OF A PARTIALLY 
FIBROUS CONCRETE BEAM.
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Fig. 5.4 ASSUMED STRESS-STRAIN RELATIONSHIP 
FOR CONCRETE
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(a) CROSS SECTION (b) LINEAR STRAIN DISTRIBUTION

Fig. 5.5 DERIVATION OF ULTIMATE FLEXURAL 
MOMENT EQUATIONS
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(a) FULL DEPTH FIBROUS CONCRETE SECTION

(b) LOWER HALF DEPTH FIBROUS CONCRETE SECTION

Fig. 5.6 GEOMETRY OF A FLEXURAL CROSS SECTION
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Fig. 5.7 SPLITTING ANALOGY FOR A DEEP BEAM
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(c)

Fig. 5.8 DERIVATION OF SHEAR STRENGTH EQUATIONS.
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Fig. 5.9 GENERAL GRAPHICAL SOLUTION FOR fs.
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TENSILE STRESS IN STEEL

Fig. 5.10 STRESS DISTRIBUTION BETWEEN 
ADJACENT FLEXURAL CRACKS.(116)
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