

SYNOPSIS		
ACKNOWLEDGEMENTS		
LIST OF TAI	BLES	ix
LIST OF FIG	URES	X
LIST OF PL	ATES	xiii
CHAPTER -	1 INTRODUCTION	1
1.1	General	1
1.2	Object and Scope	3
1.3	Notation	5
CHAPTER -	2 REVIEW OF LITERATURE	7
2.1	Introduction	7
2.2	Theoretical Investigations	7
2.3	Photoelastic Test	9
2.4	Investigation by Models	10
2.5	Experimental Investigations	13
2.6	Fibre Reinforced Concrete	23
2.7	R.C.C. Deep Beam Design	35
	(Current Practice of Deep Beam Design)	38

CHAPTER -	3 EXPERIMENTAL PROGRAMME	47
3.1	General	47
3.2	Description of Test Specimens	47
3.3	Notation of Beams	48
3.4	Materials	49
3.5	Concrete Mix	51
3.6	Form Work	52
3.7	Strain Gauge Applications	52
3.8	Mixing	52
3.9	Casting and Curing	53
3.10	Instrumentation and Testing Procedure	54
3.11	Deflection	54
3.12	Strain Indicating Bridge	55
3.13	Concrete Strain	55
3.14	Crack Measurements	55
3.15	Preparation of Specimens Prior to Testing	55
3.16	Control Specimens	56
3.17	Main Beams	56

.

١

CHAPTER - 4 RESULTS OF BEAM TESTS			
4.1	4.1 General		
4.2	4.2 Modes of Failure		
-	(a)	Crack patterns	68
	(b)	Flexural failure	71
	(c)	Shear failure	71
	(d) Flexural shear failure		72
	(e)	Bearing failure	72
	(f)	Load-deflection characteristics	72
	(g)	Steel strain	72
	(h)	Inclined cracking load	73
	(i) Reserve strength beyond diagonal cracking(j) Ultimate load		74
			75
		, ,	
CHAPTER -	5 AN		104
5.1 General			104
5.2	Beha	aviour in Compression	104
5.3	Beha	aviour in Splitting Tensile Strength	105
5.4	Beha	aviour in Flexure	105

· .

5.5 Behaviour in Direct Tension 106

ŧ

۰ ۱

5.6	Derivation of Moment Capacity Enhancement Factor			
5.7	Possible modes of Failure 1			
5.8	Derivation for Flexural Formulae			
ι	(a)	For lower half depth fibrous concrete section	112	
	(b)	For full depth fibrous concrete section	115	
	(c)	For without fibre condition	117	
5.9	Derivation of Shear Strength Formulae 1			
5.10	Computation of Maximum Crack width Formula 126			

.

ĵ

CHAPTER - 6		5 DIS	SCUSSION OF RESULTS	145
6.1 Ge		Gene	eral	145
6.2 *		*	Fully and Partially Steel Fibre Reinforced	146
			Concrete Member in Flexure and Shear	
		*	Role of Steel Fibres in Conventionally	
			Reinforced Concrete Beams	
		*	Stress-strain Curves of Plain and Fibrous	
			Concrete in Flexure and Compression	
		*	Stress-strain of Curves of Plain and	
			Fibrous Concrete in Direct Tension	
		*	Determination of the Values	
			of Parameters and Coefficients	
		1		

e 1

			*	Deformational Characteristic	
			*	Computation of Ultimate Load Capac	ity
	Cł	IAPTER -	7 S	UMMARY AND CONCLUSIONS	163
		7.1	Sum	nmary	163
		7.2	Con	clusions	163
		7.3	Des	ign Recommendations for Deep Beams	171
		7.4	Rec	ommendations for Future Research	173
	BI	BLIOGRA	PHY		175
	AF	PENDICE	ES		
	А	Notation			197
	B Stresses in Elliptical Section				201
	C Tables for Deflection in Beams				
2	D Tables for Strains in Web 2				218
	E Design Example 2				227
	F	Papers I	Publis	ned / to be Published	236

.